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Background and Purpose: Pretreatment prediction of the response to neoadjuvant
chemoradiotherapy (NCRT) helps to determine the subsequent plans for the patients with
locally advanced rectal cancer (LARC). If the good responders (GR) and non-good
responders (non-GR) can be accurately predicted, they can choose to intensify the
neoadjuvant chemoradiotherapy to decrease the risk of tumor progression during NCRT
and increase the chance of organ preservation. Compared with radiomics methods, deep
learning (DL) may adaptively extract features from the images without the need of feature
definition. However, DL suffers from limited training samples and signal discrepancy
among different scanners. This study aims to construct a DL model to predict GRs by
training apparent diffusion coefficient (ADC) images from different scanners.

Methods: The study retrospectively recruited 700 participants, chronologically divided
into a training group (n = 500) and a test group (n = 200). Deep convolutional neural
networks were constructed to classify GRs and non-GRs. The networks were designed
with a max-pooling layer parallelized by a center-cropping layer to extract features from
both the macro and micro scale. ADC images and T2-weighted images were collected at
1.5 Tesla and 3.0 Tesla. The networks were trained by the image patches delineated by
radiologists in ADC images and T2-weighted images, respectively. Pathological results
were used as the ground truth. The deep learning models were evaluated on the test
group and compared with the prediction by mean ADC value.

Results: Area under curve (AUC) of receiver operating characteristic (ROC) is 0.851 (95%
CI: 0.789–0.914) for DL model with ADC images (DL_ADC), significantly larger (P = 0.018,
Z = 2.367) than that of mean ADC with AUC = 0.723 (95% CI: 0.637–0.809). The
sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of
DL_ADC model are 94.3%, 68.3%, 87.4% and 83.7%, respectively. The DL model with
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T2-weighted images (DL_T2) produces an AUC of 0.721 (95% CI: 0.640–0.802),
significantly (P = 0.000, Z = 3.554) lower than that of DL_ADC model.

Conclusion: Deep learning model reveals the potential of pretreatment apparent diffusion
coefficient images for the prediction of good responders to neoadjuvant chemoradiotherapy.
Keywords: rectal cancer, magnetic resonance imaging, apparent diffusion coefficient, deep learning,
good responder
INTRODUCTION

Locally advanced rectal cancer (LARC) is defined as rectal cancer
with clinical tumor stage 3-4 (cT3-cT4, tumor invades through the
muscularis propria) or positive clinical nodal stage (cN+,
malignant lymph nodes are detected). Preoperative neoadjuvant
chemoradiotherapy (NCRT) is the standard treatment procedure
for LARC patients (1–3). Some good responders (GR)may achieve
pathological tumoral stage 0-1 (ypT0-1, muscularis propria is not
invaded) and negative pathological nodal stage (ypN0, no
malignant lymph nodes are found) after NCRT. These GRs may
avoid total mesorectal excision (TME) surgery by using “wait and
see” strategy or local excision to preserve organs and improve the
life quality (4, 5). Several methods have been proposed to predict
the pathological complete response (6–10), pathological good
responses (11–13), lymph node metastasis (14, 15) of LARC by
using two sets of MRI data, one before the initiation of NCRT and
another during or after NCRT. In addition to assessing response
after or during NCRT, it is also beneficial to predict GRs before the
start of NCRT. If GRs and non-good responders (non-GR) could
be classified before the initiation of NCRT, individualized
treatment could be implemented to each classification to
maximize their benefit from NCRT.

Several radiomics methods have been proposed to
discriminate GRs and non-GRs based on MRI data before the
initiation of NCRT. (16–21). In these works, classification
models were constructed by handcrafted features such as
shape, gray histogram and texture. But these generalized
features are not specially designed for rectal MRI data. The
development of deep learning (DL) makes it possible to
adaptively extract features without the need of predefinition. A
study has shown that VGG19 networks pre-trained by ImageNet
dataset (AUC = 0.73) yield significantly larger AUC than
handcrafted features (AUC = 0.64) (22). However, it is still a
challenging problem to train DL networks by rectal MRI data
because DL requires much more data than conventional machine
learning. If data from multiple scanners are used, the signal
variation in magnetic field or venders cannot be ignored. A study
based on two 1.5 Tesla scanners has found that 75% of features
are unstable to variations in vendors and image acquisition
protocols (21). The variations are larger if images are scanned
at different magnetic field strength. If DL is trained by data with
considerable discrepancy, the networks may fail to reach the
optimal condition.

Compared with T2-weighted images or diffusion-weight
images, apparent diffusion coefficient (ADC) is an inherent
physical value of the tissues and is independent on the
2

scanning conditions. Therefore, it could be expected that the
DLmodel based on ADC images is insensitive to the difference in
scanning conditions. In this study, a DL model was proposed to
classify GRs and non-GRs to NCRT by the pretreatment MRI
data of rectal cancer. The networks were trained by ADC images
of 500 participants from a 1.5 Tesla scanner and a 3.0 Tesla
scanner. A chronologically separated test group with 200
participants was used to validate the performance of the
model. The same networks trained by T2-weighted images
were used for comparison.
MATERIALS AND METHODS

Subjects
This retrospective study enrolled 700 participants with rectal
cancer from Dec 2009 to July 2016. The protocol has been
approved by the medical ethics committee of Beijing Cancer
Hospital. All candidates satisfied the following criteria: (a)
proven as locally advanced rectal adenocarcinoma by
histopathology and baseline MRI examination (≥cT3 or cN+);
(b) scheduled to NCRT in our hospital. Participants were
excluded if (a) NCRT was incomplete; (b) pathological results
were unavailable; (c) Lack of diffusion-weighted image at b = 0 or
b = 1000 s/mm2 or lack of T2-weighted image; (d) the quality of
images is insufficient for measurement due to artifacts or noise.
All participants (n = 700) were divided into a training group (n =
500, from December 2009 to March 2015) and a test group (n =
200, from March 2015 to July 2016) chronically. Figure 1 is the
flowchart of inclusion and exclusion.

Scanning Parameters
All participants underwent MRI within one week before
initiation of NCRT. 221 participants were scanned on a 1.5
Tesla MRI scanner (Optima MR360) and 479 participants were
scanned on a 3.0 Tesla MRI scanner (Discovery MR750) using an
8-channel phased array body coil in the supine position. The
scanning parameters of diffusion-weighted imaging (DWI) and
T2-weighted imaging (T2WI) are summarized in Table 1.

ROI Delineation
Region of interests (ROI) of rectal tumor were manually
delineated on each slice of T2-weighted images and diffusion-
weighted images at b-value of 1000 sec/mm2 by two experienced
radiologists with ITK-SNAP (http://www.itksnap.org/). Tumor
shows slightly high signal on T2-weighted images and shows
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high signal on diffusion-weighted images at b-value of 1000
sec/mm2. The region of intestinal lumen was excluded. Images of
other protocols were used as reference to exclude false positive
signals. Randomly selected 50 subjects were used to train the two
radiologists to reach a dice similar coefficient larger than 0.9. An
example of ROI delineation was shown in Figure 2.

Neoadjuvant Chemoradiotherapy (NCRT)
All participants received 22-fraction (5 times per week) of 2.3 Gy
(gross tumor volume) and 1.9 Gy (clinical target volume)
intensity-modulated radiation therapy using a Varian Rapidarc
system (Varian Medical Systems). 825 mg/m2 capecitabine was
orally given twice every day concurrently with radiation therapy.
All participants received TME surgery within 8–10 weeks after
completion of NCRT.

Pathological Assessment
After TME, surgically resected specimens were examined and
analyzed by two pathologists in consensus. Pathological results
were used as ground truth to define GR (ypT0-1 and ypN0) and
non-GR (ypT>1 or ypN>0).
Frontiers in Oncology | www.frontiersin.org 3
Image Pre-Processing
ADC images were calculated by images at b = 0 and image at b =
1000 sec/mm2 with an in-slice 3 × 3 convolutional kernel for
smoothing to eliminate the possible misregistration between two
images. ROI delineated at b = 1000 sec/mm2 was directly used as
the ROI of ADC images. T2-weighted images were normalized to
the range between 0 and 1 to minimize the difference among the
scanners. The smallest cuboid that contain the whole delineation
was cropped. 6 mm margins were added to the slice plane. All
image patches were reshaped to the size of 64 × 64 × 16 by zero-
padding. Data augmentation was performed by rotating the ROI
by N times with each of 360/N degrees. N is 100 for GRs, and N is
25 for non-GRs according to the ratio of two classes to keep a
balance in training.

Deep Convolutional Neural Network
Processed ADC patches or T2-weighted patches were inputted
into the convolutional neural networks shown in Figure 3. A
feature-extract unit is designed with a convolution followed by a
max-pooling layer and paralleled by a cropping layer. The size of
convolution kernel is 3 × 3. The size of max-pooling is 2 × 2,
which passes the maximal value of each 2 × 2 voxels into the next
layer. The cropping layer extracts the central 1/4 region of the
image into next layer and concatenated with the output of max-
pooling layer. This structure manages to extract information
from both the whole image and the central area. After 4
repetitions of the feature-extract units, dense connected layers
and a SoftMax function was used at final to produce a probability
between 0 and 1. The network architecture was implemented
using Python 3.6 based on Keras 2.1.5 with TensorFlow 1.4.0 as
its backend. The network was trained by stochastic gradient
descent algorithm with the adaptive moment estimation and a
binary cross-entropy loss function. 64G memory and a graphic
processing unit (GPU: NVIDIA TITAN XP 12G) was used. It
took averagely 10 hours to train the networks.
FIGURE 1 | Flowchart of inclusion and exclusion.
TABLE 1 | Scanning parameters of T2-weighted imaging (T2WI) and diffusion-
weighted imaging (DWI) protocols on 1.5 Tesla and 3.0 Tesla scanners.

1.5 Tesla 3.0 Tesla

DWI T2WI DWI T2WI

TR (second) 5.0–6.0 3.6–4.8 2.8 4.8–5.7
TE (millisecond) 65–80 100–110 66 100–110
FOV (mm) 340 180 340 180
Echo Train Length 1 16 1 25
b value (s/mm2) 0,1000 – 0,1000 –

Image Size 256 × 256 256 × 256 256 × 256 512 × 512
Thickness (mm) 5.0 3.0 4.0 3.0
Gap (mm) 1.0 0 1.0 0.3
October 2020 | Volume 10 | Article 574337
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The training group is randomly divided into five subgroups
for 5-fold cross-validation to determine the optimal
hyperparameters for training. For each fold, four subgroups
(400 samples) were used for training and the other subgroup
(100 samples) was used for validation. The hyperparameters
(learning rate, decay rate, batch size, and number of epochs)
corresponding to the largest mean accuracy were used for
subsequent construction of the final model by training all 500
samples. The network was evaluated by the participants in the
test group (200 samples). The networks trained by ADC images
are named as DL_ADC model, and the networks trained by T2-
weighted images are named as DL_T2 model. The area under the
curve (AUC) of receiver operating characteristic (ROC) were
calculated. Two DL models were first trained by combining
images from 1.5 Tesla and 3.0 Tesla scanners and then trained
by images scanned at the 3.0 Tesla scanner only. The processed
data and the weights of trained networks can be found at the
following link (https://github.com/radiologypkucancer/rectal_
MR_DL).
Frontiers in Oncology | www.frontiersin.org 4
RESULTS
The 500 patients in the training group included 116 (23.2%) GRs
and 384 (76.8%) non-GRs. The 200 patients in the test group
included 60 (30%) GRs and 140 (70%) non-GRs. The
distribution of GRs and non-GRs shows insignificant difference
between the training group and the test group by Chi-square test
(c 2 = 3.510, P = 0.07) (P < 0.05 is considered significant
difference). The clinical information was summarized in Table
2. The age, sex, pretreatment T-stage and N-stage show
insignificant difference between GRs and non-GRs in both
training group and test group. The pretreatment mean ADC
value inside tumor ROI shows significant difference between GRs
and non-GRs in both training group (T = 3.937, P = 0.000) and
test group (T = 4.439, P = 0.000).

After cross-validation, the optimal hyperparameters were
determined as follow: the learning rate is 3 × 10-5, the decay
rate is 1 × 10-4, and the batch size is 30 for both DL_ADC and
A B

DC

FIGURE 2 | Delineation of region of interest on the images of rectal cancer. (A) T2-weighted image; (B) T2-weighted image overlaid by the manual delineation.
(C) diffusion-weighted image with b-value of 1000 sec/mm2. (D) Diffusion-weighted image with b-value of 1000 sec/mm2 overlaid by the manual delineation.
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DL_T2 models. The mean AUC of DL_ADC model reached
maximum after training 2 000 epochs and then declined. The
mean AUC of DL_T2 model reached maximum after training
1,200 epochs and then declined. Finally, the models were trained
by the whole training group with the optimal hyperparameters
above and evaluated by the participants in the test group.

ROC curves of test group were plotted in Figure 4 by
comparing the pathological ground truth with the mean ADC
value, GR probability predicted by DL_ADC model and DL_T2
model in the test group. The cut-off value was determined by
maximizing the Youden’s index (sensitivity+specificity-1).
Figure 4A shows the models trained by the combination of
images from 1.5 Tesla and 3.0 Tesla. The AUC of mean ADC
value is 0.723 (95% CI: 0.637–0.809). The cut-off value of mean
ADC is 1.07 × 10-3 mm2/sec. The AUC of DL_ADC is 0.851
(95% CI: 0.789–0.914), significantly larger (P = 0.018, Z = 2.367)
than the AUC of mean ADC value by DeLong test (23). The
AUC of DL_T2 is 0.721(95% CI: 0.640–0.802), significantly
lower than DL_ADC model (P = 0.000, Z = 3.554). Figure 4B
shows the models trained by the images from a 3.0T scanner
only. The AUC of DL_ADC_3.0T is 0.825 (95% CI: 0.752–
0.899), and the AUC of DL_T2_3.0T is 0.809(95% CI: 0.739–
0.878). There is no significant difference between two models
(P = 0.676, Z = 0.418). Sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) were
summarized in Table 3.
DISCUSSION

In this study, we proposed a deep learning method to predict the
response to NCRT by only using the pretreatment MRI data.
Compared with the strategy that uses both pretreatment and
posttreatment data, the method may predict the response to
NCRT before the initiation of treatment. It enables a chance to
Frontiers in Oncology | www.frontiersin.org 5
modify the treatment plan as early as possible. NCRT in this
study generally takes 30 days, which is a crucial period during the
treatment. A patient predicted as non-GR may require
intensified chemoradiotherapy or combination with other
treatments to avoid tumor progression during therapy and
increase the chance of organ preservation. If the prediction
accuracy could be further improved, individualized strategy
could be used to treat LARC to optimize the benefit of
each patient.

It has been debated whether pretreatment ADC image can
predict GRs. Dzik-Jurasz et al. have reported that a GRs group
has significantly lower pretreatment ADC than non-GRs (24).
Sun et al. have also found that pretreatment ADC is significantly
lower in the LARC patients with histopathologic downstaging
than no downstaging (25). But DeVries et al. have found that
pretreatment ADC values in GRs are almost identical to non-
GRs (26). Bulens et al. have claimed that there is no significant
difference in pretreatment ADC between GRs and non-GRs (11).
In this work, the mean ADC value shows significant difference
between GRs and non-GRs in both training group and test
group. But the prediction of GRs by mean ADC value is
unsatisfactory (AUC = 0.723). The cut-off value of mean ADC
in this work is slightly smaller than that in reference (24, 25), but
much larger than that in reference (26). The variance in
measured ADC values may come from ROI delineation, which
is probably smaller or larger than the true tumor region. In this
work, most of the uncertain pixels on the boundary between
normal tissues and tumor were excluded from ROI during
delineation, resulting in the decrease in ADC measurement.
DL model produces a significantly larger AUC of 0.851 than
mean ADC value. It suggests that a lot of information hidden in
the ADC image is useful for the prediction of GRs. The result of
DL model is also better than the reported results predicted by
radiomics methods (19, 21). The advantage of DL method is its
ability to adaptively extract features according to the data instead
FIGURE 3 | The architecture of neural networks for deep learning. A feature-extract unit is designed with a convolution followed by a max-pooling layer and
paralleled by a center-cropping layer. The networks contain four repetitions of the feature-extract units.
October 2020 | Volume 10 | Article 574337
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of using predefined features. Different from the Fu’s work
(AUC = 0.73, n = 43) that uses VGG network (22) pretrained
by natural images, the network in this work was trained by real
images of rectal cancer. Therefore, the networks are more likely
to capture some effective features for GR/non-GR differentiation.

In this study, an architecture of networks was designed in this
study by paralleling a max-pooling layer with a center-cropping
Frontiers in Oncology | www.frontiersin.org 6
layer to extract features from different scales. The max-pooling
layer downsamples the image into its 1/4 size and the center-
cropping layer gets the central 1/4 part of the image. Several
approaches have been proposed to handle differently scaled data,
such as pyramid feature extraction or dilated convolution (27,
28). The advantage of these networks is the segmentation or
detection of multiple objects with different sizes. Since manual
TABLE 2 | Characteristics of participants in training group and test group.

Characteristics Training group Test group

GRs (n = 116) Non-GRs (n = 384) GRs (n = 60) Non-GRs (n = 140)

Age (years) P = 0.868 (t = 0.167) P = 0.519 (t = 0.646)
56.14 ± 11.76 55.94 ± 10.84 57.73 ± 10.80 56.68 ± 10.50

Gender (%) P = 0.303 (c 2 = 1.061) P = 0.124 (c 2 = 0.724)
Male 71 (61.2) 255 (66.4) 37 (61.7) 90 (64.3)
Female 45(38.8) 129 (33.6) 23 (38.3) 50 (35.7)

Pretreatment T-stage P = 0.059 (c 2 = 7.445) P = 1.093 (c 2 = 0.779)
T2 17 (14.7) 30 (7.8) 3 (5.0) 7 (5.0)
T3 82 (70.7) 294(76.6) 44 (73.3) 93 (66.4)
T4a 5 (4.3) 31 (8.1) 8 (13.3) 26 (18.6)
T4b 12 (10.3) 29 (7.6) 5 (8.3) 14 (10.0)

Pretreatment N-stage P = 0.406 (c 2 = 3.999) P = 0.688 (c 2 = 2.260)
N0 8 (6.9) 19 (4.9) 1 (1.7) 3 (2.1)
N1a 9 (7.8) 16 (4.2) 2 (3.3) 5 (3.6)
N1b 18(15.5) 51 (13.3) 7 (11.7) 8 (5.7)
N2a 27 (23.3) 103 (26.8) 21 (35.0) 49 (35.0)
N2b 54 (46.6) 195 (50.8) 29 (48.3) 75 (53.6)

ADC (10-3mm2/sec) P = 0.000 (T = 3.937) P = 0.000 (T = 4.439)
1.05 ± 0.17 1.11 ± 0.13 1.01 ± 0.16 1.11 ± 0.10
October 2020 | Volume
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FIGURE 4 | Receiver operating characteristic (ROC) curve analysis for the prediction of good responders to neoadjuvant chemoradiotherapy. (A) Models trained by
the combination of images acquired from both 1.5 Tesla and 3.0 Tesla scanners. (B) Models trained by the images acquired from a 3.0 Tesla scanner only.
TABLE 3 | Performance of therapy response prediction in the test group by mean ADC and four different deep learning (DL) models.

Model AUC Sensitivity % Specificity % PPV % NPV %

mean ADC 0.723(0.637–0.809) 84.3(77.2–89.9) 58.3(44.9–70.9) 82.5(75.3–88.4) 61.4(47.6–74.0)
DL_ADC 0.851 (0.789–0.914) 94.3(89.1–97.5) 68.3 (55.0–79.7) 87.4(81.0–92.3) 83.7(70.3–92.7)
DL_T2 0.721(0.640 – 0.802) 92.9(87.3–96.5) 36.7(24.6–50.1) 77.4(70.3–83.5) 68.8(50.0–83.9)
DL_ADC_3.0 T 0.825(0.752–0.899) 89.3(82.9–93.9) 68.3(55.0–79.7) 86.8(80.2–91.9) 73.2(59.7–84.2)
DL_T2_3.0 T 0.809(0.739–0.878) 92.9(87.3–96.5) 61.7(48.2 – 73.9) 85.0(78.3–90.2) 78.7(64.3–89.3)
10
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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delineation is used in this study, our task focused on
classification rather than segmentation or detection. In
addition, the region of rectal tumor is the only target in the
image and located in the central area of the image patch after
zero-padding. Therefore, a center-cropping layer was designed in
this study to reduce the complexity of the networks.

In this work, DL model was trained by images scanned at both
1.5 Tesla and 3.0 Tesla scanners. Unlike T1-weighted, T2-
weighted or diffusion-weighted images that depend on
magnetic field strength and scanning parameters, ADC values
are the inherent characteristics of the tissues that are generally
unchanged in different scanning conditions. Therefore, ADC
images from different scanners in this work could be directly
inputted into the network without normalization. When T2-
weighted images were used, normalization is indispensable.
Because MRI signal is nonlinearly related with proton density,
relaxation time such as T1 and T2, scanning parameters such as
time of repetition (TR) and time of echo (TE), it is a challenging
problem to normalize MRI image scanned at different magnetic
field strength or parameters. In this study, T2-weighted images
were normalized to the range between 0 and 1. However, results
show that the AUC of DL_T2 model is significantly lower than
DL_ADC model. After inclusion of T2-weighted images
acquired at 1.5 Tesla scanner, the AUC is lower than the
model trained by images from the 3.0 Tesla scanner only. It
suggests that the normalization method is inadequate to
eliminate the difference of MRI data acquired at different
scanning conditions. Signal inconstancy is still an unsolved
problem in training DL network if images from multiple
sources are used. On the contrary, the AUC of ADC model
slightly increased after combining images from two scanners. It is
probably due to the increase of the training samples for deep
learning. The results suggest that ADC images are less affected by
the variance among different scanners. ADC images could be
good candidates for the construction of deep learning models by
the data from multiple sources.

Retrospective study is the main limitation of this work. A
respective study with external validation cohort at multiple
centers may further demonstrate the performance of the model
in clinical practice. Data augmentation was used in this work to
increase the size of training samples. Although augmentation is a
common trick for DL, real samples should be used if more data
are available. Another limitation of this work is manual
delineation that is both subjective and time-consuming.
Automatic segmentation is a promising solution, but the
accuracy and stability still require improving.
Frontiers in Oncology | www.frontiersin.org 7
CONCLUSION

DL model based on pretreatment ADC images is potentially
useful in the prediction of response to NCRT. The method could
be used to individualize the treatment plan for LARC patients
before the start of NCRT.
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