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Pancreatic cancer consists one of tumors with the highest degree of malignancy
and the worst prognosis. To date, immunotherapy has become an effective means
to improve the prognosis of patients with pancreatic cancer. Long non-coding
RNAs (lncRNAs) have also been associated with the immune response. However,
the role of immune-related lncRNAs in the immune response of pancreatic cancer
remains unclear. In this study, we identified immune-related lncRNA pairs through a
new combinatorial algorithm, and then clustered and deeply analyzed the immune
characteristics and functional differences between subtypes. Subsequently, the
prognostic model of 3 candidate lncRNA pairs was determined by multivariate COX
analysis. The results showed significant prognostic differences between the C1 and
C2 subtypes, which may be due to the differential infiltration of CTL and NK
cells and the activation of tumor-related pathways. The prognostic model of the
3 lncRNA pairs (AC244035.1_vs._AC063926.1, AC066612.1_vs._AC090124.1, and
AC244035.1_vs._LINC01885) was established, which exhibits stable and effective
prognostic prediction performance. These 3 lncRNA pairs may regulate the anti-tumor
effect of immune cells through ion channel pathways. In conclusion, our research
demonstrated the panoramic differences in immune characteristics between subtypes
and stable prognostic models, and identified new potential targets for immunotherapy.

Keywords: pancreatic cancer, immunotherapy, NMF, prognosis, lncRNA pairs

INTRODUCTION

As one of the most malignant tumors, pancreatic adenocarcinoma (PAAD) is the seventh leading
cause of cancer-related deaths, which is responsible more than 430,000 deaths each year worldwide
(Bray et al., 2018; Ferlay et al., 2019; Khalaf et al., 2020). Although surgical treatment, radiotherapy,
chemotherapy and targeted therapy for PAAD have made significant progress in the past decades,
due to the rapid progress of the condition and the limitations of treatment methods, the 5-year
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survival rate of PAAD patients still does not exceed 5% (David
et al., 2009; Von Hoff et al., 2013; Miller et al., 2019). Most PAAD
patients still need to rely on chemotherapy and palliative care.
However, chemotherapies such as FOLFIRINOX can increase
the patients’ median survival time only by 2–4 months and
have obvious side effects (Vaccaro et al., 2011). Therefore,
there is an urgent need to further explore the mechanism
of occurrence and development of pancreatic cancer, as well
as to find novel therapeutic targets to improve the prognosis
of PAAD patients.

In recent years, immunotherapy has made tremendous
breakthroughs and seems to have become a new hot topic
in cancer treatment (Mellman et al., 2011; Chen et al.,
2017). Immune checkpoint inhibitors (ICIs) have been used
in a variety of cancers including pancreatic cancer (Long
et al., 2017; Wu et al., 2019). ICIs can restore the anti-
tumor response of the immune system and prevent tumors
from evading immune surveillance through immune checkpoint
signaling pathways (Kythreotou et al., 2018; Yi et al., 2018).
However, immunotherapy improves only some PAAD patients’
condition (Glatzer et al., 2020). Therefore, exploring the
immune characteristics of pancreatic cancer and finding new
immunotherapy targets are of great significance for improved
immunotherapy effects for patients.

Long non-coding RNAs (lncRNAs) are RNAs with a length
longer than 200 nucleotides, which are generally considered not
translated directly into proteins. Instead, as indicated by a large
number of studies in recent years, lncRNAs regulate translation
efficiency by binding to mRNAs and exert their biological
functions in this manner (Mercer et al., 2009; Castellanos-Rubio
and Ghosh, 2019). Evidence shows that lncRNAs are potential
immune regulators, deeply involved in cellular immune and
inflammatory processes (Geng and Tan, 2016; Chen J. et al.,
2019). For example, as a pseudogene of Rps15a-ps4, lncRNA
Lethe can block NF-κB-DNA binding, thereby promoting
the anti-inflammatory effect of dexamethasone (Rapicavoli
et al., 2013). However, the mechanism of how immune-related
lncRNAs affect the prognosis of PAAD patients is still not
fully understood.

In this study, we identified immune-related lncRNA
pairs by combining the lncRNA expression profile data of
PAAD patients with the immune gene library, and clustered
two molecular subtypes based on this pairing. We then
comprehensively analyzed the differences in prognosis, immune
characteristics, gene mutations and potential functions between
subtypes. Finally, univariate and multivariate cox analyses
were performed to construct a prognostic model based on
3 selected lncRNA pairs. After a variety of verifications, the
model was proven to have stable and independent prognostic
prediction performance.

MATERIALS AND METHODS

Data Source and Preprocessing
The most up-to-date expression profile data and clinical follow-
up information of PAAD patients were downloaded from

the TCGA database1 on March 17, 2021. Subsequently, we
processed the RNA-Seq data of TCGA-PAAD according to the
following steps: (1) Remove samples without clinical follow-
up information; (2) Remove samples without survival time; (3)
Exclude samples without survival status; (4) Convert ensemble
to gene symbol; (5) Take genes with multiple Gene Symbols as
the median value of their expression. The TCGA-PAAD cohort
after data preprocessing contained a total of 176 samples. The
expression profile data and follow-up information of the ICGA-
PACA-CA cohort (167 samples in total) were downloaded from
the ICGC database2.

Identification and Pairing of IRGs and
lncRNAs
The immune-related gene (IRG) set was downloaded from the
ImmPort database3, which contains the comprehensive location
information and functional attributes of immune-related genes.

The expression profile of TCGA-PAAD was divided into
mRNAs and lncRNAs based on the latest version expression
profile annotation file downloaded from the GENCODE website4.
We calculated the co-expression Pearson correlation coefficient
and p-value among each IRG and lncRNA. According to the
threshold of Cor > 0.8 and P < 0.01, a total of 1,289 lncRNA-
IRG pairs were identified, including 466 lncRNAs and 228 IRGs
(Supplementary File 1). Next, 466 immune-related lncRNAs
were paired in a cycle. In order to eliminate the huge difference
among the expression of lncRNAs, we processed the data as
follows: we defined C as the expression of the lncRNA pair
(lncRNA A and lncRNA B). If the expression level of lncRNA A
was higher than lncRNA B, then C was defined as 1; otherwise,
C was defined as 0. Based on this technique, we constructed a
matrix containing values of 0 and 1. Next, lncRNA pairs with
C = 1 accounting for 30∼70% of all lncRNA pairs were retained
(Hong et al., 2020).

Identification of Immune-Related
Molecular Classes Based on NMF
For the lncRNA pairs obtained by the above processing method,
we used the coxph function in R to perform univariate cox
analysis, and thus obtained 217 lncRNA pairs related to the
prognosis of PAAD (P < 0.001). Subsequently, the non-negative
matrix factorization (NMF) algorithm was used to cluster the
PAAD samples. The method was set as the standard called
“brunet” that performs 100 iterations. The number of clusters
k was set from 2 to 10, the average contour width of the shared
member matrix was determined by the R package NMF, and the
minimum member of each sub-category was set to 10.

Immune Characteristics and Tumor
Mutation Burden (TMB) Analysis
The characteristics of the 22 immune cells in each sample
between subtypes were determined based on the R package

1https://portal.gdc.cancer.gov/
2https://daco.icgc.org/
3http://www.immport.org
4https://www.gencodegenes.org
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CIBERSORT (Chen et al., 2018). The mutation dataset of
the TCGA-PAAD cohort was downloaded from the TCGA
database and processed by Mutect2 software to analyze the tumor
mutation burden (TMB) of each sample.

Construction of Prognostic Risk Model
Based on Immune-Related lncRNA Pairs
We used the Fisher’s exact test to calculate the differences
between the subtypes of each lncRNA pair, and then obtained
the adjusted FDR values by the BH method. With FDR <0.0001
as the threshold, we identified a total of 390 differential lncRNA
pairs (Supplementary File 2). Subsequently, we divided the 176
samples of the TCGA-PAAD queue into a training set and a
validation set. In order to ensure the stability of subsequent
modeling, all samples were randomly grouped at 1:1 for 100
times with replacement. We chose the best grouping based on
the criteria of no significant difference in age distribution, gender,
follow-up time, and the proportion of deaths between the two
groups. A total of 88 samples were included the training set and
88 samples in the validation set. As shown in Table 1, there was
no significant difference between the groups (P > 0.05).

The multivariate Cox proportional hazard regression model
was carried out for the different lncRNA pairs between subtypes
using the R survival package, coxph function based on training
set. The significance level of P < 0.05 was set as the threshold for
filtering. Finally, we performed a multivariate COX analysis on
the significantly different lncRNAs to obtain the risk coefficients
of lncRNA pairs.

Functional Enrichment Analysis
Gene Ontology (GO) is a structured method of gene product
annotation, which consists of three parts: biological process
(BP), cell component (CC), and molecular function (MF). The
Kyoto Encyclopedia of Genes and Genomes (KEGG) is an open
gene set pathway enrichment database. In this study, GO and
KEGG were performed to further understand the functional
differences between subtypes using the R package WebGestaltR
(v0.4.2) (Wang et al., 2017). The GO terms and KEGG pathways
with P < 0.05 were considered to be significantly different. All
analytical processes are described in Figure 1.

RESULTS

Molecular Typing of PAAD Based on
Immune-Related lncRNA Pairs
The immune-related lncRNA pairs were identified through the
cyclic pairing of immune lncRNAs. Subsequently, we performed
univariate COX analysis of these lncRNA pairs using the coxph
function in R. A total of 217 prognostic-related (P < 0.001)
lncRNA pairs for PAAD were obtained (Supplementary File 3).
Next, we clustered PAAD samples by non-negative matrix
clustering algorithm (NMF) based on the prognostic-related
lncRNA pairs (Supplementary Figure 1). According to the
indicators, such as cophenetic, dispersion and silhouette, we
determined the optimal number of clusters as 2 (Figures 2A,B).

Accordingly, we divided the samples of the TCGA-PAAD
cohort into C1 and C2 subtypes. The further survival analysis
between subtypes showed that there were significant differences
between them either in terms of overall survival time or
progression-free survival (PFS) time. The prognosis of the
C1 subtype was much worse than that of the C2 subtype
(Figures 2C,D).

TABLE 1 | Differences in clinical characteristics between training set and
validation set.

Clinical Features TCGA-train TCGA-test P

Event

Alive 42 42 1

Dead 46 46

Stage

I 12 9 0.2715

II 74 71

III 1 2

IV 0 4

X 1 2

Grade

G1 16 14 0.3309

G2 50 44

G3 19 29

G4 2 0

GX 1 1

Age

≤65 46 47 1

>65 42 41

T Stage

T1 6 1 0.3342

T2 10 14

T3 70 70

T4 1 2

TX 1 1

N Stage

N0 26 23 0.3709

N1 61 61

NX 1 4

M Stage

M0 40 39 0.1281

M1 0 4

MX 48 45

Gender

Female 39 41 0.8797

Male 49 47

Alcohol

NO 32 32 0.4739

YES 48 52

Unknown 8 4

Radiation_therapy

NO 53 48 0.6802

YES 14 18

Unknown 21 22

Chemotherapy

NO 30 30 1

YES 58 58

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 July 2021 | Volume 9 | Article 698296

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-698296 July 1, 2021 Time: 16:14 # 4

Zhang et al. 3-lncRNA Pairs PAAD Prognostic Model

FIGURE 1 | Flowchart of the study.

Differences of TMB and Common Gene
Mutations Between Immune Subtypes
The gene mutation dataset of TCGA-PAAD was downloaded
to understand the differences in TMB and gene mutations
between subtypes. Results showed that the TMB of the C1
subtype was slightly higher than that of the C2 subtype, although
no significant statistical difference was detected (Figure 3A).
Meanwhile, we also assessed the differences in the number of
mutant genes between the samples (Figure 3B). There was no
difference in the number of mutant genes between the C1 and
C2 subtypes. In addition, we showed the mutation characteristics
of the top 10 genes with the most frequent mutations in each
subtype (Figure 3C). Consistently with previous reports, most
of the mutations detected in the two subtypes were missense
mutations (Zhang et al., 2020). Specifically, only the mutation
rate of TP53 in the C1 subtype was significantly higher than that
of the C2 subtype (P = 0.036).

Differences in Immune Characteristics
and Pathway Characteristics Between
Subtypes
In order to explore the immune characteristics of the C1 and
C2 subtypes, we evaluated the immune cell score of each sample
with CIBERSORT (Figure 4A). The immune cell scores obtained
were different both within and between groups. After statistical
testing, we established that the T cell CD8 and Mast cell resting
scores in C1 subtype were significantly lower, while the NK cell
resting and macrophage M2 cell scores were significantly higher

than those in C2 subtypes (Figure 4B). Meanwhile, activated NK
cells had a higher score in the C2 subtype, although the difference
was not statistically significant. The above results suggest that
the poor prognosis of the C1 subtype may be partly due to the
inactivation of CTLs and NK cells in the C1 subtype, which causes
the immune escape of the tumor. The score of non-polarized
M0 macrophages in the C1 subtype was significantly higher than
that in C2, which leads to the assumption that the activation of
macrophages in C1 subtype was inhibited. Paradoxically, there
was no significant difference between M1 and M2, which finding
requires further exploration.

Comparison Between TCGA Molecular
Subtypes and Existing Immune Subtypes
Thorsson et al. (2018) conducted an extensive tumor
immunophenotyping test using more than 10,000 samples
of 33 cancers in TCGA. A total of 6 subtypes were identified:
wound healing (C1), IFN-gamma dominant (C2), inflammatory
(C3), lymphocyte depleted (C4), immunologically quiet (C5),
and TGF-beta dominant (C6). Among them, C1 and C2
subtypes correspond to poor prognosis, while C3, C4, and
C6 have tumor suppressor effects (Thorsson et al., 2018). By
comparing Thorsson and colleague’s immune subtypes with
those established in our study, results showed that our C1
subtype mostly corresponded to Thorsson’s C1 and C2 subtypes,
while our C2 subtype had a higher ratio of Thorsson’s C3, C4,
and C6 (Figure 4C). This also illustrates the stability of the
subtypes identified herein.
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FIGURE 2 | NMF algorithm clustering and prognostic differences between subtypes. (A) Consensus map of NMF clustering. (B) The cophenetic, RSS and
dispersion distributions with rank = 2–10; combining these indicators results in the optimal number of clusters of 2. (C) OS time prognostic survival curve of the
PAAD molecular subtype. (D) PFS time prognostic survival curve of the PAAD molecular subtype.

Gene Set Enrichment Analysis (GSEA)
Among Subtypes
The process of GSEA was performed to explore the significantly
enriched pathways in each subtype. P < 0.05 and FDR < 0.25
were set as thresholds to select the enrichment pathways. The
results showed that multiple tumor-related pathways, including
P53 signaling pathway, DNA replication, Cell cycle, and Base
excision repair were enriched in the C1 subtype, while the
metabolism-related pathways such as Fatty acid metabolism,
Primary bile acid biosynthesis, Renin angiotensin system and
Tyrosine metabolism were enriched in C2 (Figures 4D,E). This
implies that the poor prognosis of C1 may be due to the
further activation of tumor-related pathways and the inhibition
of normal metabolism.

Differences in Intrinsic Immune Escape
Characteristics Between Subtypes
The intrinsic immune escape of tumors suggests that tumor
cells directly mediate their own immune escape, which leads to
tumor progression. The study of Schreiber et al. (2011) proved

that tumor immunogenicity and the expression of immune
checkpoint molecules were two aspects of intrinsic immune
escape. Herein, to explore the differences in the intrinsic immune
escape characteristics between the subtypes, we compared the
potential factors that affect tumor immunogenicity, including
mutation load, homologous recombination deficient (HRD),
neoantigen load and chromosomal instability levels, as well as
other factors (Figure 5). The results showed that most of the
factors affecting tumor immunogenicity did not differ between
the subtypes, while the SCNV gene proportion in the C1 subtype
was significantly higher than that in C2.

Prognostic Risk Model Based on
Immune-Related lncRNA Pairs
In order to further explore the key differential lncRNA
pairs affecting the prognosis between subtypes and their
prognostic prediction ability for PAAD patients, we performed
univariate COX proportional hazard regression on differentially
expressed lncRNA pairs in the training set, where P < 0.05
was considered as a significant difference. A total of three
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FIGURE 3 | Tumor mutation burden and gene mutation characteristics among molecular subtypes. (A) Differences in the distribution of TMB between subtypes.
(B) The distribution difference of the number of gene mutations between subtypes. (C) Mutation characteristics of top 10 genes in two subtype samples. The rank
sum test is used to determine the p-value.

prognostic-related differential lncRNA pairs were identified:
AC244035.1_vs._AC063926.1, AC066612.1_vs._AC090124.1,
and AC244035.1_vs._LINC01885. Subsequently, multivariate
COX analysis was performed for these 3 prognostic-related
lncRNA pairs to obtain the risk coefficient of each lncRNA pair.
Based on these coefficients, the RiskScore formula was acquired
as follows:

RiskScore = (−0.193 ∗ AC244035.1_vs._AC063926.1)

+ (−0.445∗AC066612.1_vs._AC090124.1) + (−0.504∗

AC244035.1_vs._LINC01885)

All of these 3 lncRNA pairs were established as protective
factors of PAAD.

The RiskScore of each sample in the training set was
calculated, and the Z-score was normalized. Samples with a
RiskScore > 0 were classified as high-risk groups, otherwise
they were categorized as low-risk groups. Among them,
40 samples were associated with high-risk groups, and 48
samples were classified as low-risk groups. The survival
analysis showed that, as expected, the prognosis for the
high-risk group was significantly worse than that for the low-
risk group (P = 0.01, Figure 6A). We further performed
receiver operating curve analysis using the R software
package timeROC. The prognostic prediction power (AUC)
of this prognostic model was 0.63 (1 year), 0.72 (2 years),
and 0.77 (3 years), respectively (Figure 6B). Therefore,
our model showed a relatively good long-term survival
prediction performance.
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FIGURE 4 | Differences in immune cell characteristics between subtypes and GSEA. (A) Ratio of 22 immune cell components of the 2 subtype samples.
(B) Differences in scores of 22 immune cells in samples between subtypes. (C) Intersection of C1 and C2 with the previous pan-cancer immune molecular subtypes.
(D) The KEGG pathways enriched in C1 subtypes are mainly tumor-related pathways. (E) The KEGG pathways enriched in the C2 subtype are mainly metabolic
related pathways, *indicates less than 0.05; **indicates less than 0.01.

Validation of Robustness of the Risk
Model in the Internal and External
Validation Sets
With the aim to verify the robustness of the model, we calculated
the RiskScore of each sample in the validation set and all
TCGA-PAAD samples with the same model and coefficients
as in the training set. In the validation set, the prognosis
for the high-risk group proved much worse than that for the

low-risk group (p = 0.023, Figure 6C). The results of ROC
analysis also showed that the AUC of this prognostic model
were 0.66 (1 year), 0.69 (2 years), and 0.73 (3 years), respectively
(Figure 6D). In the TCGA-PAAD cohort, consistently with
our expectations, the prognosis of different risk groups showed
extremely significant difference (P = 0.00029, Figure 6E). Its 1–,
2–, and 3-year AUC values were established as 0.65, 0.7, and 0.74,
respectively (Figure 6F).
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FIGURE 5 | Differences in factors related to innate immune escape between subtypes. (A–H) Differences among subtypes in Mutation load, HRD, SNV neoantigens,
Indel neoantigens, SCNV gene proportion, Ntal score, LSTm score and LOH score. Among them, only the SCNV gene proportion shows significant difference
between subtypes.

In addition, we plotted the distribution of RiskScore and
the survival status of all samples (Figure 6G). The results
showed that the RiskScore was significantly correlated with the
patient survival status. It could be seen that, as the RiskScore
increased, the number of alive patients and the survival time
significantly reduced. The above results imply that the prognostic
model based on the identified 3 lncRNA pairs has a high and
stable predictive power for the long-term survival rate of PAAD
patients. Furthermore, we adopted the ICGC-PACA-CA cohort
to verify the effectiveness of the model. The results showed that
the prognosis of the high-risk group was significantly worse than
that of the low-risk group (p = 0.0024, Figure 6H). The 1–,
2–, and 3-year AUC of the prediction model were 0.66, 0.68,
and 0.7 (Figure 6I), respectively, showing the cross-platform
effectiveness of the model.

Differences in the RiskScores of Various
Clinical Characteristics
Furthermore, we compared the differences in risk scores of
clinical features, including TNM stage, grade, molecular subtype,
etc. Results indicated that different clusters and M stages have
significant differences in their risk scores (P < 0.05). The risk
score of C1 was much higher than that of C2, which corresponds
to the poorer prognosis of C1 (Figure 7A). Meanwhile, a trend
was observed that the risk score increases with the advancement
of T stage and N stage, although the difference was not statistically
significant (Figures 7B,C). Unexpectedly, however, the risk score
of MX stage was lower than that of M1 and M0 (Figure 7D). This
means that the invasion ability of samples with high RiskScore
was decreased. Moreover, we compared the differences in risk
scores for age, gender, and treatment, and none of them were
statistically significant (Supplementary Figure 2).

Identification and Functional Analysis
Genes Related to the 3 lncRNA Pairs
Considering the fact that lncRNAs usually binds with mRNA
and proteins to perform biological functions, we calculated the
Spearman correlation coefficient and their significance between
the 3 prognostic-related lncRNA pairs and mRNA. After filtering
with a threshold of Corr > 0.4 and P < 0.05, a total of 553
genes were identified. Subsequently, GO and KEGG analyses
were performed to explore the potential functions of these
genes. For biological functions (BP), 216 items were identified
with significant differences (FDR < 0.05), which are mainly
related to ion transport and the regulation of transmembrane
signals (Figure 7E); for molecular functions (MF), there were
62 items with significant differences (FDR < 0.05), mainly
concentrated on the cation channel complex and transmembrane
transport complex (Figure 7F); for cell components (CC),
93 entries showed significant differences (FDR < 0.05), and
these functions were mainly associated with ion and protein
transport channels (Figure 7G). For KEGG, pathways such as
Maturity onset diabetes of the young, Type II diabetes mellitus,
Insulin secretion, Morphine addiction, GABAergic synapse, and
Circadian entrainment were enriched (Figure 7H).

Univariate and Multivariate Analysis of
RiskScore
Aiming to verify the stability and independence of the RiskScore
determined in clinical applications, we performed a univariate
COX regression analysis on the TCGA-PAAD samples. The
results showed that T Stage, N Stage, and RiskScore were
negatively correlated with patient prognosis (HR > 1, P < 0.05),
while radiation therapy and chemotherapy were positively
correlated with patient prognosis (HR < 1, P < 0.05, Figure 8A).
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FIGURE 6 | Evaluation and validation of prognostic models. (A) KM survival curve distribution of the high-risk group and the low-risk group in the training set.
(B) ROC curve of the prognostic model in the training set. (C) KM survival curve distribution of the high-risk group and the low-risk group in the validation set.
(D) ROC curve of the prognostic model in the validation set. (E) KM survival curve distribution of the high-risk group and the low-risk group in all samples of the
TCGA-PAAD cohort. (F) ROC curve of the prognostic model of all samples. (G) Correlations among RiskScore, survival time and survival status of the TCGA-PAAD
cohort; RiskScore is arranged from low to high. (H) KM survival curve distribution of the high-risk group and the low-risk group in the ICGC-PACA-CA cohort.
(I) ROC curve of the prognostic model in the ICGC-PACA-CA cohort.

Among them, the RiskScore had the highest Hazard Ratio
(HR = 2.14), which also proved that it was highly effective
in predicting the prognosis of patients. Meanwhile, the results
of multivariate analysis showed that the HR of RiskScore we
determined was 2.02 (P = 0.011), which still had a strong power
in predicting the prognosis of PAAD patients (Figure 8B). The
above results prove that our prognostic model based on the
selected 3 lncRNA pairs has strong independent predictive power.

Construction of Nomogram of Clinical
Characteristics and DCA Curve
A nomogram is a figure that visually and effectively displays
the results of a risk model. It uses the length of the straight
line to indicate the degree of influence of different variables
and the different values of these variables on the outcome.
We constructed the nomogram based on the clinical features
with significant statistical significance in the multivariate COX

regression analysis. The results of the nomogram showed that
the RiskScore had the greatest impact on the prognostic outcome
of patients and was relatively stable (Figure 8C), indicating
that the risk model based on our lncRNA pairs can stably
predict the prognosis of patients. Furthermore, we verified
the performance of nomogram data for predicting patient
prognosis. We observed that the nomogram-predicted OS data
fit the observed OS well with respect to 1–, 2–, and 3-year
survival rates, which proves that this method presents excellent
performance (Figure 8D).

Moreover, decision curve analysis (DCA) was performed to
evaluate the net benefits of different characteristics for patients
(Figure 8E). Subsequent results showed that decisions based
on nomogram data have the highest net benefits. Meanwhile,
the decision based on the RiskScore had a good impact on the
patients’ net benefits, and its net income was higher than the N
stage in most cases.
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FIGURE 7 | Correlations among risk score, clinical characteristics and functional enrichment analysis. (A) Differences in risk scores between subtypes.
(B) Differences in RiskScores for T stage. (C) Differences in RiskScores for N stage. (D) Differences in RiskScores for M stage. (E) Top 10 BP enrichment terms of
lncRNA-related mRNAs. (F) Top 10 CC enrichment terms of lncRNA-related mRNAs. (G) Top 10 MF enrichment terms of lncRNA-related mRNAs. GO terms were
mainly enriched in related pathways of ion channels. (H) Top 10 KEGG pathways of lncRNA-related mRNAs.

DISCUSSION

It has been established that PAAD can mediate a unique
immune microenvironment and cause immune escape through
a variety of mechanisms, such as through tumor “hijacking”
immune checkpoints to suppress the immune system’s anti-
tumor response (Collisson et al., 2019; Liu et al., 2020). ICIs

effectively prevent this process (Ribas and Wolchok, 2018).
Notwithstanding, there are still patients who do not respond to
ICIs, and even present negative outcomes (Macherla et al., 2018).
However, lncRNAs, which are closely related to immunity, seem
to be seldom subject to research in this field. Therefore, exploring
the mechanism of immune-related lncRNA in PAAD patients
may bring unexpected gains.
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FIGURE 8 | COX analysis of RiskScores, clinical characteristics and nomogram. (A) Univariate analysis results of clinical features and RiskScore. (B) Multivariate
analysis results of clinical features and RiskScore. (C) Nomogram based on clinical characteristics and RiskScore. (D) Nomogram survival rate correction chart.
(E) Decision curve analysis (DCA) diagrams of N stage, radiation therapy, chemotherapy, RiskScore, and nomogram.

In this study, we used the lncRNA expression profile of
the TCGA-PAAD cohort to identify immune-related lncRNAs
combined with the immune dataset. In terms of the accuracy of
the cancer diagnosis model, the combination of two biomarkers is
better than a single gene, therefore we screened immune-related
lncRNA pairs through iteration and pairing, and constructed
a new expression matrix based on the relative differences in
the expression levels within the combination to eliminate huge
differences in expression (Hong et al., 2020; Lv et al., 2020). Based
on the expression matrix of the immune-related lncRNA pairs,
we determined 2 molecular subtypes using the NMF algorithm.
It was found that C1 and C2 had significant differences in overall
survival and PFS. Subsequently, the molecular level differences
between subtypes were further explored. The TMB proved to
have no significant difference between the groups, and the
mutation rate of TP53 in the CI subtype was significantly higher
than that in the C2 subtype. TP53 is a thoroughly studied tumor
suppressor gene, whose translation product P53 can activate
target genes to resist cell stress and mediate cell growth arrest and

apoptosis (Levy et al., 1993; Kanda et al., 2013; Ormanns et al.,
2014). Elevated TP53 mutations may cause the loss of P53 protein
function and lead to further uncontrollable tumor proliferation,
which may be partly the reason for the poor prognosis of C1.

It was further established by the analysis of the immune
characteristics between subtypes that the infiltration of CTLs
in the C1 subtype was reduced, while the proportion of
resting NK cells increased, suggesting that activated NK
cells were reduced and the anti-tumor effect of non-specific
immunity was suppressed. Zhang et al. (2017) reported that
the immunosuppressive state of a tumor microenvironment
can cause NK cell dysfunction, which corresponds to poor
prognostic outcomes. Previous evidence has indicated that M1
phase macrophages have anti-tumor effects, whereas M2 phase
macrophages have tumor-promoting effects (Chen Y. et al.,
2019; Vitale et al., 2019). Interestingly, our results showed
that there were more non-polarized M0-phase macrophages in
C1 subtypes than in C2 subtypes. Meanwhile, there was no
significant difference in M1 and M2 phase macrophages between

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 July 2021 | Volume 9 | Article 698296

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-698296 July 1, 2021 Time: 16:14 # 12

Zhang et al. 3-lncRNA Pairs PAAD Prognostic Model

subtypes. Based on this finding, it can be inferred that the
C1 subtype may inhibit the polarization of M0 macrophages
through a certain mechanism to exert an effect, which speculation
requires more rigorous experiments to validate. In addition,
GSEA results suggest that some tumor-related pathways, such
as P53 signaling pathway, DNA replication, cell cycle, and base
excision repair, are enriched in the C1 subtype, while fatty acid
metabolism, primary bile acid biosynthesis, renin, angiotensin,
methionine and tyrosine metabolism are enriched in the C2
subtype, indicating that the poor prognosis of C1 subtype is
related to the activation of tumor-related pathways and the
inhibition of normal metabolism.

Subsequently, based on univariate and multivariate
COX analysis, we constructed a prognostic model
of the selected 3 immune-related lncRNA pairs
(AC244035.1_vs._AC063926.1, AC066612.1_vs._AC090124.1,
and AC244035.1_vs._LINC01885). After rigorous verification,
the model proved to have a stable and independent prognostic
prediction performance, and its long-term prognosis AUC
reached 0.77. The RiskScore was found to be significantly related
to molecular subtype and M stage. The functional enrichment
analysis of mRNAs related to these 3 lncRNA pairs revealed
that they are mainly involved in ion transport pathways. There
is evidence that K+ channels (Kv1.3 channels) accumulate
specifically in the immune synapse between CTL and tumor cells
to regulate the cell killing effect of CTL and NK cells (Panyi
et al., 2004; Hu et al., 2013). Blocking this channel can enhance
the tumor killing effect. The Ca2+-activated K+ channels play a
key role in the development and metastasis of tumors (Khaitan
et al., 2009; Hanahan and Weinberg, 2011; Schwab et al., 2012).
We have reason to believe that the proposed three immune-
related lncRNA pairs may regulate the anti-tumor effect of
immune cells and the process of tumor invasion through ion
channel-related pathways, therefore may become new targets for
tumor treatment.

CONCLUSION

In this study, we identified new PAAD molecular subtypes
with significant prognostic differences based on immune-related
lncRNA pairs. The detected prognostic differences between
subtypes may be due to the differential infiltration of CTL and NK
cells, and the activation of tumor-related pathways. In addition,
the prognostic model based on the 3 identified immune-related
lncRNA pair signatures was proved to have an effective and stable

prognostic predictive effect on PAAD. The proposed 3 lncRNA
pairs may participate in the anti-tumor effect of immune cells and
tumor migration through ion channel pathways, and are expected
to become new tumor treatment targets.
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