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Abstract

Drosophila atonal (ato) is required for the specification of founding R8 photoreceptors during

retinal development. ato is regulated via dual eye-specific enhancers; ato-3’ is subject to ini-

tial induction whereas 5’-ato facilitates Notch-mediated autoregulation. Notch is further uti-

lized to induce bHLH repressors of the E(spl) locus to restrict Ato from its initial broad

expression to individual cells. Although Notch operates in two, distinct phases, it has

remained unclear how the two phases maintain independence from one another. The differ-

ence in these two phases has attributed to the hypothesized delayed expression of E(spl).

However, immunofluorescence data indicate that E(spl) are expressed during early Ato pat-

terning, suggesting a more sophisticated underlying mechanism. To probe this mechanism,

we provide evidence that although E(spl) exert no influence on ato-3’, E(spl) repress 5’-ato

and deletion of the E(spl) locus elicits precocious 5’-ato activity. Thus, E(spl) imposes a

delay to the timing in which Ato initiates autoregulation. We next sought to understand this

finding in the context of E(spl)D, which encodes a dysregulated variant of E(spl)M8 that per-

turbs R8 patterning, though, as previously reported, only in conjunction with the mutant

receptor Nspl. We established a genetic interaction between E(spl)D and roughened eye

(roe), a known modulator of Notch signaling in retinogenesis. This link further suggests a

dosage-dependence between E(spl) and the proneural activators Ato and Sens, as indi-

cated via interaction assays in which E(spl)D renders aberrant R8 patterning in conjunction

with reduced proneural dosage. In total, the biphasicity of Notch signaling relies, to some

degree, on the post-translational regulation of individual E(spl) members and, importantly,

that post-translational regulation is likely necessary to modulate the level of E(spl) activity

throughout the progression of Ato expression.

Introduction

The Drosophila retina is a hexagonal array of approximately 750 ommatidia. Each ommatid-

ium houses eight photoreceptors, of which, the R8 is the first photoreceptor to be specified. All

other photoreceptors are recruited to R8s through inductive signaling. Thus, the overall struc-

ture of the eye is dependent upon the placement of R8s, which are specified at the lagging edge

of the morphogenetic furrow (MF). The MF is a dorsoventral groove that forms in the retinal
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anlage and it advances from posterior to anterior, starting in the late-second larval instar. R8s

are specified through the proneural functions of Atonal (Ato), Senseless (Sens) and the Notch

pathway [1–4].

Ato expression is dependent on two enhancers located at opposite termini of the ato tran-

scription unit (5’-ato and ato-3’; [5]). Ato is first induced in a broad dorsoventral stripe

through the action of Hedgehog (Hh) signaling, via ato-3’ [6]. Once expressed, Ato elicits

Notch signaling [7]. Notch, in turn, facilitates activation of 5’-ato, which expresses Ato in clus-

ters of 10–20 cells termed intermediate groups (IGs; [5]). Subsequently, Notch modulates the

transcriptional regulator Su(H), inducing repressors of the E(spl) locus, which consequently

extinguish ato expression [8, 9]. Notch’s role in the MF, first as an activator of Ato, and later as

a repressor, has been termed biphasic. The mechanism of delay between these two roles has

not yet been fully elucidated.

The E(spl) locus encodes seven bHLH-Orange repressors that bear C-terminal WRPW

motifs that facilitate interaction with the corepressor Groucho (Gro, [10, 11]). Genes of this

locus are expressed in various subsets throughout a variety of development contexts [8, 12–

14]. Additionally, repressors of this locus contain divergent C-terminal regulatory domains

(CtDs). Several E(spl) members bear putative sites for post-translational modification by pro-

tein kinases that reside in their CtDs [15–17]. The most well-studied example of these, E(spl)
m8, referred to henceforth as m8, encodes a phosphorylation consensus motif for the Ser/Thr

kinase CK2 [18]. CK2-phosphomimetic M8 is a hyperactive repressor that, when force-

expressed, interrupts Ato and Sens-regulated R8 specification. In the native state, M8-CtD

occludes interaction between M8 and Ato, though such auto-inhibition is relieved upon phos-

phorylation [18–20]. E(spl)D, a dominant m8 allele, encodes a truncated protein product, M8�

[21, 22] that lacks the CtD, bypassing the role of phospho-regulation. Due to the loss of its C-

terminal WRPW motif, E(spl)D cannot bind Gro. Despite this, E(spl)D elicits retinal patterning

defects, though only in combination with the recessive split allele of Notch (Nspl). Nspl disrupts

eye patterning through a reduction in the number of ommatidia and a perturbation in the dis-

tribution of photoreceptor types within ommatidia [23].

Attempts to recapitulate the Nspl;E(spl)D interaction with the GAL4-UAS binary force-

expression system have revealed somewhat of a paradox. In Nspl flies, forced-expression of

M8� recapitulates the Nspl;E(spl)D phenotype, but only when M8� is expressed early in the MF,

prior to the onset of 5’-ato activity [20]. However, ato is not (normally) repressed in WT flies

until after robust 5’-ato activity has been established and at a time where CK2-phosphomi-

metic M8 has been demonstrated to function [18]. This raises two points of interest. First, E

(spl) repressors may be expressed earlier in the eye development program than previously con-

sidered; second, that the peculiarities of the Nspl background are poorly understood regarding

the mechanism as to how E(spl)D exacerbates the spl mutant phenotype.

To address the first point, evidence suggests that genes of the E(spl) locus are likely co-

expressed with Ato in select cells of the MF before IG formation [9]. The co-expression of a

repressor and its target suggests that either the repressor may be inactive for a time or, alter-

nately, that the repressor does not simultaneously abrogate activity on all of its target’s enhanc-

ers. In this work, we provide evidence in favor of the latter possibility—that E(spl) prevent

early activation of 5’-ato while having no discernable effect on ato-3’ activity.

To address why E(spl)D perturbs eye patterning only in combination with Nspl, we turned to

genetic interaction assays. Studies of Nspl reveal WT Ato and Sens within the MF [23]. Pattern-

ing aberrations do not become apparent until after passage of the MF, where R8s become lost

[23]. Thus, Nspl, in isolation, does not readily hinder the earliest stages of retinal patterning.

However, modifiers of Nspl (aside from E(spl)D) impart insight into the nature of E(spl)D hyper-

activity. A screen for modifiers of the eye phenotype of Nspl revealed the zinc finger repressor
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roughened eye (roe) as a strong phenotypic enhancer [24]. Subsequent analyses demonstrate

that Roe is required for activation of 5’-ato [25, 26]. Roe expression is stimulated by Notch sig-

naling within the MF and, in turn, Roe binds near Su(H)-responsive enhancer elements to fur-

ther regulate E(spl) gene expression. Thus, Roe presumably attenuates the expression of E(spl)

repressors in the MF, facilitating aspects of retinal patterning [26].

Ato must commit to autoregulation via the 5’-ato enhancer to ensure robust patterning of

R8s. In this work, we have explored a dynamic role for E(spl) in its repression of Ato autoregu-

lation. We provide genetic evidence that E(spl) repressors antagonize Ato function both before

and after IG formation. Thus, much of IG formation is driven through ato-3’ activity, further

indicating that the ato-3’ enhancer is active until IGs fully mature. Importantly, our analysis

reveals that Notch signaling within the MF is less biphasic than it is bimodal, with both the

activational and repressive pathways operating in parallel. In the MF, Notch directs simulta-

neous activation of both 5’-ato and E(spl) repressors. E(spl) antagonism of Ato initially pre-

vents 5’-ato activity. Subsequently, E(spl) are lost from cells to facilitate IG maturation, in a

process that requires Roe [26]. Once mature, IGs are subject to a restoration of E(spl). Ato,

which is at this time solely dependent upon 5’-ato, is repressed by E(spl). We propose that

phospho-activation of select E(spl) repressors functions to allow greater repressive capacity

after IG formation, when Ato is expressed at its highest levels in the eye.

Results

E(spl) expression evolves with changing Ato pattern

Ato expression is subdivided into four stages (Fig 1). Stage-1 defines the initial induction in a

broad dorsoventral band (Fig 1A). Stage-2 corresponds to the formation of IGs, which occurs

contiguously with stage-1 and feature high-level Ato expression (Fig 1A, 1C–1H arrows).

Throughout stage-2, Ato expression progressively increases within IGs (Fig 1D–1H, arrows).

Stage-3 is reached once IGs become discontiguous from stage-2 IGs (Fig 1A, 1C–1I blue

arrowhead); these cells also label for Sens, which initiates midway through IG maturation (Fig

1D–1I, arrows). Stage-4 corresponds to isolated, individual R8s (Fig 1A, 1C–1H at right). In

addition to anteroposterior staging of Ato expression, IGs are also phased along the dorsoven-

tral axis. Thus, the establishment of each IG is dorsoventrally separated by approximately 15

min. [27]. As such, a range of ato stages can be observed within a given sample (Fig 1A, 1C–

1M).

Biphasicity of Notch during R8 specification can be summarized as the dual activation and

repression of Ato (Fig 1B). E(spl), the downstream effectors of Notch, repress Ato, but it has

not been clarified whether such repression affects one or both ato enhancers (Fig 1B, grey

lines). Due to co-dependency of Ato and Notch signaling, Ato patterning can be better under-

stood with respect to the expression of E(spl) repressors. mAb323, an antibody that recognizes

several E(spl) bHLHs (mδ, mβ, mγ, m3 and, to a lesser extent, m8), reveals that E(spl) expres-

sion evolves complementary to each stage of Ato patterning [8]. At stage-1, E(spl) is undetect-

able due to the absence of Notch signaling at this time [7, 9]. E(spl) expression changes

throughout stage-2, allowing stage-2 to be subdivided into two distinct patterns, early and late

(Fig 1K–1M). Early stage-2 clusters feature both Ato and E(spl) (Fig 1K–1M, white arrow-

heads) whereas late stage-2 clusters are indicated by the absence of E(spl) (Fig 1K–1M, red

arrowhead). By stage-3, E(spl) fully engulfs Ato-labeled clusters, which are at such point

reduced to fewer cells than seen in stage 2 (Fig 1D–1J, blue arrowhead). Similarly, stage-4 R8s

are fully surrounded by E(spl) labeling (Fig 1C–1M). Thus, IG maturation is marked by the

progressive enhancement of Ato with the concomitant loss of E(spl); and R8 resolution is

accompanied by the return of E(spl).

Activity of E(spl)D during R8 specification
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Fig 1. Ato colocalizes with E(spl) during early stages of R8 specification. (A) Ato expression progresses

through four stages, starting at lower levels (light red) in a dorsoventral band and later is upregulated (dark

red) within IGs. The latter stages are marked by repression of Ato from all cells of each IG with the exception

of the R8. Here and throughout all figures, anterior is left. (B) Although Notch signaling is required to induce

expression of both 5’-ato and E(spl) repressors (inside hatching) the mechanism that separates these two

activities remains unclear. (C-M) Immunostaining of WT eye-antennal discs illustrates that E(spl) (magenta)

are co-expressed with Ato (cyan) during early stage-2 but not Sens (grey) in cells preceding IG formation.

Yellow arrowhead denotes position of MF; scale bars = 10μm. Genotype in panels C-M is wild type (w1118).

https://doi.org/10.1371/journal.pone.0186439.g001
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E(spl) and Ato colocalize during early IG formation

Distinct IGs are first identified during early stage-2 Ato. Previous efforts using mAb323 and

mAb174 (labels only E(spl)mδ) demonstrate that E(spl) co-expresses with Ato to the anterior

of IGs [8, 9]. Due to improvements in microscopy technologies, a greater detail of Ato pattern-

ing can now be observed. This period of co-expression occurs as Ato is being patterned into

early stage-2 IGs. This corresponds to a time when IGs are being formed, but occurs prior to

their maturation into large clusters that most strongly express Ato (Fig 1). A combination of in

vitro and forced-expression evidence suggests that E(spl) represses Ato function, including

autoregulation [9, 28–30]. This allows the possibility that E(spl) does not globally repress Ato,

as ato-3’ is activated independently of Ato and Notch signaling.

In addition to its role in autoregulation, Ato is required for the expression of Sens [4]. Sens

promotes the specification and maintenance of the R8 fate [3, 4]. Although previous reports

indicate that Sens is first expressed within stage-3 clusters, our analysis indicates Sens is first

induced in mature stage-2 IGs ([4, 31], Fig 1B, 1D and 1J). Sens labeling is not observed until

E(spl) is fully lost from the maturing IG. This suggests that during early IG formation, E(spl)

may be antagonizing Ato function (Fig 1B–1H, red arrow). Such a role is corroborated by the

early upregulation of Sens in Su(H)mutant clones, from which E(spl) expression is lost [32].

E(spl) delays activation of the 5’-ato enhancer

5’-ato enhancer activity relies upon Ato function [5]. Thus, we sought to assess the regulatory

effect that E(spl) exert on ato (Fig 2). As previously reported, Ato is greatly expanded in retinal

tissue lacking the E(spl) locus, using the E(spl)-deficiency E(spl)b32.2 (Fig 2A–2D, white arrows;

[32]). To further explore this phenotype, we examined the effect of E(spl)mutants on reporters

for both ato-3’ and 5’-ato. ato-3’ reporter expression initiates in a broad dorsoventral stripe

and tapers toward the posterior margin of the eye disc (Fig 2E). Report from ato-3’ appears

unaffected in the MF of E(spl)mutant tissue (Fig 2F–2H, white arrows in 2H). However, 5’-ato
is greatly perturbed with respect to its WT report, exhibiting both broader expression that is

not confined to IGs and an earlier report that initiates further anterior than in WT tissue (Fig

2I–2L, white arrows in 2L). This result suggests that E(spl) specifically and exclusively represses

Ato through 5’-ato, disrupting only autoregulation.

Nspl enhancement by E(spl)D is only moderately dosage dependent

The finding that E(spl) repress ato prior to IG formation may initially appear to contradict

prior works that demonstrate that some E(spl) repressors require post-translational modifica-

tion to repress Ato [15]. Of Drosophila’s seven E(spl) bHLHs, five are expressed in the MF:

Mδ, Mβ, Mγ, M7 and M8 [12, 33]. Of these, Mγ, M7 and M8 are subject to C-terminal phos-

phorylation by protein kinase CK2; whereas Mδ and Mβ lack any apparent motif that is sug-

gestive of C-terminal modification ([17]; Jozwick and Bidwai, unpublished). However, our

data do not rule out the possibility that some repressors may be constitutively active and

immediately repress Ato, whereas others are delayed in their activity.

To better assess the role of phospho-regulation of E(spl) activity, we turned to E(spl)D,

whose protein product lacks an auto-inhibitory domain. The adult eyes of E(spl)D flies are

well-patterned and free of major aberration (see below). Having revealed that E(spl) represses

5’-ato, we next tested the effect of E(spl)D toward the same. Consistent with its WT adult eye

phenotype, cells that are homozygous for E(spl)D display no notable change in 5’-ato activity

when compared to neighboring heterozygous and WT tissue (Fig 3A–3C).

E(spl)D was originally identified as a dominant modifier of the recessive allele Nspl [21]. Nspl

flies bear mutant chaetae and, when homo- or hemizygous, severely reduced eyefields with
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Fig 2. E(spl) prevents precocious 5’-ato activation. Mitotic clones were generated using the FLP-FRT

recombination system [57]. WT and heterozygous tissue is marked by GFP (magenta), mutant clones are

marked by the absence of GFP. (A-D) As compared to WT eye-antennal discs (A), E(spl) mutant tissue

features persistent, unpatterned Ato (cyan) expression. (E-H) ato-3’–lacZ enhancer reports in a dorsoventral

band that initiates within the MF (E). Loss of E(spl) fails to elicit any notable effect on ato-3’ expression (cyan).

(I-L) 5-‘ato-lacZ report mimics IG and R8 patterning of Ato, with the exception that reporter is observed in R8s

throughout the posterior of the tissue (I). E(spl) mutants feature reporter signal (cyan) that is stronger than in

WT and is observed anterior of WT or heterozygous tissues. Yellow arrowhead denotes position of MF; scale

bars = 20μm. Genotypes: (A) w1118, (B-D) FRT82B Df(3R)E(spl)b32.2 P{gro+}/FRT82B ubiGFP eyFLP, (E) P

{w+mC ato3’F:5.8}/+, (F-H) P{w+mC ato3’F:5.8/+; FRT82B Df(3R)E(spl)b32.2 P{gro+}/FRT82B ubiGFP eyFLP,

(I) P{w+mC ato5’F:9.3}/+, (J-L) P{w+mC ato5’F:9.3}/+, FRT82B Df(3R)E(spl)b32.2 P{gro+}/FRT82B ubiGFP

eyFLP.

https://doi.org/10.1371/journal.pone.0186439.g002
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Fig 3. Dosage dependence of the Nspl;E(spl)D interaction. (A-C) 5’-ato-lacZ report (cyan) is unchanged

when compared between WT and E(spl)D heterozygous tissue (magenta) to E(spl)D homozygous tissue

(lacking magenta). Yellow arrowhead denotes position of MF; scale bars = 20μm. (D) Adult facet counts for

each genotype are as indicated; n�10, asterisks denote *p-value<0.001). (E-J) Representative light

micrographs of adult eyes from each genotype shown. The Nspl; E(spl)D interaction displays greater sensitivity

to Nspl dosage than to E(spl) dosage. Scale bars = 100μm. Genotypes: (A-C) FRT82B e* E(spl)D; FRT82B

ubiGFP eyFLP, (F-K) as shown.

https://doi.org/10.1371/journal.pone.0186439.g003
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aberrant retinal patterning (Fig 3F; [34]). To assess the contributions of both Nspl and E(spl)D

to this classical phenotype, we observed the effects of varied dosage. Consistent with a previous

report, modulation of the defect, ranked from weakest (most similar to WT) to strongest is as

follows: Nspl/+< Nspl/+;E(spl)D/+ < Nspl/+;E(spl)D< Nspl;E(spl)D/+ (Fig 3E–3H; [21]). As with

Nspl males, which are hemizygous, homozygous females exhibit a severe, full reduction of the

eye when in combination with only copy of E(spl)D, with few remaining ommatidia (Fig 3H).

However, heterozygous females display a more limited dosage dependence on E(spl)D (Fig

3G–3I). In a Nspl/+ background, ommatidial numbers (eye size) halve upon introduction of

one copy of E(spl)D (Nspl/+ compared to Nspl/+;E(spl)D/+ (Fig 3D, 3E and 3G)). Ommatidial

count halves again with the introduction of a second E(spl)D chromosome (Fig 3D and 3I).

This genetic relationship between Nspl and E(spl)D indicates that Nspl contributes more greatly

to the Nspl;E(spl)D interaction than does E(spl)D. Thus, we reason that further investigation of

genetic modifiers of Nspl may provide further understanding of the nature of the Nspl/+;E
(spl)D/+ interaction, potentially providing insight into the mechanism of E(spl)D hyperactivity

that has, thus far, only been observed in combination with Nspl.

E(spl)D repression is independent of E(spl)WT dosage

Our analysis also indicates that m8, the gene primarily affected by the E(spl)D lesion, is capable

of repressing Ato in the absence of its Gro-binding WT allele. Increased E(spl)D dosage further

enhances the Nspl eye defect (Fig 3D, 3E, 3G and 3I). Despite strong repression in Nspl/+;E
(spl)D flies, it is possible that M8� is simply eliciting hyperactivity from other E(spl) members

that maintain their ability to bind Gro. To assess this possibility, we introduced the E(spl) defi-

ciency chromosome, E(spl)b32.2 (with Gro rescue construct) into Nspl/+;E(spl)D/+ flies (Fig 3J).

Halved dosage of the entire E(spl) locus elicits no modulation of the eye defect in Nspl/+;E
(spl)D/+ flies (Fig 3D, 3G and 3J). Thus, E(spl)D is acting independently of WT M8 within the

MF. Furthermore, this result reaffirms that E(spl)D functions independently of Gro.

roe exacerbates MF mutant phenotypes

Nspl must be homozygous or hemizygous to completely ablate ommatidial development when

in combination with E(spl)D. Thus, the mutant receptor is likely affecting the Notch pathway

upstream of E(spl) to create a genetic environment that is sensitized to the specialized nature of

E(spl)D. In a screen for modifiers of Nspl, roe was identified as a strong enhancer of the spl eye

phenotype [24]. roe encodes a Zn-finger repressor that is expressed in the MF [35]. roe is

required for ato autoregulation, as 5’-ato lacks any activity in the absence of roe, though ato-3’
is unaffected [25]. Molecularly, Roe functions downstream of Notch signaling to suppress the

expression of E(spl) genes [26].

To further assess roe’s role in the MF, we quantified the ability of roe to modify Nspl and

other MF-perturbed mutants (Fig 4). In agreement with previous reports, Nspl interacts

strongly with roe, though only when Nspl is homozygous or hemizygous (Fig 4A–4C and 4J).

DERElp heterozygotes feature a mildly reduced eye with rough patterning (Fig 4D; [36]).

Molecularly, DERElp precociously represses ato and this repression is suppressed via reduced

Notch signaling [28]. Ato, as affected by DERElp, lacks the formation of prominent stage-2 IGs,

implying perturbed ato autoregulation [28]. As with Nspl, DERElp in conjunction with roe,
exhibited a reduction in ommatidial number (Fig 4E, 4F and 4J). RoD is a dominant allele of

rough (ro), which encodes a homeorepressor of ato that is normally expressed posterior to the

MF [27, 37, 38]. RoD eyes feature a distinct anterior cleft which results from failed MF gene

expression and a resultant breakdown of morphogen production (Fig 4G; [38, 39]). The RoD

mutation affects the timing of Ro expression though the protein product remains unchanged

Activity of E(spl)D during R8 specification
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Fig 4. Eye mutants feature similar sensitivity to roe and E(spl) gain-of-function. (A-C, and J) Nspl adult

eyes are sensitive to roe. Similarly, DERElp and RoD eyes feature enhanced reduction in combination with

either allele both alleles of roe that were tested (D-J). (J) Eye size was quantified (facet counts) for genotypes

shown in A-I; n�10, asterisks denote *p<0.001. Additionally, all three mutant backgrounds (Nspl, DERElp,

RoD) were assayed for sensitivity to E(spl) gain-of-function via GAL4-driven E(spl)mδ (K-M). Qualitatively, all

three backgrounds featured eyes that were further reduced in size. Scale bars = 100μm. Genotypes: (A,B,C,

K) yw Nspl is labeled as Nspl, all others as shown.

https://doi.org/10.1371/journal.pone.0186439.g004
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[38]. Early expression of Ro, from either a heterologous promoter or the RoD mutation, elicits

Ato defects [27, 38]. In combination with RoD, roe elicits reduction in the number of omma-

tidia (Fig 4H, 4I and 4J). These data suggest that in each of the backgrounds assayed, roe con-

tributes to further disruption of an already deficient ato autoregulation.

Ectopic E(spl) also exacerbates MF mutants

Of the three aforementioned MF mutants (Nspl, DERElp, RoD), E(spl)D interacts with only Nspl.
However, force-expression of Mδ using the Gal4-UAS binary expression system exacerbates

eye defects in all three mutant backgrounds (Fig 4K–4M), serving to further correlate sensitiv-

ity of these phenotypes to both E(spl) gain-of-function and roe loss-of-function. Forced expres-

sion of Mδ with the hH10 GAL4 driver elicits loss of both R8s and adult ommatidia [29]. In our

hands, expression of a single copy of UAS-mδ has no effect on the adult eye (Majot & Bidwai,

unpublished), whereas expression of two copies elicits a loss of ommatidia and an anterior

divot that is similar to the furrow-stop phenotype, as previously described (Fig 5G; [39]). This

phenotype presented the opportunity to assay sensitivity of the MF mutants to increased Mδ
On the basis of qualitative comparison, both Nspl and RoD males feature markedly smaller eyes

in the presence of one copy of UAS-mδ (Fig 4K and 4M), whereas DERElp is sensitive to two

copies of the UAS-mδ transgene (Fig 4L).

roe interacts with E(spl)D

As previously shown, roe represses E(spl)within the MF [26]. We next aimed to explore a

direct genetic relationship between roe and E(spl)D. As expected, roe, E(spl)D transheterozy-

gotes yielded perturbed and reduced adult eyes (Fig 5A, 5C and 5I). Ommatidial patterning

was disrupted, with some ommatidia surrounded by only five ommatidia (Fig 5A’ and 5C’,

white arrows) and others surrounded by seven or more (Fig 5A’, blue arrow). Additionally,

increasing the dosage of E(spl)D further enhances the eye defects (Fig 5B, 5D and 5I). To fur-

ther assess this interaction, E(spl)D was introduced into a homozygous roe mutant background.

A single copy of E(spl)D strongly enhances the roe mutant eye, vastly reducing the eye field and

number of ommatidia (Fig 5E, 5F and 5I). Lastly, we asked whether roe loss-of-function could

enhance an E(spl) force-expression phenotype. Force-expression of mδwith the hH10 GAL4

driver elicits a reduced eye that frequently shows an anterior cleft (Fig 5G, [29]). Reduced roe
dosage enhances the eye defect resultant of force-expressed mδ (Fig 5G–5I). These data are

consistent with a mechanism in which roe transcriptionally opposes E(spl) in the MF, as pro-

posed by del Alamo and Mlodzik [26]. Our results further suggest the possibility that Roe

excludes E(spl) from IGs, to permit Ato autoregulation.

E(spl)D activity is dependent upon proneural dosage

Previous attempts to delineate E(spl) function in isolation of Nspl have made use of forced-

expression approaches [18, 20, 22, 28, 29, 40, 41]. However, study of E(spl)D has remained

limited to its effects in the Nspl background [12, 20, 22]. The interaction of Nspl/+;E(spl)D/+ is

enhanced by the loss of the proneural genes ato, da and sens, and the M8 modifier wdb [12,

16]. However, none of these modifiers have been tested for modulation of E(spl)D in an oth-

erwise N+ background, partly due to the observation that E(spl)D homozygotes elicit no

major defect in eye size or patterning quality [21]. Furthermore, research into the aberrant

activity of E(spl)D was rendered null by the tacit possibility that Nspl may simply elicit a

Notch signaling response in the presumptive R8. Interestingly, ato loss-of-function, and sep-

arately, sens loss-of-function, when transheterozygous with E(spl)D each resulted in faint

ommatidial patterning defects within the mid-posterior region of the eye field (Majot and
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Bidwai, unpublished). To further probe these initial findings, we observed both alleles in

combination with homozygous E(spl)D. In both cases, the eye patterning defects became

enhanced, decreasing the numbers of ommatidia and perturbing the patterning of the entire

eye field (Fig 6A, 6C, 6D and 6I).

Fig 5. E(spl)D genetically interacts with roe. (A) roern16/E(spl)D transheterozygotes feature reduced and

irregularly patterned eyes. (B) Similarly, roern20 interacts with E(spl)D. (C-D) The eyes of roe heterozygotes are

further reduced when in combination with homozygous E(spl)D. (E-F) E(spl)D severely enhances the eye defect of

roern16 homozygotes. (G-H) roern16 elicits further reduction of facet count in animals that feature force-expression of

two copies of UAS-mδ. (I) Eye size was quantified (facet counts); n�10, asterisks denote *p<0.001. Scale

bars = 50μm. Genotypes are as shown.

https://doi.org/10.1371/journal.pone.0186439.g005
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Fig 6. E(spl)D compromises R8 specification in proneural-deficient backgrounds. (A-B) Neither E(spl)D

homozygotes nor sens/ato transheterozygotes feature adult eye defects. (C-D) Both ato1 and sensE2 elicit

reduced eyes in combination with homozygous E(spl)D. (E-F) sensE2 and ato1 eyes display dosage-

dependence to E(spl)D. (G-H) Larval retinae of the same genotype. Earlier in retinogenesis, when the MF has

traversed less of the eye-antennal disc, Ato expression (cyan) is stronger with more apparent R8s (G’). As the

MF progresses, individuated Ato-positive R8s become sparser (H’). Elav (magenta) immunostaining reveals

Activity of E(spl)D during R8 specification
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The combination of sens and ato mutants with E(spl)D resulted in a similar exacerbation of

patterning defects and ommatidial loss (Fig 6B, 6E and 6I). The severity of eye defect was

dependent upon E(spl)D dosage, as E(spl)D, when homozygous in this background, reduced the

ommatidial count by over 35% (Fig 6F and 6I). To assess whether these defects occur from

failed R8 formation, R8 loss or perhaps some other perturbation, we labeled eye discs of larvae

corresponding to the mutants shown in Fig 6F for Ato and the neural marker Elav (Fig 4C). As

with adult eyes, larval retinal patterning was amiss, in places lacking emergent R8s and omma-

tidia akin to that observed in Nspl (Fig 6G and 6H, [23]). Older discs exhibit a “cascade” effect

such that as the MF progresses fewer R8s are specified, as indicated by the routine absence of

stage-4 Ato (Fig 6G’, arrows, as compared to Fig 6H’). This effect may result from the com-

pounding of failed neurogenesis during early retinogenesis. Neuronal loss elicits a correspond-

ing loss of morphogens. The loss of morphogens further decreases the induction of proneural

genes within the MF as eye development progresses. In agreement with such a scenario, more

mature discs feature a more significant absence of neurons (Fig 6H, bracket, compared to Fig

6G’ arrows).

Discussion

An elucidation of the biphasic Notch signaling mechanism

The dynamic expression of Ato ensures proper, robust R8 specification. Retinal patterning is

dependent upon employment of dual ato enhancers, with the Notch pathway incorporated

into both the induction and repression of 5’-ato [5, 9]. However, Notch regulates 5’-ato
through a bimodal mechanism wherein both Su(H)-independent and Su(H)-dependent

responses initiate simultaneously rather than through a staggered response [29]. Previously,

the temporal delay between the Su(H)-independent and -dependent processes had raised the

question of how Notch signaling might function at this time; that perhaps Notch is engaged

twice over a short span of time, or that the Su(H)-dependent response might require that a

greater threshold signal intensity be achieved.

Data are not consistent with either previously proposed scenario. As indicated by E(spl)

expression data, E(spl) bHLHs can be detected prior to cells’ commitment to autoregulation

(Figs 1 and 7). Loss of E(spl) at this time results in the precocious activation of 5’-ato and sens,
both of which are dependent upon Ato function (Fig 2; [29]). Thus, in WT flies, concurrent

use of both modes of Notch signaling (Su(H)-dependent and -independent) allows E(spl) to

repress autoregulation (Fig 7A and 7B, early stage-2). During early stage-2, Ato expression is

solely dependent upon ato-3’ activity (Fig 7A and 7B, early stage-2). The transition from early

to late stage-2 is coincident with IG maturation, during which E(spl) is lost and Ato is induced

from both its 3’ and 5’ enhancers.

A better understanding of E(spl)D

With this mechanism as a guide, we next sought to better understand the hypermorphic

nature of E(spl)D. As demonstrated, E(spl) functions during early IG formation to suppress

autoregulation. However, M8 is not constitutively active but requires phospho-activation by

CK2 and, putatively, the DER-signal effector MAPK [17, 18, 41]. Interestingly, MAPK is

active during Ato stages-3 and -4, as Ato is resolved to R8s, but not during early stage-2 [42].

defects in neural patterning. (I) Eye size was quantified (facet counts); n�13, asterisks denote *p<0.005.

Yellow arrowhead denotes position of MF; scale bars in (A-F) = 100μm and in (G,H) = 20μm. Genotypes are

as shown.

https://doi.org/10.1371/journal.pone.0186439.g006

Activity of E(spl)D during R8 specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0186439 October 16, 2017 13 / 21

https://doi.org/10.1371/journal.pone.0186439.g006
https://doi.org/10.1371/journal.pone.0186439


This strongly suggests that M8 is specifically activated during stages-3 and -4. Unlike its full-

length counterpart, M8� is constitutively active from the loss of its auto-inhibitory domain

[18–20]. Despite this gain-of-function, E(spl)D elicits no major patterning defect in an other-

wise WT background—not at the level of the adult eye nor during Ato patterning. Thus,

evidence from this and many prior investigations reveals that E(spl)D only elicits retinal pat-

terning defects in backgrounds with compromised proneural activity and potentially dis-

rupted Ato autoregulation.

roe alters E(spl) expression

Several factors help to elucidate the mechanism of interaction between roe and E(spl)D. As pre-

viously investigated, Roe is a critical regulator of IG formation, temporarily blocking expres-

sion from at least some Su(H)-responsive genes in the midst of R8 specification [25, 26]. In

addition to this, E(spl)D is a hypermorph that directly antagonizes Ato [12, 18]. We propose

that in combination, roe and E(spl)D create a set of conditions that 1) provide insight into the

timing at which the two defined ato enhancers are active, and 2) are suggestive of MAPK

involvement. Data support a mechanism in which E(spl) repress Ato via only 5’-ato ([30]; Fig

2). Thus, E(spl) can only extinguish Ato where it is solely dependent on 5’-ato, as illustrated by

the colocalization of Ato and E(spl) during early stage-2 (Fig 7). IG maturation is attributable

to both the 3’ and 5’ enhancers such that by the end of stage-2, ato-3’ activity is negligible.

Fig 7. The role of E(spl) in R8 specification. (A) At left, Ato patterning as shown in Fig 1. At right, Ato patterning overlaid with corresponding E(spl)

expression. E(spl) expression initiates as evidenced by result that loss of E(spl) at this stage permits precocious 5’-ato activity. By late stage-2, E(spl) is

not present, and is not again observed to colocalize with Ato. (B) Stage 1: Hh drives stage-1 Ato through ato-3’. Early Stage 2: Ato, now present, drives

Notch signaling, which induces both 5’-ato and E(spl). E(spl) prevents immediate 5’-ato activity. Late Stage-2: Roe specifically downregulates Su(H)-

elicited genes, which include E(spl). Ato begins to accumulate. Stages 3–4: Ato elicits MAPK activation. MAPK attenuates the Hh response, activates

E(spl)M8, and, although unexplored, may affect Roe activity and/or expression.

https://doi.org/10.1371/journal.pone.0186439.g007
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However, roe, sensitizes the eye to E(spl) by failing to block Su(H) activity within IGs (Fig 7B).

In this scenario, E(spl) are able to perturb proneural function as soon as ato-3’ activity

decreases. Therefore, E(spl)D enables a more potent exploitation of this phenomenon. This fur-

ther suggests that the modifiers of E(spl) function also have critical roles during IG maturation.

Notably, as the result of increasing Ato, MAPK becomes increasingly more active in maturing

IGs [42] and enables M8 function [41]. E(spl)D bypasses this mechanism in which high-level

Ato triggers its own repression through the establishment of sufficient DER-MAPK signaling.

roe merely expedites this process.

DER-MAPK represses Ato in multiple ways

It remains unclear which signals are responsible for regulating the expression and function of

roe. Roe expression is promoted by Notch signaling, but low-level expression can be observed

in Notch mutant clones when labeled for Roe, indicating that other forces are at play [26].

Roe is active only after E(spl) has initially been expressed in the MF [26]. Additionally, DER
mutants are sensitized to roe mutation (Fig 4E and 4F). Functionally, Roe appears to cease its

regulation of E(spl) once IGs mature, coincident with the same period that MAPK becomes

active. It is plausible that the DER-MAPK signaling axis may be required to downregulate roe.
The aberrant signaling of DERElp mutants can be partially rescued by a reduction in Notch sig-

naling, indicating that cross-regulation of the two pathways may hinge about the regulation of

E(spl) [36]. Despite the accumulation of evidence that MAPK enhances/activates M8 [41], it is

plausible that roe is also regulated to some degree by DER-MAPK.

Additionally, MAPK may negatively regulate ato-3’, independent of either E(spl) or Roe.

The ato-3’-lacZ reporter line used in this work is not suitable for determining when reporter

expression ends, as β-gal is strongly perdurant in Drosophila tissues. However, RNA in situ
labeling of report from ato-3’-lacZ reveals that the 3’ enhancer is patterned into IGs, through at

least early stage-2 [5]. Thus, report from ato-3’ ceases at the same point of eye development

where MAPK becomes strongly active. Although the possibility that DER-MAPK might nega-

tively regulate ato-3’ has yet to be tested, it is noteworthy that MAPK activation is required to

ablate the Hh signal that originally promotes ato-3’ expression [43].

M8 as a ratiometric antagonist of Ato?

The eye perturbation of sens ato E(spl)D flies stands in stark contrast to E(spl)D interactions

with Nspl and roe. As indicated, we reason that E(spl)D interaction with Nspl and roe are likely

the result of E(spl)D misexpression. In contrast, sens ato E(spl)D flies are WT for both Notch
and roe, allowing us to parse E(spl)D function from its misexpression phenotype. The sens ato
E(spl)D phenotype is not due to repression by M8 during stages-3 and -4, as WT M8 is already

active at that time. Therefore, E(spl)D hyperactivity is of consequence during early stage-2 in

sens ato E(spl)D flies. Immunolabeling against Ato in such flies indicates that the quality of Ato

expression and pattern continues to degrade as the MF moves further across the developing

eye field (Fig 6G and 6H). However, it remains unclear whether enhanced repression by E(spl)

alone might facilitate the observed phenotype. It has been demonstrated that E(spl) is at this

time capable of repressing Ato-dependent activity on 5’-ato and sens [32]. Though speculative,

it is possible that the level of E(spl) repression during early stage-2 is tuned to permit certain

Ato functions while excluding others, and that abnormally high-level E(spl) repression uni-

formly disrupts all Ato function.

Given that M8 has no apparent requirement for either DNA-binding or Gro-interaction,

repression by M8� requires ratiometric expression commensurate with that of Ato. Thus,

higher expression of M8� (compared to that of M8) and lack of auto-inhibition may combine
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to artificially increase the ratio of active E(spl) repressors with respect to Ato in early IG forma-

tion [22]. This also hints at why a mix of E(spl) repressors, i.e. those that require post-transla-

tional modification and those that function constitutively, may be employed in the MF. The

expression of Ato is markedly lower anterior to the IG when compared to expression within

the IG. Signal-mediated phosphorylation would allow for the modulation of E(spl) repressor

activity without altering the expression levels of E(spl), thereby permitting tuning of repression

in real-time. Ato is expressed at low levels during IG maturation, and at high levels in stages-3

and -4. Thus, the use of M8 allows MAPK to specifically enhance repression only later.

An alternate mode of repression by bHLH-O proteins

Our analysis also provides further insight into the mode of repression by M8. Genetic evidence

implicates M8� as a hypermorphic repressor (Fig 3; [22]). This enhancement exists despite

M8�’s inability to bind the corepressor Gro [18, 22]. The Achaete-Scute (Asc) family of bHLH

proneural activators is employed in the specification of sensory organ precursors (SOPs) dur-

ing Drosophila peripheral neurogenesis. Similar to Ato in eye patterning, Asc are expressed in

clusters and resolved to single cells via Notch-mediated expression of E(spl) (reviewed in [44]).

Previous studies indicate that although Gro binding is required for E(spl) repression of Asc,

DNA-binding is not [45]. Subsequent analyses in Drosophila and Xenopus indicate that E(spl)

and orthologous bHLH-O repressors can forego DNA-binding by directly interacting with

their proneural targets [45, 46]. This interaction essentially tethers the repressors to their tar-

gets, facilitating chromatin interaction through the DNA-binding activity of the proneural

activators being targeted. Repressor-proneural interactions are likely mediated through inter-

action of the Orange domain of bHLH-O proteins with the transactivation domains of pro-

neural activators and their cognate E-proteins (Da in flies; [46]). However, if Gro-interaction

is required for repression by E(spl), M8� could not directly repress proneural activators.

E(spl)bHLHs are presumed to function as dimers, though it is not clear whether they might

function as homo- or heterodimers [22, 47]. Thus, M8� might activate full-length E(spl)

repressors through dimerization. Our analysis of the Nspl;E(spl)D interaction indicates that this

is not the case. Nspl, E(spl)D transheterozygotes are enhanced by the addition of a second E
(spl)D chromosome (Fig 3H and 3J), demonstrating that E(spl)D does not enhance the activity

of full-length M8. Had E(spl)D elicited hyperactivity in full-length M8, the replacement of full-

length M8 with the second E(spl)D chromosome would have suppressed the eye phenotype of

Nspl, E(spl)D transheterozygotes. To the contrary, the second copy of E(spl)D further enhanced

the eye perturbations of Nspl/+;E(spl)D/+. To demonstrate that E(spl)D does not similarly

enhance another E(spl) repressor through hetero-dimerization, we introduced the deficiency

allele E(spl)b32.2 into Nspl, E(spl)D transheterozygotes. The deficiency allele had little impact on

the eye phenotype, despite halving the dosage of full-length E(spl) and effectively decreasing

the likelihood of heterodimerization between M8� and full-length E(spl) (Fig 3H and 3K). This

finding demonstrates that E(spl)D is likely repressing Ato through the direct interaction of E
(spl)D with Ato, and not indirectly through an ability to activate full length repressors that are

also present. Thus, E(spl)D is truly, as Nagel et al. once described, a Gro-independent hyper-

morph [22]. A Gro-independent mode of repression suggests that the disruption of proneural-

mediated transactivation is sufficient to disrupt eye patterning. Although studies of E(spl)

DNA-binding independence were assessed with SOP specification (which utilizes Asc pro-

neural activators), it is plausible that E(spl) may target Ato independently of both DNA-bind-

ing and Gro-interaction.

In total, these studies demonstrate that in retinogenesis, E(spl) are more dynamic than

previously considered, featuring fast-changing expression dynamics coupled with post-
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translational regulation. Despite limitations, including a lack of means of directly detecting

individual E(spl) proteins or Roe, our studies combine immunohistochemical and genetic

interaction approaches to demonstrate that E(spl) are active earlier, albeit incrementally, than

previously considered. Although slight, this adjustment to the model of retinogenesis enables a

more sophisticated understanding of the interaction between Notch signaling, Ato and R8 pat-

terning, and will hopefully serve as the basis for future investigation into possible nodes of con-

nectivity between Notch and DER-MAPK signaling.

Materials and methods

Drosophila genetics

Flies were cultured on yeast-glucose media at 24˚C and maintained according to a typical diur-

nal schedule. Df(3R)E(spl)b32.2 removes the entire E(spl) locus including gro [48]. The inclusion

of p{gro} rescues cell-autonomous lethality caused by deletion of gro [49]. E(spl)D encodes M8�,

an M8 truncation that lacks the CtD [50, 51]. Nspl encodes I578T, which alters EGF repeat 14

of the Notch extracellular domain, eliciting altered fucosylation [23]. roern16 removes the entire

roe coding region [35]. roern20 removes the entire rn locus, which includes roe [35]. DerElp

encodes A877T, which enhances DER sensitivity to activation [28]. RoD alters the upstream

enhancer of ro, eliciting either enhanced or precocious Ro expression [38]. hH10 results from a

pGawB insertion in the hairy gene, which is used to drive hairy-dependent expression of GAL4

anterior to and within the MF [52]. UAS-mδ was made from the insertion of an EcoRI-XhoI

fragment of E(spl)mδ cDNA into pUAST for forced-expression [33, 53]. sensE2 is a missense

mutant that results in premature translational termination [54]. ato1 encodes A25T, K253N,

N261I, the last of which ablates DNA binding [1].

Immunohistochemistry

All steps were performed at room temperature unless otherwise indicated. Tissues were dis-

sected in 0.1M sodium phosphate buffer and fixed in 4–6% formaldehyde, 0.1M sodium phos-

phate buffer. Tissues were washed in 0.3% Triton, 0.1M sodium phosphate buffer, 1% BSA,

then blocked in 1% BSA, 0.1M sodium phosphate buffer, and incubated in primary antibody

mixtures (antibody concentrations shown below in 0.1M sodium phosphate buffer) for 12–18

hours at 4˚C. Following primary antibody incubation, tissues were washed in 0.1M sodium

phosphate buffer and bathed in secondary antibody mixtures (1:1000 dilution for each second-

ary, in 1% BSA, 0.1M sodium phosphate buffer) for 2 hrs. Secondary antibody mixtures were

removed, tissues were washed 0.1M sodium phosphate buffer. Tissues were mounted in 60%

glycerol and imaged using an Olympus Fluoview FV1000 Confocal microscope. All scanning

data reported was observed in a minimum of tissues from 5 independent animals of like

genotype.

Primary antibodies include rabbit α-Ato (1:5000, [1]); guinea pig α-Sens (1:500–800, [3]);

mouse α-E(spl)-mAb323 (1:3, [8]); mouse α-β-gal-40-1a (1:800–1000); rat α-Ciact-2A1 (1:100,

[55]); rat α-Elav-7E8A10 (1:100). mouse α-β-gal-40-1a, rat α-Ciact-2A1 and rat α-Elav-

7E8A10 were obtained from the Developmental Studies Hybridoma Bank, created by the

NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa

City, IA 52242. Tissues to be labeled with primary rabbit α-Ato were dissected in 0.3% Triton,

0.1M sodium phosphate buffer.

Secondary antibodies used include 488-goat α-mouse (Jackson), 488-rabbit α-GFP (Life

Technologies), 488-goat α-Rat (Life Technologies), 546-goat α-rabbit (Life Technologies),

546-goat α-mouse (Life Technologies), 546-goat α-Rat (Life Technologies), 633-goat α-guinea

pig (Life Technologies).
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Light microscopy

Adult/pharate flies were mounted and promptly imaged using a Nikon camera in conjunction

with a Leica MZ16 stereomicroscope, and eye size quantified as described [56]. For counts

listed as “700+”, facet count exceeded 700. Statistical significance was determined using Stu-

dent’s T-Test.

Image production

All images were processed in Adobe Photoshop CC v. 14.2. Image manipulations of bright-

ness/contrast and color balance were applied uniformly across each image shown. Images

were then organized in Adobe Illustrator CC v. 17.1.
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