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Some lessons about models from Michaelis 
and Menten
Jeremy Gunawardena
Department of Systems Biology, Harvard Medical School, Boston, MA 02115

ABSTRACT Michaelis and Menten’s classic 1913 paper on enzyme kinetics is used to draw 
some lessons about the relationship between mathematical models and biological reality.

These days, it is no longer so uncommon to find an experimental 
paper that includes a mathematical model. This may seem a surpris-
ing and perhaps even unwelcome intrusion into the qualitative 
world of molecular biology. In fact, quantitative methods and math-
ematical tools have always been used in biology, going back to 
Harvey’s wonderful demonstration of the circulation of the blood. If 
this synergy is not widely appreciated, it is because our historical 
memories are woefully short. In consequence, there is little shared 
understanding about models.

I coteach, with one of my colleagues, Johan Paulsson, the intro-
ductory course in Harvard’s graduate program in systems biology. 
The students come from an unnervingly broad spectrum of back-
grounds in biology and the physical sciences, and one of the tricki-
est issues is how to get across what a model is and what one can, 
and cannot, expect from it. I find that it is easier to discuss this in the 
context of something that everyone needs to know. The famous 
Michaelis–Menten formula is a good choice, as it still provides in-
sights for anyone wanting to understand how models really work 
(see Johnson and Goody, 2011, for a recent English translation of 
the German original, Michaelis and Menten, 1913).

There are several intersecting threads that appear in the discus-
sion that follows, and I can only touch on a couple while leaving 
hints at others, which I hope to follow up at a later date.

In the early years of the 19th century, it was found experimentally 
that, if an enzyme E converts substrate S to product P, then the rate 
of change of concentration of the product, d[P]/dt, generally 

depends on the concentration of substrate, [S], through the now-
familiar hyperbolic curve. The response is highly nonlinear. No mat-
ter how much the substrate concentration is increased, the rate 
never increases beyond a certain maximal amount; it saturates. This 
is what Michaelis and Menten found for invertase, the enzyme that 
splits sucrose into glucose and fructose and eponymously inverts 
the optical rotation, thereby providing the means to measure the 
enzyme rate with a polarimeter.

The likely explanation for enzyme saturation occurred to several 
people independently, including Adrian Brown in England and Vic-
tor Henri in France (Laidler, 1997): the enzyme was binding to the 
substrate to form some kind of enzyme–substrate complex. If the 
amount of enzyme was limited compared with that of the substrate, 
as is typically the case for in vitro studies, then the enzyme–substrate 
complex would act as a bottleneck. In the usual account in the text-
books, Michaelis and Menten substantiated this intuition by consid-
ering the reaction scheme

S E ES P+ + E→  (1)

in which enzyme and substrate reversibly bind to form the enzyme–
substrate complex ES before catalytically releasing enzyme and the 
product (as to why this last reaction is irreversible, see the later dis-
cussion). They deduced from this scheme, via a little algebra that 
has tortured generations of students, their now-familiar formula
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and they showed that it gave a good fit to the experimental data. 
The mathematical formula provides a much richer understanding of 
enzyme behavior than informal intuition, as explained in the text-
books (e.g., Cornish-Bowden, 1995). This is the conventional ac-
count of what Michaelis and Menten achieved.

It is a good story as far as it goes, but it rather misses the point. 
There is an elephant in the room—the enzyme–substrate complex, 
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to posttranslational modification (Thomson and Gunawardena, 
2009), and we now understand how to do the eliminations 
for systems a lot more complex than enzymes (Gunawardena, un-
published results). It is another matter to identify the conditions 
under which the time-scale separation yields a good approxima-
tion to the original system (Schnell and Maini, 2003; Chen et al., 
2010).

An experimentalist naturally wants to know what all this mathe-
matical fandango actually tells us about reality. Which reality? Let us 
start with the in vitro reality of the biochemist and look more closely 
at what is going on inside that test tube. The first thing that stands 
out is that enzymes are reversible. If there is sufficient product, the 
enzyme will work in reverse, and the product will inhibit the forward 
reaction. Why, then, did Michaelis and Menten assume an irrevers-
ible catalytic step?

Well, they were very smart. They measured the rate of the reac-
tion when it had just started, with almost no product present. Under 
such conditions, the reverse reaction is negligible. By assuming ir-
reversibility in their reaction scheme, they greatly simplified their 
formula. Had they not done so, they would have had to derive the 
more complex formula that allows for product inhibition:
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(Few students survive the torture needed to calculate Eq. 3, but 
it is a standard exercise in biochemistry; see Cornish-Bowden, 1995.) 
Equation 3 reduces to Eq. 2 when [P] = 0. The four parameters—two 
each for the forward and reverse directions—must be estimated by 
fitting the data. Measuring initial rates allowed Michaelis and Menten 
to cut the complexity of their data analysis by half and to use a for-
mula that was much easier to interpret than Eq. 3.

We usually think of modeling as helping experiment, but here 
careful choice of experimental setup helps the modeling. There is a 
good lesson in this, but there is an even better one lurking in the 
details. The conventional story about Michaelis and Menten empha-
sizes their formula, as I have done up to now. However, it was the 
experimental aspect of their paper that was its most compelling fea-
ture at the time. They were the first to get reproducible data on 
enzyme rates. It had to do with something that biochemists are now 
so familiar with that they barely mention it—pH. It was Michaelis 
who first understood the importance of pH in regulating enzyme 
activity. It was he who developed techniques for buffering reactions 
and introduced a generation of biologists to their importance in his 
widely influential book (Michaelis, 2010), which appeared in 1914, 
the year after his paper with Menten. An acetate buffer at optimal 
pH enabled Michaelis and Menten to get beautiful data on 
invertase.

The strange thing, however, is that there is no pH dependence in 
their model. Hydrogen ion concentration nowhere appears as a vari-
able; the buffers are not mentioned, and none of the rates, or other 
parameters, is assumed to depend on pH. The model, in other 
words, is not at all a realistic description of what was actually going 
on in the test tube, nor is it a realistic description of a reversible en-
zyme. However, it is impeccably accurate at describing what was 
measured. We deduce something rather interesting from this. 
Models are not descriptions of reality; they are descriptions of our 
assumptions about reality. This is Michaelis and Menten’s second 
lesson. It may come as a shock to some, but I cannot overemphasize 
its significance for appreciating how models and experiments relate 
to each other.

ES. Michaels and Menten did not isolate this or characterize it in any 
way. They never got their hands on the underlying rate constants for 
binding and unbinding in scheme 1, which would have confirmed 
how the enzyme–substrate complex was formed. In their time, the 
enzyme–substrate complex was a hypothetical construct—a theory, 
one might even say a convenient fiction. The first person to confirm 
the existence of enzyme–substrate complexes was Britton Chance 
(Chance, 1943), who, no less than 30 years after Michaelis and 
Menten, developed the stopped-flow techniques needed to isolate 
intermediate complexes and measure binding and unbinding rates 
(Anderson, 2003). As Chance put it, “it is the purpose of this re-
search … to show whether the Michaelis theory is an adequate ex-
planation of enzyme mechanism.” Talking about Michaelis and 
Menten without mentioning Chance is like writing an opera without 
the fat lady.

This historical episode reveals an aspect of mathematics that is 
rarely brought out in discussions of modeling. What makes Michae-
lis and Menten’s model so significant was not that it fits the experi-
mental data, but that it provides evidence for something unseen. A 
theoretical entity explained the data in such a compelling way that 
biochemists adopted the theory for studying all enzymes. Michaelis 
and Menten used mathematics to show us how to think about 
enzymes.

The theory worked so well that biochemists used it without 
confirmation for thirty years. J. B. S. Haldane, better known as 
one of the founders of population genetics but also a student 
of Frederick Gowland Hopkins’ great school of biochemistry at 
Cambridge, wrote in 1930, well before Chance’s work, an entire 
book on enzyme–substrate theory (Haldane, 1965). The equiva-
lent situation in physics would be if physicists started using posi-
tively charged electrons as soon as Dirac predicted their exis-
tence, instead of remaining skeptical until Anderson found the 
positron experimentally. This tells us something remarkable. 
Biology is more theoretical than physics. This is Michaelis and 
Menten’s first lesson.

However contrary to popular prejudice this may seem, we re-
ally should not be so surprised. After all, biology is more difficult 
than physics; it needs all the help it can get. Indeed, the enzyme–
substrate complex is only one of several theoretical entities 
for which mathematics provided a compelling justification for 
their introduction into biology long before their experimental 
identification.

If Michaelis and Menten’s work was about the enzyme–substrate 
complex, then there is something rather odd about their formula. 
The enzyme–substrate complex is nowhere to be seen (out of sight, 
out of mind?). Somewhere in the algebra between the reactions in 
Eq. 1 and the formula in Eq. 2, the concentrations of the free en-
zyme E and the enzyme–substrate complex ES have been elimi-
nated, leaving a formula involving just [S] and [P]. To accomplish this 
sleight of hand, Michaelis and Menten introduced into biology a 
neat trick widely used in physics. They assumed a separation of time 
scales in which E and ES rapidly reach a ready state, while S and P 
adjust to that steady state on a slower time scale (I gloss over the 
historical details; see Cornish-Bowden, 1995). In the typical in vitro 
situation, in which substrate is in substantial excess over enzyme, 
this time-scale separation seems intuitively reasonable. It is the start-
ing point for the algebraic torture mentioned earlier and the key to 
the algebraic elimination.

Time-scale separation is very useful. It is one of the few con-
ceptual tools that we have for eliminating internal complexity and 
deriving simplified descriptions of system behavior. It has been 
used in a wide variety of biological contexts, from enzyme kinetics 
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ceive an MD, in 1911 at the University of Toronto. Bizarrely, PhDs 
were considered inappropriate for Canadian women (safer to cut up 
dead bodies than to learn how to think?), so she traveled to Berlin 
to work with Michaelis. She remained active in research for more 
than thirty years, with several significant contributions, but was pro-
moted to full professor only in 1948, 2 years before she retired, 
(Skloot, 2000). The University was sufficiently abashed to later insti-
tute a memorial lecture and a chair in her honor. Too little, too late, 
one cannot help feeling. She was hardly conventional for her time 
and must have been a remarkable person as well as a fine scientist.

It is nearing the centenary of Michaelis and Menten’s famous pa-
per. From a biochemical perspective, it “stands up to the most criti-
cal scrutiny of informed hindsight” (Johnson and Goody, 2011). It 
does a lot more than that, as it continues to teach us how to use 
mathematics in the service of biological understanding.

It is tempting to believe that models should be determined by 
the reality being studied. Models are then objective constructions, 
similar to those that engineers use. Because they are independent 
of the questions being asked, they have a predictive capacity, and 
this capacity should get better and better by including more and 
more details. This is the kitchen-sink approach, greatly facilitated by 
megaflops of computing power. Had Michaelis and Menten fol-
lowed it, their model would have had buffers and pH dependence, 
they would have learned nothing, and their paper would have sunk 
without a trace. Their second lesson reveals a different approach, 
one ideally suited to biology at the molecular level. Models should 
be determined by the questions being asked and the data that are 
available. This is not to say that models might not get very compli-
cated, if there are data to constrain them (Chen et al., 2009; Beard, 
2011)—just that they remain contingent.

To some, this seems unbearably subjective. The point of all the 
mathematics, they say, is to make biology more like engineering—
to become objective and predictive, not to wallow in subjective 
choices. There is no need to have a philosophical war about this 
(although it would be fun) because, at the end of the day, pragma-
tism trumps philosophy. There is really no choice when we move 
from the test tube to cells and organisms. Every model we make can 
capture only a tiny fraction of the reality that is present. We choose 
what to put in while leaving out everything else. Whether we admit 
it or not, we all follow Michaelis and Menten’s second lesson. Let us 
not pretend to the world that we will eventually have predictive 
models of biology in the same way we have predictive models of 
airplanes.

Arturo Rosenblueth, the physiologist who was one of the co-
founders with Norbert Weiner of cybernetics, hit the nail on the 
head when he quipped, “the best model of a cat is another cat, 
preferably the same cat.” Michaelis and Menten tell us not to worry; 
that is life. By making the right assumptions, a model may still be 
accurate and useful, even when it is not a cat.

The second lesson is enormously liberating: it gives us the free-
dom to formulate novel assumptions while relying on experimental 
confirmation for the final verdict. If we are not to be engulfed by 
mountains of data and want to relate the molecular to the physio-
logical, we will need to make every use of that freedom.

Michaelis and Menten were a most unusual partnership for their 
time. Leonor Michaelis (1875–1949) introduced a generation of bi-
ologists to quantitative thinking through several influential books. 
He fell foul of German academic politics and found his way in 1929 
to the Rockefeller Institute in New York, where he did pioneering 
work on free radicals (Michaelis et al., 1958). He was elected to the 
National Academy in 1943. In marked contrast, Maud Leonora 
Menten (1979–1960) was one of the first Canadian women to re-
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