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Here we present a modular agent-based mathematical model of the human
cardiovascular and renal systems. It integrates the previous models primarily developed
by A. C. Guyton, F. Karaaslan, K. M. Hallow, and Y. V. Solodyannikov. We performed
the model calibration to find an equilibrium state within the normal vital sign ranges
for a healthy adult. We verified the model’s abilities to reproduce equilibrium states
with abnormal physiological values related to different combinations of cardiovascular
diseases (such as systemic hypertension, chronic heart failure, pulmonary hypertension,
etc.). For the model creation and validation, we involved over 200 scientific studies
covering known models of the human cardiovascular and renal functions, biosimulation
platforms, and clinical measurements of physiological quantities in normal and
pathological conditions. We compiled detailed documentation describing all equations,
parameters and variables of the model with justification of all formulas and values. The
model is implemented in BioUML and available in the web-version of the software.

Keywords: mathematical modeling, agent-based model, modular model, cardiovascular system, renal system,
blood pressure regulation

INTRODUCTION

Mathematical models provide tools for understanding of human physiology via integration and
analysis of biological data from multiple ranges and time scales under normal and pathological
conditions. A number of such models have already been used to investigate different aspects
of individual systems and processes of the human body (Guyton et al., 1972; Ikeda et al.,
1979; Uttamsingh et al., 1985; Ottesen et al., 2004; Karaaslan et al., 2005, 2014; Proshin and
Solodyannikov, 2006; Abram et al., 2007; Thomas et al., 2007; Hester et al., 2011; Paeme et al.,
2011; Hallow et al., 2014, 2021; Hallow and Gebremichael, 2017a; Rosalina et al., 2019). Most
of them originate from the control-theory block model of circulatory regulation proposed by
Guyton et al. (1972). This model was implemented in different programming languages (Moss
et al., 2012) and reused in further whole-body models (Abram et al., 2007; Hester et al.,
2011). Guyton et al. (1972) established the foundation for our understanding of the relations
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between long-term blood pressure level and sodium and
water balance. And in this sense, their model is innovative
and revolutionary (Montani and Vliet, 2009; Beard, 2018).
However, its application for research purposes is difficult due
to the model complexity, the lack of a complete detailed
description, physiological limitations for some parameters, and
some misconceptions (Montani and Vliet, 2009).

To solve narrowly focused problems, more compact models
have been created recently. Thus, Karaaslan et al. (2005)
explored the renal sympathetic nerve activity related mechanisms
affecting kidney functions and causing increase of arterial
pressure in hypertension. Hallow et al. (2014) simulated
pharmacodynamic effects of the antihypertensive therapy, and
then created a detailed model of renal physiology (Hallow and
Gebremichael, 2017a) applied for investigation of salt-sensitive
hypertension (Hallow and Gebremichael, 2017b). A number of
models focused on cardiovascular hemodynamics (Proshin and
Solodyannikov, 2006; Thomas et al., 2007; Paeme et al., 2011;
Rosalina et al., 2019).

Accumulation of the particular models of human physiology
leads to the next logical step: “gluing” of these models (Kassab
and Guccione, 2019). However, this step results in the creation
of complex entities. The only way to deal with such complexity
is dividing the biological systems into subsystems, and the
corresponding models into modules. This approach simplifies
the modeling process and, at the same time, allows you to
gradually improve the model by replacement and addition of
modules. Another problem that arises in the model integration
is related to the combination of processes acting at significantly
different time scales. For example, a single heartbeat takes less
than a second, whereas a renal function is associated with the
long-term regulation of the salt and water balance. Merging the
equations for these processes gives a very stiff problem which
in the specified case can be solved by application of an agent-
based approach.

At the present time, there are several biosimulation platforms
designed for modeling and analysis of the human physiological
processes. For instance, the Entelos PhysioLab platforms are
implemented for drug development and have been applied to
projects in diabetes, rheumatoid arthritis, asthma, and skin
sensitization (Rullmann et al., 2005; Maxwell and Mackay, 2008;
Klinke, 2015). These projects are widely used by pharmaceutical
companies (Pfizer, Novartis, etc.) in preclinical trials of new
drugs, and capture the modeled physiology using a modular
approach, assuming that smaller scale models are defined based
on isolated components (cells or signaling pathways) connected
together to reflect higher (intracellular) level behavior (Klinke,
2015). Another major project is the open-source, full-body
human physiology engine BioGears (McDaniel et al., 2019). Its
purpose is to provide realistic and comprehensive simulations
for medical research and education. BioGears may be used
as a standalone application or integrated with simulators,
sensor interfaces, and other existing models. According to
information from the developers, this platform operates with
lumped parameters and, therefore, is not aimed at creating
personalized models, but uses “average” person for analysis. One
more environment for modeling and simulation of integrative

human physiology is the HumMod software (Hester et al., 2011).
It describes cardiovascular, respiratory, renal, neural, endocrine,
skeletal muscle, and metabolic systems, and is constructed from
empirical data obtained by authors from scientific literature. As
in the case of BioGears, the user of HumMod defines a number
of patient basic parameters (gender, height, weight, etc.) and
operates with an average patient in the normal or pathological
state. As an example of the environment for modeling of
the circulatory system, we want to single out the Samara-
Dialog platform designed on the basis of the cardiovascular
hemodynamics model proposed by Proshin and Solodyannikov
(2006)1. This environment is primarily intended to study the
status of an athlete in the training process, but can also be
used to simulate a wide range of the human cardiovascular
system pathologies, including heart arrhythmias, ventricular
dysfunctions, valvular failure, hypertension, etc.

All of the mentioned models and simulation platforms were
created to investigate mechanisms of different cardiovascular and
renal diseases in several abstract conditions, where parameter
values are fixed on the basis of some average normal
or pathological evaluations. However, cardiac models should
account for the fact that humans vary (Wiśniowska et al., 2017).
If we consider, in addition, the mathematical modeling to predict
real-world effectiveness of drug interventions, we find that the
most important limitation is the lack of external validation
applying other data than those used for developing the models.
In their review, Panayidou et al. (2016) concluded that such
modeling is not widely used at present and not well validated.

Thus, in this work, we focus not only on creating a modular
agent-based model of the cardiovascular and renal systems,
but also perform detailed validation of parameters in order
to conform to physiological ranges and reproduce equilibrium
states corresponding to various combinations of cardiovascular
diseases in real patients. This can later be used for personalized
modeling and individual predictions on a case-by-case basis. For
operation with the model, we used the BioUML software, which
provided all the necessary tools for our research, and which our
team has been developing since 2002 (Kolpakov et al., 2019).

MATERIALS AND METHODS

Mathematical Formulation
The model contains a system of ordinary differential equations
(ODEs): 

dX
dt = F(X,Y,P,t),
X(0) = X0,

Y(t)=G(X,Y,P,t)

X =

X1
...

Xn

 , Y =

 Y1
...

Ym

 , P =

P1
...

Pl

 (1)

1www.samara-dialog.ru/help/eng/help.htm
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Where X (t) and Y (t) are the system variables determined
by the functions F : Rn+m+l+1

→ Rn and G : Rn+m+l+1
→ Rm,

respectively, and P denotes the system parameters. Note that Y
can be expressed in terms of X and is selected into a separate set
only for a clearer physiological interpretation of the model.

The system (1) describes continuous behavior of the model
over time t and is accompanied by a number of discrete events
corresponding to instantaneous changes in the model dynamics
(for example, transition from systole to diastole). The event
consists of a trigger and assignments. The trigger is the logical
function T : Rn+m+l+1

→ {true, false}. The event is considered
triggered at the time point t’ if the value of this function changes
from false to true at t = t′:

∃δ > 0 : ∀t ∈ [t
′

− δ, t
′

) T(X(t),Y(t),P, t)

= false & T(X(t
′

),Y(t
′

),P, t
′

) = true

The event assignments are defined by the functions AX :

Rn+m+l+1
→ Rn and AP : Rn+m+l+1

→ Rl describing changes in
X and P, respectively:{

X
′

= AX(X(t
′

),Y(t
′

),P, t
′

),
P
′

= AP(X(t
′

),Y(t
′

),P, t
′

)
(2)

If any event is triggered at the time point t
′

, then solving of the
system (1) is automatically stopped, the event assignments (2) are
performed, and solving of the Cauchy problem is restarted from
t = t

′

with new initial values X
(

t
′
)
= X

′

and new parameter

values P = P
′

.
Such models, coupling the continuous and discrete

approaches, are called the hybrid models (Stéphanou and
Volpert, 2016). Parameters of the Cauchy problem (1) changed
by the events (2) constitute the set of the model variables together
with X and Y.

We consider the hybrid model to be in an equilibrium state at
t = tSS, if values of some variables Q1, ..., Qk (called equilibrium
variables) does not change in time: ∀t > tSS Qi (t) = Qi(tSS),
i = 1, ..., k. It is clear that not every such model with discrete
events would have an equilibrium state. For instance, in chaotic
triggering of some event, holding the equality F (X, Y, P, t) =
0 at t = tSS does not guarantee its holding for all t > tSS.
In the case of modeling the cardiovascular system, discrete
events represent switching between systole and diastole stages.
Therefore, the model tends to fall into periodic behavior with
a period equal to the cardiac cycle length. Thus, while most
variables in X have non-zero derivatives, some variables in P
changed by events are in equilibrium. For example, systemic
arterial pressure is the dynamic variable dependent on differential
equations. This variable increases in systole and decreases in
diastole. At the same time, values of systolic and diastolic blood
pressures are calculated at the moment of switching between
those two stages. These quantities are in equilibrium (their value
does not change in time).

To find numerical solutions of the direct problems, we applied
the VODE solver (Brown et al., 1989; Cohen and Hindmarsh,

1996) supporting the automatic detection of time points at which
discrete events are triggered.

Modular Modeling
Modularity could be considered as a principle of biological
organization (Hartwell et al., 1999; Alon, 2003). Therefore, a
modular approach to the modeling of complex biochemical
systems has been actively developing in the last few years (Blinov
et al., 2008; Hernández et al., 2009; Neal et al., 2014).

We define a module (Figure 1) as a part of a mathematical
model describing a particular biological subsystem formulated
as a separate block and integrated with the rest of the model
using an explicit interface. Generally, modules can be treated as
separate models with arbitrary mathematical formalism (ODE,
stochastic, agent-based model, etc.) aggregated into modular
models representing the larger biological systems. Such modules
can also contain modular models, thus, forming a hierarchical
structure with several nesting levels of modules. Every module
defines interface variables used to connect modules with each
other. In our case, the interface is defined using mathematical
variables and parameters of the module. The input variables
serve as the module parameters, these values must be calculated
in other parts of the model and then passed to the module.
The output variables are calculated inside the module but can
be used outside it. Established connections in the modular
model show which variables should be passed from one module
to another. In the current study, we consider only modules
containing sets of ODEs and discrete events (i.e., hybrid models
described earlier). In that case, the modular model can be
transformed into a “flat” hybrid model with the same formalism
by aggregating all equations and events from all modules and
resolving connections. For more details, see Kutumova et al.
(2012) and Kiselev and Kolpakov (2013).

Agent-Based Modeling
When modules function in significantly different time scales, an
agent-based approach can be used to optimize the calculations.
Applications of this approach span a broad range of areas from
modeling the adaptive immune system to predicting the spread of
epidemics (Macal and North, 2010). An agent is an autonomous
entity which acts independently according to certain rules and
interacts with other agents. Essentially, the agent is a black
box that receives a signal, sends a response and has specific
mathematical formalism and numerical methods inside.

When the agent-based approach is used for simulation of
the modular models, each module is considered as the separate
agent consisting of some mathematical model, numerical solver
and time span (initial time, time step, and completion time).
Coordination between agents is provided by a scheduler. The
agent step corresponds to the model simulation from the
current span point to the next one. Before a new step, the
scheduler notifies the agent about last changes made to its
input interface variables. When the step is finished, the agent
sends to the scheduler the changes that it made to the output
interface variables. Note that the agent spans are used only to
determine time points of the agent interactions, while numerical
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FIGURE 1 | An example of the modular representation of a two-equation model. Module 1 includes one ODE for y (output interface variable), as well as two
parameters b and Ty . Module 2 comprises one ODE for x, one input interface variable a, and one parameter Tx .

calculations inside each agent involve automatic computation of
time steps necessary for required accuracy.

The agent-based simulation goes as follows (scheme 1).

(1) Pick the agent with the least current model time value.
(2) Pass to the selected agent the changes done by other agents

to its input interface variables.
(3) Perform the step in time for the selected agent

(i.e., run simulation of the mathematical model
incorporated in the agent).

(4) Send the changes made by the selected agent to its output
interface variables to the scheduler (for further translation
to other agents).

(5) Check if the simulation is finished. If not, go to 1.

The problem arises when two agents have drastically different
time scales. For example, we have the “Cardiovascular system”
module describing very fast processes of the heart pumping and
blood flow across the vascular system, and the “Renal system”
module with the long-term regulation of salt-water balance, total
blood volume and hormone levels. If we combine both modules
into one ODE system, we get a very stiff problem. When using the
agent-based form of the model, we still have the problem related
to the simulation of the “fast” model over a very large time span,
which is very time consuming. However, if the “fast” model has
an equilibrium state, we can use another approach to simulation
of the agent-based models.

Let’s consider the model with two agents shown in Figure 1.
For numerical simulation we will use time span t0, t1, t2, ..., tN ,
where ti+1 = ti +1, i = 1, ..., N. At each time point ti, the
agent corresponding to Module 1 calculates a new value y (ti)
and sends it to Agent 2 where it is used as a new value for the
parameter a. Then, Agent 2 starts the next simulation step with
the value a = y (ti). Exact solution of the agent-based model
would be the exact solution of the ODE system represented by the
“flat” version of the model. Thus, using the agent based approach
is equivalent to solving both equations separately between the
agent exchanges. That means that when solving the equation for
x at each time step, we use the numerical value of y from the
previous time point and introduce the local error O

(
12). Let

x̄ (t) and ȳ (t) be the simulation results of the flat model, whereas
x (t) and y (t) are the simulation results of the agent-based model.

Suppose, we have no error at the time point t0:

x(t0) = x̄(t0), y(t0) = ȳ(t0) = a

Using the Taylor series for both solutions, we obtain:

x̄(t0 +1) = x̄(t0)+1TX(ȳ(t0)− x̄(t0))+ O(12)

x(t0 +1) = x(t0)+1TX(a− x(t0))+O(12)

When considering that ȳ (t0) = a, we derive:

x(t0 +1) = x̄(t0 +1)+ O(12)

Now let’s suppose that Tx � Ty and Agent 2 has an equilibrium
point for all values of parameter a, i.e., if at some t =
ti, the model is in equilibrium x (ti) with a = a1, then
changing the value of a to a2 and solving the Cauchy
problem for x with the new initial value equal to x(ti)

gives new equilibrium x
(

ti + t
′
)

. An example result of
such model simulation is presented in Figure 2. One can
see that after each exchange between agents, the “fast”
agent rapidly approaches equilibrium. Therefore, this agent
simulation until the next moment of exchange becomes excessive
and unnecessary.

A way to optimize scheme 1 for the numerical calculation in
this particular case is to stop simulation for the “fast” agent after

FIGURE 2 | A simulation example for the model defined in Figure 1 with
Tx � Ty and time 1 = 1000 between agent interactions.
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it reaches the equilibrium at each agent step. Thus, at each time
point ti, we set:

x (ti) = x
(
ti−1 + t

′
)

(3)

Where t
′

is the time interval during which Agent 2 reaches the
equilibrium after the exchange at the time point ti−1.

There is also a way to get a smaller error and simultaneously
keep a large time step between agent exchanges. Obviously, the
time step of agents 1 is much larger than the time interval t

′

.
Therefore, we would introduce a smaller error if we use a new
equilibrium value for the previous span point rather than the next
one. Instead of (3), we set:

x (ti) = x
(
ti + t

′
)

Applying both described optimizations, we get scheme 2 for the
agent modeling:

(1) Pick the agent with the least current model time value.
“Fast” agents have a lower priority and, thus, should
perform their steps after “slow” agents.

(2) If the selected agent is “slow,” use scheme 1.
(3) Pass to the selected agent the changes done by other

agents to its interface variables (For the model in Figure 1:
a = yi ).

(4) Perform the step in time for the selected agent
(i.e., run simulation of the mathematical model
incorporated in the agent).

(a) If the agent is “slow”, perform the numerical
calculations until the model reaches the next time
step x (ti)→ x (ti+1) = x (ti +1 ).

(b) If the agent is “fast”, perform the numerical
calculations until the model reaches the equilibrium
x (ti)→ x

(
ti + t

′
)

. Set new value for the current

time point x (ti) = x
(

ti + t
′
)

. Set the model time of
the agent to the next span point t = ti+1 (thus, the
value of x (ti+1) will be calculated at the next step).

(5) Send changes made by the selected agent to its interface
variables to the scheduler (for further translation
to other agents).

(6) Check if the simulation is finished. If not, go to 1.

Comparison between both schemes of the simulation is given in
Figure 3.

Parameter Estimation
Parameter estimates performed in this work for the model
calibration were based on minimization of the distance function
defined as a normalized sum of squared differences (Hoops
et al., 2006) between simulated equilibrium values Q1, ..., Qk and
clinical measurements Qexp

1 , ..., Qexp
k of physiological quantities:

f dist =
k∑
i=1

ωmin

ωi

(
Qi (tss)− Qi

exp)2
, ωi = Qexp

i (4)

Where ωmin = miniωi and weights ωi are used to make all
quantities to have similar importance.

FIGURE 3 | Comparison between two schemes of the two-agent model simulation. The second scheme, instead of the long and unnecessary numerical
calculations of the “fast” Agent 2, searches for the equilibrium at each point of the time span.
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To keep certain model variables W1 (t) , ..., Wp (t) in
physiological limits, we considered known constraints
Wmin

i ≤Wi (t) ≤Wmax
i and additionally minimized the

penalty function (Runarsson and Yao, 2000):

f penalty =
∑
t

( P∑
i=1

max
{

0,Wmin
i −Wi (t)

}2

+

p∑
i=1

max
{

0,Wi (t)−Wmax
i

}2
)

(5)

Calculated for t ∈ [tss, tss + d], where tSS is the model equilibrium
time point and d is the length of the cardiac cycle. Note that,
as mentioned above, though the model is in equilibrium, some
of its variables (e.g., arterial pressure) are dynamic and change
their values during the cardiac cycle due to the presence of
discrete events.

The process of parameter fitting was based on the stochastic
ranking method suitable for the constrained optimization
(Runarsson and Yao, 2000).

Modeling Platform
BioUML (homepage)2 is an integrated Java platform for modeling
of biological systems (Kolpakov et al., 2019). It supports a
comprehensive range of tools for systems biology, including
visual modeling, simulation, parameter estimation and a number
of numerical methods. Key features of the software used in this
work:

• The opportunity to work independently in the local
(standalone) version of the program or through the web
interface in collaboration with other researchers.
• Plugin-based architecture of the platform allowing to

design new types of models and to implement required
methods for the numerical analysis of them.
• An editor for visual modeling of biological systems using

modular and agent-based approaches.
• The embedded VODE solver (Cohen and Hindmarsh,

1996) ported to Java and suitable for the numerical
simulation of hybrid models with ODE systems and discrete
events.
• A number of embedded methods (in particular, the

stochastic ranking evolution strategy (Runarsson and Yao,
2000) which we preferably used in this study) for the
model parameter fitting based on the reference ranges of
physiological parameters in normal and pathological states.
• Integration with the JupyterHub3 for interactive data

analysis.
• Support of the SBML standard (Hucka et al., 2019)

for model exchange.

Visual Modeling
A visual approach to mathematical modeling involves the
creation and work with mathematical models as diagrams. Thus,

2www.biouml.org
3jupyter.org

each element of the model (equation, event, interface variable,
agent, connection) corresponds to an element of the diagram:
edge or node. The visual modeling implies using some kind of
formal graphical notation, so the visual representation of each
particular element depends on their mathematical properties.
A common standard for the graphical notation in systems biology
is SBGN (Systems Biology Graphical Notation, Le Novère et al.,
2009). However, it is mostly used for mathematical models
comprising pathways of processes (e.g., biochemical reactions)
and it lacks the elements representing the arbitrary differential
or algebraic equations. Thus, in the current study, we use the
visual notation developed in the BioUML platform. The visual
representation makes the inner structure of the model more
explicit and facilitates understanding of the model.

RESULTS

Modular Structure of the Model
The comprehensive model of the human cardiovascular and renal
systems is based on the range of models of renal hemodynamics
(Karaaslan et al., 2005, 2014; Hallow et al., 2014; Hallow
and Gebremichael, 2017a) originating from the Guyton model
(Guyton et al., 1972), and the model of blood circulation system
(Proshin and Solodyannikov, 2006). Below we provide a brief
description of the modular representation, while details of the
equations, parameters and variables for each module are given
in the Supplementary Appendix Tables A1–A4. Totally, the
model contains 20 modules, 10 discrete events, 185 equations,
132 parameters, and 160 variables.

On the top level, the model can be introduced as an interaction
of two main agents: the renal dynamics is determined in
minutes, whereas the cardiovascular processes take a fraction of
a second (Figure 4). These agents have five main connections
corresponding to physiological quantities that are calculated in
one agent and directly affect the dynamics of another one. In the
cardiovascular system, such quantities are mean arterial pressure,
cardiac output and a value of hematocrit. The renal system is
responsible for regulation of the total body blood volume and
concentration of angiotensin II bound to the AT1 receptors.

For clarity, the model can be further decomposed into 20
functional modules: 11 in the cardiovascular sub-model and
9 in the renal sub-model (Figure 5). Six main cardiovascular
modules form a circular system of compartments (Proshin
and Solodyannikov, 2006): Left ventricle, LV (denoted HL in
the model notation), Systemic arteries (AL), Systemic veins
(VL), Right ventricle, RV (HR), Pulmonary arteries (AR),
and Pulmonary veins (VR). Each i-th compartment, i ∈
{HL, AL, VL, HR, AR, VR}, is characterized by pressure
Pi, volume Vi, unstressed volume ωi, and elastance Gi. Blood flow
Fij between the i-th and j-th compartments is determined by the
difference of their pressures, and can be simply written as:

Fij = Y ij
(
Pi − Pj

)
Where Yij is conductivity of the respective part of the
circulatory system. Thus, an important variable affecting blood
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FIGURE 4 | Modular modeling of the cardiovascular and renal systems. The original model decomposed into two modules in accordance with human physiology.
The “Cardiovascular system” module is responsible for calculation of such variables as mean arterial pressure (MAP) and cardiac output (CO). The “Renal system”
module in turn regulates total body blood volume (V) and concentration of angiotensin II bound to the AT1 receptors (AT1-ANG II). The value of hematocrit (Hct) is
constant. It is determined in “Cardiovascular system” and passed to “Renal system” for use.

FIGURE 5 | Modular agent-based physiological model of the cardiovascular and renal systems. (A) An example of the “Pulmonary arteries” module representation.
(B) The model implemented in the BioUML platform is divided into nine modules responsible for the kidney function (green) and 11 modules that simulate dynamics
of the cardiovascular system (purple). Blue arrows indicate directed connections between the renal and cardiovascular sub-diagrams (Figure 4). For visual simplicity
of the diagram, we added transitional nodes (busses) which are used for connections between modules. The busses corresponding to one variable can be located
far apart in the diagram. A complete list of equations for each module is given in the Supplementary Appendix Table A2.

flow from arteries to veins is conductivity of microvessels
(arterioles, capillaries and venules). We allocated the calculation
of this variable for systemic and pulmonary circulation into
separate modules “Systemic microvessels” and “Pulmonary
microvessels,” respectively.

One of the main ideas of the model constructed by Proshin
and Solodyannikov (2006) is the use of discrete events that
determine the instantaneous change in the parameters of the
left and right ventricles at the moment of a cardiac cycle start

(diastole to systole transition), and at the moment when blood
ejection from the ventricles stops. Since the LV and RV ejection
time is different (Leighton et al., 1971; Hirschfeld et al., 1975), the
model contains 2 discrete events of systole to diastole transition
in the LV and RV modules, respectively. Each of these 2 events,
in particular, changes the value of the corresponding indicator
SystoleL or SystoleR from 1 (ejection is in progress) to 0 (ejection
is finished). The common indicator Systole tracing the moment
when blood ejection from both ventricles comes to the end is
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placed into the module “Coordination of systolic time intervals.” It
is equal to 0 if SystoleL = 0 and SystoleR = 0, and 1 otherwise.

A model of oxygen exchange describing oxygen consumption
in tissues and oxygen debt based on the amount FALVL was taken
unchanged from the work (Proshin and Solodyannikov, 2006)
and inserted into the module “Tissue metabolism.”

The last module “Neurohumoral control” in the heart sub-
model defines the cardiac center as a control system forming
the output value of a hypothetical neurohumoral factor H from
the sum signal of receptor activities. The model by Proshin and
Solodyannikov (2006) considers four types of receptors, namely
stress (nS), weariness (nD), and respiratory receptors (nV), as
well as baroreceptors (nB). Receptors respond to various internal
factors of the body and external influences and transmit to the
cardiac center the signals calculated by the formulas:

nB = r−(PAL), nV = r− (VO2) ,

nD = r+ (DO2) , nS = r+ (st)

Where PAL is systemic arterial pressure (determined in the
module “systemic arteries”), VO2 and DO2, respectively denote
venous oxygen content and oxygen debt (“tissue metabolism”),
st ∈ [0, 1] define the level of steroid hormones in the blood,
whereas r− (ϕ) = 1− r+ (ϕ) and r+ (ϕ) is the sigmoid
function:

r+(φ) = r+ (α, β, φ, φ0) =
1− exp (−α (φ− φ0))

1+ β · exp (−α (φ− φ0))

The initial values of the constants α, β, and ϕ0 for all receptors are
listed in the study (Proshin and Solodyannikov, 2006).

The renal sub-model incorporates the renin-angiotensin-
aldosterone system (RAAS) pathway divided into three main
modules:

• Secretion of renin (the “Renin” module).
• Generation of angiotensin I with consistent formation of

angiotensin II, -IV, -(1–7), and activation of AT1/AT2
receptors (“Angiotensin”).
• Secretion of aldosterone (“Aldosterone”).

Dynamics of these modules depends on the renal sympathetic
nerve activity calculated in the module “Nervous system,” whereas
concentration of AT1-bound angiotensin II directly effects on
tubular sodium reabsorption (“Sodium”) and renal vascular
resistance (composed of resistances of afferent/efferent arterioles,
and interlobar/arcuate/interlobular arteries), as well as renal
blood flow and filtration (“Glomerular filtration”). The remaining
modules are responsible for the calculation of atrial natriuretic
peptide and antidiuretic hormone concentrations (“Hormonal
system”), urine flow (“Diuresis”), and volumes of total body water,
blood, and extracellular fluid (“Body fluids”).

Details and Updates to the Base Models
Implementation of the model based on parts of the existing
models required us to make a number of changes to them with
the following goals:

• Relation of these parts with each other.

• Inclusion of the clinically measurable variables to
physiological ranges.
• Getting the ability to reproduce pathologies.

Below we provide a description of the primary physiological
processes involved in the model, while the detailed formulas can
be found in Supplementary Appendices A (Table A2), B.

Targets of Angiotensin II
Angiotensin II exerts physiologic actions via binding to receptors
on cells of different organs (the kidneys, heart, blood vessels, etc.).
The leading role in such actions belongs to the AT1 receptors.
Based on their localization (Allen et al., 2000), we have the
following angiotensin II targets in the model.

• Vascular Smooth Muscle Angiotensin II exerts
vasoconstrictor effect (Hughes, 1998). Thus, if the
concentration of AT1-bound angiotensin II (AT1_ANGII)
increases, then resistances of afferent/efferent arterioles
(Raa and Rea) and interlobar/arcuate/interlobular arteries
(Rpreglom) rise resulting in the renal blood flow decline.
Functions of AT1_ANGII effects on Raa, Rea, and Rpreglom
were suggested by Hallow et al. (2014). We assumed that
the concentration of AT1-bound angiotensin II in the
systemic arterioles is the same as that in the kidneys.
• Cardiac Muscle Angiotensin II-induced positive

chronotropic and slight positive inotropic effects were
demonstrated in the isolated dog heart (Kobayashi et al.,
1978). At the same time, the action of angiotensin II
in humans is associated either with no change in heart
rate or with a reduction that is much smaller than that
produced by other vasoconstrictors (Reid, 1996). Thus,
when modeling the response to antihypertensive therapies,
the influence of angiotensin II on cardiac muscle must be
taken into account to simulate decrease in blood pressure
without increasing heart rate, which, for instance, is the
standard effect of such RAAS inhibitors as aliskiren,
losartan, and enalapril (Konstam et al., 1993; Kamishirado
et al., 1997; González-Abraldes et al., 2001; Stanton et al.,
2003; Parrinello et al., 2009; Natarajan et al., 2016). In
this regard, we considered in the model two targets of
angiotensin II: baroreceptors and stress receptors. Such a
decision was based on the facts that angiotensin II resets
the baroreflex control of heart rate to a higher pressure
(Reid, 1996) and increases the release of norepinephrine
from the atria (Brasch et al., 1993).
• Adrenal Glands Angiotensin II stimulates aldosterone

synthesis in adrenal zona glomerulosa cells via binding
to the AT1 receptors (Bandulik et al., 2015). A function
for modeling the AT1_ANGII effect on the aldosterone
secretion rate was taken from the models by Karaaslan et al.
(2005) and Hallow et al. (2014).
• Kidney, Proximal Tubules An increase in the level of

AT1_ANGII leads to the rise of fractional proximal sodium
reabsorption. The corresponding formula was found in the
model by Karaaslan et al. (2005).
• Kidney, Juxtaglomerular Cells In vitro studies have

suggested the expression of the AT1 receptors by
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juxtaglomerular cells. In this regard, there is the concept
that angiotensin II directly inhibits renin secretion through
a negative feedback. Although this concept has not yet
been systematically proven in vivo and can be doubted
(Neubauer et al., 2018), the factors affecting renin secretion
(macula densa sodium sensing and renal sympathetic nerve
activity) are not be sufficient to account for the rise in renin
that occurs with therapeutic blockade of the RAAS (Hallow
et al., 2014). Thus, following the model by Hallow et al.
(2014) we used the formula of the direct negative feedback
of AT1-bound angiotensin II on renin secretion introduced
in the study (Hallow and Gebremichael, 2017a).
• Kidney, Mesangial Cells Angiotensin II provides a reduction

in the glomerular filtration coefficient KFG (Blantz et al.,
1976) via decrease in total filtering surface area because
of mesangial cell contraction (Schmitt et al., 1998).
Angiotensin II receptors on mesangial cells belong to
the AT1 subtype (Ardaillou et al., 1999). Thus, for
the calculation of KFG, we considered a product of its
normal value and a linear function expressing inversely
proportional relationship between KFG and the normalized
concentration of AT1_ ANGII.

Peak Flow Rates Through the Heart Valves
The rate of the LV filling through the mitral valve in diastole
is characterized by two peaks (Boogers et al., 2011; Caudron
et al., 2011; Zhang et al., 2019), which can be estimated from
the time derivative of the LV volume by cardiovascular magnetic
resonance (Maceira et al., 2006a). In normal subjects, the LV
inflow is greatest immediately after opening of the mitral valve
(early peak), while the left atrial contraction is responsible for
smaller inflow (active peak) (Caudron et al., 2011). The moment
of the mitral valve opening in the model is the LV transition to
diastole, when the pressure in pulmonary veins becomes greater
than the pressure in the ventricle. The left atrial contraction can
be associated with a positive value of the left atrial pulse wave,
proposed in the model (Proshin and Solodyannikov, 2006). The
right ventricular filling through the tricuspid valve has similar
dynamics (Maceira et al., 2006b). As for the transaortic and
transpulmonary flows, they reach their maximum values at the
transition from diastole to systole. Therefore, calculation of the
peak transvalvular flow rates can be introduced by the formalism
of discrete events.

Physiological Quantities
In our work, we strived to create a model focused not on average
values of physiological parameters, but on a variety of values
including reference intervals for healthy people and possible
pathological deviations from the norm. Since the baseline models
did not accept these ranges as valid for some variables, we used
experimental formulas obtained in population studies for the
following variables.

• Plasma sodium concentration is calculated by the formula
derived in the study (Nguyen and Kurtz, 2003) and obtained
on the basis of the Edelman equation (Edelman et al., 1958).
• Antidiuretic hormone concentration is defined depending

on serum osmolality (Hammer et al., 1980), which value can

be considered as function of plasma sodium concentration
and levels of glucose and urea in blood (Dorwart and
Chalmers, 1975; Bhagat et al., 1984).
• Body fluids: For the calculation of the total blood volume

and the extracellular fluid volume we applied the regression
functions on the total blood water (Moore, 1967).
• Tubular water reabsorption rate depends on the glomerular

filtration rate. In the absence of significant amounts of
poorly reabsorbable solutes, the fraction of the water
load passively reabsorbed in the proximal tubule is
equal to the fraction of the sodium load reabsorbed
(Uttamsingh et al., 1985). Taking into account details
of laboratory measurements, this fraction also includes
sodium reabsorbed in the loop of Henle (Seidlerová et al.,
2006). The rate of fluid reabsorption from the distal tubules
and collecting ducts depends on the influence of plasma
vasopressin concentration, which was determined in the
Uttamsingh model (Uttamsingh et al., 1985) on the basis of
experimental measurements (Dehaven and Shapiro, 1970).
• Blood viscosity is calculated according to the study (Hund

et al., 2017) as a function of hematocrit. We took into
account that values of blood flows through the systemic and
pulmonary microvessels should be inversely proportional
to the normalized blood viscosity (Guyton et al., 1972).

Aldosterone Secretion
When modeling the effects of potassium and sodium on the
secretion of aldosterone, we considered the following facts:

• Extremely low potassium levels (2 mmol/l) actually reduce
aldosterone production stimulated by angiotensin II, but
does not stop it completely (Kojima et al., 1985; Chen et al.,
1999).
• A low-sodium diet does not directly affect the aldosterone

secretion, but indirectly through activation of the RAAS,
upregulation of AT1 receptor levels, and hyperplasia of the
zona glomerulosa (Bollag, 2014).
• A rise of 1 mmol/l in serum potassium concentration

doubles the aldosterone secretion (Pralong et al., 1992;
Bollag, 2014).

Glomerular Dynamics
The total vascular resistance through the kidneys (RVR) is
determined by the sum of the resistances in the individual
vasculature segments (Hall, 2011). Table 1 shows the different
variants of the formula for the RVR calculation used in the
different studies. Note, that Gómez (1951) gives out the major
renal resistances which can be estimated from clinically available
data. Therefore, following this research, we used the same
formula for RVR and applied it to derive an equation for renal
blood flow (Supplementary Appendix B). We also included to
the model such clinical variables as effective renal plasma flow,
filtration fraction, and total protein (Škrtić et al., 2015).

Starting Values of Variables
Each equilibrium parameterization of the model can be
considered as a unique virtual patient (Cheng et al., 2017). To
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TABLE 1 | The RVR determination as the sum of the resistances of separate
vessels: A, interlobar, arcuate, and interlobular arteries; B, afferent arterioles; C,
glomerular capillaries; D, efferent arterioles; E, peritubular capillaries; F, interlobar,
interlobular, and arcuate veins.

Reference Vessels

A B C D E F

Karaaslan et al., 2005 – + – + – –

Karaaslan et al., 2014 – + – + – –

Hallow et al., 2014 + + – + – –

Hallow and Gebremichael,
2017a

+ + – + + –

Gómez, 1951 +

∣∣∣ +

∣∣∣ +

Developed model + + +

The parts of RVR suggested by Gómez (1951) can be evaluated clinically. Thus,
we used the same division in our model. The individual vasculature segments
taken into account in the corresponding studies are marked with a plus sign and
colored green.

deal with a variety of such patients (which is related to the
search for different equilibriums of the model depending on the
starting values), we need to have a tool for scaling of physiological
variables. For this purpose, Proshin and Solodyannikov (2006)
used the general scaling scheme representing the dependence of
biological variables ai (elasticity of vascular walls, conductivity
of vessels, body oxygen demand, etc.) on body mass m by
an allometric power-laws (West et al., 1997; Proshin and
Solodyannikov, 2006):

ai = ci ·mbi

Where bi are the scaling exponents and ci are the normalization
constants. In addition to this approach, we took into account
the approximate distribution of blood (in percentage of total
blood V) in the different parts of the circulatory system:
84% – systemic circulation (including 13% in systemic arteries)
(Hall, 2011), 10% – pulmonary circulation (Gazioglu and Yu,
1967), 6% – heart. Pulmonary vessels include arterial (35%
of pulmonary circulation), venous (45%) and capillary (20%)
volumes (Gazioglu and Yu, 1967). Since in the model by Proshin
and Solodyannikov (2006) pulmonary veins and capillaries are
included in one compartment of the circulatory system, assuming
equality of the starting VHL and VHR, we get the following
formulas for calculating the initial volumes of the compartments:

VHL = 0.03 · V, VAL = 0.13 · V,

VHR = 0.03 · V, VAR = 0.035 · V

VVR = 0.065 · V,

VVL = V − VAL − VAR − VHL − VHR − VVR

The corresponding unstressed volumes we determined as:

ωi = ki · V i, i ∈ {HL, AL, VL, HR, AR, VR}

Where estimated constants kAL, kVL, kAR, kVR ∈ [0.7, 1.0],
and kHL, kHR ∈ [0.0, 0.3] (see the Supplementary Appendix
Table A3 for details of such intervals selection).

The Model Calibration
Many parameters of the model correspond to physiological
quantities, which values can be evaluated by the laboratory
measurements. Thus, the model calibration consists in finding an
equilibrium state satisfying the set of physiological constraints.
The explicit form of these constraints depends on the studied
problem and the status of the simulated patient (healthy or
sick). For example, the normal range of the systolic/diastolic
pulmonary artery pressure is 15–30/4–12 mmHg (Pagani et al.,
1988). In patients with class II heart failure according to the
New York Heart Association classification, the corresponding
values are higher: 35.4 ± 8.8/14.4 ± 5.8 mmHg (Murch et al.,
2015), whereas in patients with pulmonary arterial hypertension
these values can achieve 84.0 ± 23.0/37.0 ± 13.0 mmHg
(Gan et al., 2006).

In this work, we present the model’s ability to simulate healthy
subjects as well as patients with the most common cardiovascular
diseases. We considered the following test cases:

• Patient 1: Uncomplicated hypertension (Ferlinz, 1980).
• Patient 2: non-hypertensive diastolic heart failure

(Fujimoto et al., 2008).
• Patient 3: Hypertension and LV hypertrophy without heart

failure (Melenovsky et al., 2007).
• Patient 4: Hypertensive diastolic heart failure without LV

hypertrophy (Fujimoto et al., 2008).
• Patient 5: Pulmonary hypertension and left heart disease

(Wright et al., 2017).

The model calibration included two main steps.

(1) Search for the equilibrium state matching physiology values
in a healthy human: We considered the normal value
ranges for clinically measurable quantities used in the
model. Such quantities cover 49 of 132 model parameters
(Supplementary Appendix Table A3) and 69 of 160
model variables (Supplementary Appendix Table A4).
The remaining parameters and variables of the model
either cannot be measured in the laboratory, or we
could not find available data to estimate their ranges.
Then, 132 parameters of the model were determined in
the following way.

(a) The values of 92 parameters were taken from the
basic models (Guyton et al., 1972; Karaaslan et al.,
2005; Proshin and Solodyannikov, 2006; Paeme et al.,
2011; Hallow et al., 2014; Hallow and Gebremichael,
2017a; Rosalina et al., 2019) or found in the research
articles (Gómez, 1951; Škrtić et al., 2015; Digne-
Malcolm et al., 2016; Hund et al., 2017; Neal et al.,
2018).

(b) The rest 7 new and 33 reused parameters, whose
values directly affected the compliance with
the normal ranges, were fitted by zeroing of
the penalty function (5) using the constrained
optimization evolutionary algorithm (see section
“Materials and Methods”).
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(2) Calibration of the model to the pathological
equilibrium states.

(a) We defined a set of 65 fitting parameters, whose
values can reasonably vary depending on the diseases
of the abstract patients given above (Supplementary
Appendix Table C1). These parameters are either
directly related to the diseases, and therefore their
values can deviate from the norm, or vary within
the known normal ranges, if the diseases do
not affect them.

(b) We determined a set of 57 physiological constraints
imposed on the model variables in conformity with
the clinical measurements in the diseases or in
the normal state, if there was no available data
confirming the effect of the diseases on these
variables (Supplementary Appendix Table C2).
Note that at the first step, we considered constraints
for 69 clinical variables, whereas at this step the
number of constraints is lower. This is due to the fact
that we eliminated some of the excessive constraints
to accelerate the optimization process. For example,
the heart rate is related to the cardiac cycle length.
Thus, we took into account the physiological range
for the first variable and excluded the range for
the second one. The cardiac output is equal to the
product of the stroke volume and the heart rate.
Therefore, we considered the constraints for the
first two variables and skipped the constraints for
the last one, etc.

(c) We chose standard patient characteristics provided
in clinical studies of the diseases (references in
definition of patients 1–5): age, weight, height,
gender, systolic/diastolic blood pressure, heart rate,
stroke volume, ejection fraction, and hemoglobin.
We used the average values of these characteristics
reported in the studies (upon availability): weight
and hemoglobin were directly set to the model;
weight, height, and gender were taken to evaluate
total body water of abstract patients (by the Nadler
equation, Nadler et al., 1962); remaining values were
used to estimate the corresponding model variables
by the minimization of the distance function (4).

(d) We specified the optimization problem with the
set of fitting parameters (a), the penalty function
(b), and the objective function (c), and solved this
problem as described in the section “Materials and
Methods” for each test case.

The resulting equilibrium values of the model within the
ranges of a healthy person are listed in the Supplementary
Appendix Tables A3, A4. These values are also provided in
the BioUML web-implementation of the model. Physiological
quantities of the equilibrium states representing abstract patients
1–5 are given in Table 2 and introduced as the model states
stored as separate documents and applicable to the model (see
the Availability section below).

Use Cases
As examples of using the model, we consider two standard
problems faced by researchers in the study of human
physiology: comparison of different physiological states and
comparison of sensitivity of different patients to the change
in physiological conditions. To produce the comparative
plots, we used the capabilities of the Jupyter notebook
embedded in BioUML. This application is designed to create
and share documents that contain live code, equations,
visualizations and narrative text. The Jupyter files comprising
the implementation of both use cases described below
are available in the web-version of our software (see the
Availability section).

Comparison of Different Physiological States
As the typical examples, consider the following:

• Comparison of normal and abnormal physiology
(uncomplicated hypertension vs. normal state).
• Comparison of states with the same disease but

different underlying pathophysiologic mechanisms
(non-hypertensive vs. hypertensive diastolic heart failure).
• Comparison of the pathological states reproducing complex

cardiovascular diseases (pulmonary hypertension and
left heart disease vs. systemic hypertension and left
ventricular hypertrophy).

Figure 6 shows the sample plots of the left ventricular
pressure-volume loops simulated for all these cases. Similar plots
can be automatically generated by the code in JavaScript included
into the Jupyter file for any equilibrium states of the model
and any variables of interest. Specifically, in the given plots, we
can see the dynamics corresponding to the considered patient
diseases:

• In the untreated hypertensive patients, left ventricular
systolic pressure can be substantially higher than in normal
subjects (Antony et al., 1993).
• Left ventricular end-systolic pressure is higher in

hypertensive than in non-hypertensive patients with
diastolic heart failure, while left ventricular end-diastolic
pressure is elevated in the both groups (Fujimoto et al.,
2008).
• Patients with congestive heart failure (generally

accompanying pulmonary hypertension) can have
significantly higher left ventricular end-diastolic and
end-systolic volumes (Mehta et al., 2000).

Comparison of Sensitivity of Different Patients to the
Change in Physiological Conditions
As the test case of this problem, we used the experiment
with varying sodium intake presented in He et al. (2001). The
study by He et al. (2001) involved a 5-day high sodium diet
(≈ 350 mmol/d) followed by a 5-day low sodium diet (10–
20 mmol/d) in normotensive and hypertensive individuals.

We designed the corresponding simulation experiment by the
following way:
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TABLE 2 | Equilibrium values representing abstract patients with different cardiovascular diseases.

Parameters Units Healthy
person

Uncomplicated
hypertension
(Ferlinz, 1980)

Non-
hypertensive
diastolic HF

(Fujimoto
et al., 2008)

Hypertension
and LVH,

without HF
(Melenovsky
et al., 2007)

Hypertensive
diastolic HF,
without LVH

(Fujimoto
et al., 2008)

PH, left heart
disease

(Wright et al.,
2017)

Age Years 40 51 60 67 73 56

Weight Kg 73 70 52 84 57 88

Height Meters 1.73 1.70 1.57 1.64 1.61 1.70

Gender – M M W W M M

Total body water Liters 37.70 34.90 26.36 34.19 32.07 38.95

Systolic blood pressure mmHg 114.2 163.1 110.5 143.8 147.0 103.4

Diastolic blood pressure mmHg 78.0 91.9 60.8 74.7 70.0 66.3

Heart rate beats·min−1 79.2 76.8 65.5 64.0 62.1 78.8

Central venous pressure mmHg 5.3 7.9 1.6 5.1 6.3 13.5

Systemic vascular
resistance

sec·mmHg·ml−1 0.777 0.761 0.807 0.896 0.910 0.746

Diastolic pulmonary artery
pressure

mmHg 12.1 11.6 16.0 11.7 14.1 25.0

Systolic pulmonary artery
pressure

mmHg 18.6 19.8 25.2 17.5 26.0 57.4

Pulmonary venous pressure mmHg 9.4 10.5 14.2 7.6 11.3 13.6

Pulmonary vascular
resistance

sec·mmHg·ml−1 0.094 0.082 0.113 0.116 0.132 0.588

Stroke volume ml 62.5 73.3 68.1 74.0 61.9 45.4

Ejection fraction % 62.2 59.6 58.9 72.1 56.0 27.9

LV end-diastolic volume ml 100 123 116 103 111 163

LV end-systolic volume ml 38 50 47 29 49 117

Diastolic LV pressure mmHg 9.1 3.2 10.0 6.7 11.2 13.1

Systolic LV pressure mmHg 135.0 183.4 134.5 157.7 162.7 112.3

RV end-diastolic volume ml 100 136 111 98 97 138

RV end-systolic volume ml 38 63 43 24 35 93

Diastolic RV pressure mmHg 4.8 3.3 0.6 4.8 6.0 13.0

Systolic RV pressure mmHg 21.0 22.4 28.0 19.5 28.2 68.6

Glomerular filtration rate l·min−1 0.110 0.078 0.072 0.068 0.085 0.058

Renal blood flow l·min−1 1.18 0.99 0.86 1.06 1.00 1.18

Renal vascular resistance mmHg·min·l−1 70.9 112.6 83.4 86.5 90.3 61.7

Afferent arteriole resistance dyn·sec·cm−5 2076 4946 2386 3156 3575 2035

Efferent arteriole resistance dyn·sec·cm−5 2624 2689 2942 2444 2239 1603

Hemoglobin g·l−1 143 151 119 128 117 135

Plasma renin concentration pg·ml−1 27.4 48.0 27.1 35.1 26.8 25.8

Aldosterone pg·ml−1 108 259 268 103 282 91

Values, which we evaluated using average clinical characteristics of patients in corresponding experimental studies, are marked with blue color. LV, left ventricle; RV, right
ventricle; HF, heart failure; LVH, left ventricular hypertrophy; PH, pulmonary hypertension.

FIGURE 6 | Comparison of left ventricular pressure-volume loops simulated for different equilibrium states of the model. (A) Uncomplicated hypertension vs. normal
state. (B) Non-hypertensive vs. hypertensive diastolic heart failure (DHF). (C) Pulmonary hypertension and left heart disease (PH/LHD) vs. systemic hypertension and
left ventricular hypertrophy (SH/LVH).
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• 0–1 day – the normal diet with initial equilibrium values of
sodium intake in the model states.
• 1–6 days – high sodium diet with sodium intake equal to

0.24306 mEq/min≈ 350 mmol/d.
• 6–11 days – low sodium diet with sodium intake equal to

0.01042 mEq/min≈ 15 mmol/d.
• 11–21 days – the normal diet returning the model dynamics

to the initial equilibrium.

Figure 7 shows the dynamic results of the model in all
states for relative values (normalized to the initial value) of
sodium intake, plasma sodium, mean arterial pressure, heart rate,
plasma renin activity and aldosterone concentration. Table 3
reveals the exact and relative difference in these values between
high (6 days) and low (11 days) salt diets. As can be seen
from these data, hypertensive patients have a greater fall in
blood pressure from high-salt to low-salt diet than normotensive
subjects. This result is consistent with the conclusions by He

et al. (2001). However, the laboratory measurements by the
authors also demonstrated that supine pulse rate on average
did not change with acute salt restriction, whereas plasma renin
activity and aldosterone concentration had higher growth in
normotensive than in hypertensive individuals. In our simulation
test, we observe another dynamic: a decrease in blood pressure
is accompanied by an increase in heart rate. Such dynamics
is in line with the fact that sodium reduction can increase
heart rate (Graudal et al., 2016). For plasma renin activity
and aldosterone concentration, we get the results opposite to
conclusions by He et al. (2001). The model shows higher
growth of these quantities in hypertensive patients. However,
while plasma renin activity responses on average are stronger
in normotensive than in hypertensive populations (Graudal
et al., 2017), it can be weaker in some individual cases
(Graudal et al., 2021). Therefore, the generated model states give
acceptable dynamics.

FIGURE 7 | Simulation results of the sodium load experiment for all states of the model. The simulation experiment was designed in accordance with experimental
study by He et al. (2001) and involves a 5-day high sodium diet followed by a 5-day low sodium diet. Variable values are normalized to the initial equilibrium values
declared in the states.
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TABLE 3 | Exact and relative difference in sodium intake (mEq/min), plasma sodium (mEq/l), mean arterial pressure (MAP, mmHg), heart rate (HR, beats/min), plasma
renin activity (PRA, fmol/ml/min) and plasma aldosterone concentration (PAC, pg/ml) between high (day 6) and low (day 11) salt diets.

Model state Sodium intake Plasma sodium MAP HR PRA PAC

Normal state −0.23264 (−95.71%) −2.4 (−1.66%) −16.1 (−16.66%) 41.4 (66.06%) 4.8 (19.65%) 6.8 (6.61%)

Uncomplicated hypertension −0.23264 (−95.71%) −4.1 (−2.84%) −29.1 (−22.49%) 51.9 (78.89%) 6.9 (22.17%) 17.8 (7.12%)

Diastolic heart failure −0.23264 (−95.71%) −4.8 (−3.27%) −23.0 (−27.69%) 41.6 (72.09%) 3.8 (13.82%) 12.3 (4.67%)

Hypertension and diastolic heart failure −0.23264 (−95.71%) −3.3 (−2.29%) −26.6 (−25.73%) 60.1 (117.23%) 8.2 (31.19%) 27.0 (9.99%)

Hypertension and left ventricular hypertrophy −0.23264 (−95.71%) −4.4 (−3.08%) −28.3 (−26.57%) 51.5 (95.97%) 5.6 (17.99%) 5.9 (5.86%)

Pulmonary hypertension and left heart disease −0.23264 (−95.71%) −5.3 (−3.80%) −21.1 (−25.39%) 47.7 (69.11%) 2.1 (7.71%) 2.4 (2.66%)

DISCUSSION

The main goal of our investigation is the modeling of a
hypertensive human personal response to antihypertensive
therapy. Since arterial hypertension is the multifactorial disease,
which can take different forms (pulmonary or systemic) and can
be complicated by related pathologies, such as heart or renal
failure, the modeling process is divided into several steps.

• Step 1: Creation of a mathematical model of human
physiology with a level of detail sufficient to study the
issues of arterial hypertension. True personalization of drug
therapies should rely on a virtual patient, the digital twin
of a real individual, which is formed and accumulated
throughout his life as a result of interaction with the
health care system (Lehrach, 2016). We suppose that it is
unrealistic to build a virtual patient for all occasions now.
Thus, our approach is to construct a set of basic modules
(blocks) and assemble a model from them (as from Lego
blocks) for a given patient and disease.
• Step 2: Pharmacokinetic/pharmacodynamic (PK/PD)

modeling of antihypertensive drugs. First-line
antihypertensive medications include angiotensin-
converting enzyme inhibitors, angiotensin II receptor
blockers, calcium-channel blockers, thiazide diuretics
and β-Adrenoreceptor blockers (Oparil et al., 2018). It is
possible to determine the certain points of influence on the
model for each of these classes, construct the corresponding
PK/PD models and validate unknown dynamic constants
using related clinical trials (Hallow et al., 2014).
• Step 3: Personalizing the model. Each equilibrium

parameterization of the model within physiological
ranges can be considered as a virtual patient. To relate
him with a real person, we can use some values from
the laboratory analyses. However, this allows us to get
only a small part of the model quantities. To solve the
problem with unknown personal parameters, we can
build a set of virtual patients and consider significant
variation of unknown physiological values. Treatment
simulation of such a virtual population makes it possible
to identify virtual groups with a similar reaction to the
drugs and analyze which features of the patient can
contribute to the effectiveness (or ineffectiveness) of the
antihypertensive therapy.

This article provides implementation of the first step and
presents the model of cardiovascular and renal systems. As
the basis for the model construction, we used early published
models developed for each of these physiology systems separately
(Karaaslan et al., 2005, 2014; Proshin and Solodyannikov,
2006; Hallow et al., 2014; Hallow and Gebremichael, 2017a).
Note that the reduction in dietary salt intake leads to a
decrease in blood pressure and therefore, can be viewed as a
simple antihypertensive therapy (Mahtani, 2009; Frisoli et al.,
2012). As follows from Figure 7, the model reproduces the
dynamics consistent with this statement. As for the modeling
of the individual response to complex therapy including
antihypertensive medications with different mechanisms of
action (Step 2 and 3), this is a task for future studies.

The Model Strength
Two Physiological Systems Instead of One
The strong connection between renal and cardiovascular disease
reflects the complex interactions between heart and kidneys
(Stefanadis, 2010). Therefore, it is reasonable to model in
detail these body systems together. In relation to the study of
personal response to antihypertensive therapies, simultaneous
consideration of these systems allows simulating virtual patients
with different combinations of heart and renal diseases associated
with hypertension. This also provides a tool for modeling the
hypotensive effect in response to β-blockers treatment, which
is not possible with consideration of the renal function alone
(Hallow et al., 2014).

Modular Representation
The modular approach facilitates development of complex
models by representing them as combinations of submodels
(Kiselev and Kolpakov, 2013). The structure of the model is clear
and understandable. The model can be easily expanded. The
separate modules can be independently modified and improved.

Agent-Based Approach
Agent-based models are unique in their ability to integrate
combinations of heterogeneous processes and investigate their
respective dynamics. These models are flexible in their execution
and permit the aggregation of processes across time scales (Glen
et al., 2019). So in our case, the cardiovascular system modules are
simulated in fraction of seconds which is due to the work of the
heart, while the renal system modules are measured in minutes.
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Wide Range of Parameter Values
Our model is not geared toward parametrizations representing
a limited group of healthy people or patients with the
same combination of diseases, but has a wide parameter
space, which is sufficient for simulation of patients with
systemic/pulmonary arterial hypertension and main concomitant
cardiovascular diseases.

The Model Limitations
Limitations by the Parameter Constraints
Parameter bounds and constraints, which we collected on the
basis of known clinical studies and listed in the Supplementary
Appendix Tables C1, C2, are suitable for simulation of a
wide range of patients with cardiovascular diseases, but still
do not reflect all possible cases and require further extension
and systematization to detail physiological ranges depending on
patient features.

Limitations by the Model Equations
We use the same form of equations to simulate different
pathological conditions. However, in some diseases, a part of
variables may be outside the acceptable ranges. For example,
in the study (Riegger et al., 1982), one group of patients with
congestive heart failure had inappropriately high values of plasma
antidiuretic hormone (14.5 ± 8.8 pg/ml) in relation to their
plasma osmolality, which was well below normal values (276± 23
mOsmol/kg water). At the same time, the equation used in the
model, does not allow the analysis of osmolality values less than
271 mOsmol/kg. Thus, to simulate such patients, the function of
calculation of plasma antidiuretic hormone must be advanced.

Possible Directions of the Model
Development
Aging as a Key Factor in Cardiovascular Diseases
Aging-mediated structural and biochemical modifications
coupled with gradual loss of autonomic nervous system
regulation and vascular stiffening are consistently implicated in
the progressive increase in mechanical burden and functional
breakdown of the heart and vessels (Fajemiroye et al., 2018).
Thus, it seems to us very important to introduce age in the
equations modeling the age-dependent variables.

Genetic Contribution
Estimated heritability of systolic and diastolic blood pressure
lies in the ranges of 15–40% and 15–30%, respectively (Delles
and Padmanabhan, 2012). More than 900 known genetic loci
indicate that sites for blood pressure control involve various
organs, including the kidneys and nervous system (Lin et al.,
2020). Therefore, extension of the model to take into account
personal data of genetic testing can help resolve the questions
regarding individual blood pressure regulation.

Personalized Cardiac Electrophysiology Modeling
To personalize the cardiac parameters of the model, it is possible
to use data obtained from clinical imaging. However, when
imaging data is noisy, an alternative rule-based methodology
can be utilized to simulate electrical wave propagation and

mechanical contraction in the heart (Bayer et al., 2012; Lopez-
Perez et al., 2015; Nguyen et al., 2020). Application of this
methodology can be useful for extension the model to involve the
personalized anatomy of the heart.

Finally, note that we did not aim to reproduce all possible
variations of cardiovascular diseases. Nevertheless, we suppose
that the model can be easily extended to any group of patients,
depending on the study purpose. Summarizing the above, we
believe that the composite model of cardiovascular and renal
systems could be useful for further investigation of cardiovascular
diseases and drug development. The BioUML implementation
of the model is available at: https://gitlab.sirius-web.org/virtual-
patient/blood-pressure-regulation.
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