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Information-theoretic equilibrium 
and observable thermalization
F. Anzà1,* & V. Vedral1,2,3,4,*

A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can 
be given as the state that maximises the von Neumann entropy, under the validity of some constraints. 
Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion 
of thermal equilibrium, focused on observables rather than on the full state of the quantum system. 
We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation 
of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with 
Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum 
system and show that there is always a class of observables which exhibits thermal equilibrium 
properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with 
the Eigenstate Thermalisation Hypothesis is brought to light.

To understand under which conditions thermodynamics emerges from the microscopic dynamics is the ultimate 
goal of statistical mechanics. However, despite the fact that the theory is more than 100 years old, we are still dis-
cussing its foundations and its regime of applicability. The ordinary way in which thermal equilibrium properties 
are obtained, in statistical mechanics, is through a complete characterisation of the thermal form of the state of 
the system. One way of deriving such form is by using Jaynes principle1–4, which is the constrained maximisation 
of von Neumann entropy SvN =​ −​Trρ logρ. Jaynes showed that the unique state that maximises SvN (compatibly 
with the prior information that we have on the system) is our best guess about the state of the system at the equi-
librium. The outcomes of such procedure are the so-called Gibbs ensembles.

In the following we argue that such a notion of thermal equilibrium, de facto is not experimentally testable 
because it gives predictions about all possible observables of the system, even the ones which we are not able 
to measure. To overcome this issue, we propose a weaker notion of thermal equilibrium, specific for a given 
observable.

The issue is particularly relevant for the so-called “Pure states statistical mechanics”5–19, which aims to under-
stand how and in which sense thermal equilibrium properties emerge in a closed quantum system, under the 
assumption that the dynamic is unitary. In the last fifteen years we witnessed a revival of interest in these ques-
tions, mainly due to remarkable progresses in the experimental investigation of isolated quantum systems20–25. 
The high degree of manipulability and isolation from the environment that we are able to reach nowadays makes 
possible to experimentally investigate such questions and to probe the theoretical predictions.

The starting point of Jaynes’ derivation of statistical mechanics is that SvN is a way of estimating the uncertainty 
that we have about which pure state the system inhabits. Unfortunately we know from quantum information 
theory that it does not address all kind of ignorance we have about the system. Indeed, it is not the entropy of an 
observable (though the state is observable); its conceptual meaning is not tied to something that we can measure.

This issue is intimately related with the way we acquire information about a system, i.e. via measurements. The 
process of measuring an observable  on a quantum system allows to probe only the diagonal part of the density 
matrix λ ρ λi i , when this is written in the observable eigenbasis λ{ }i . For such a reason, from the experimental 
point of view, it is not possible to assess whether a many-body quantum system is at thermal equilibrium (e.g. 
Gibbs state ρG): the number of observables needed to probe all the density matrix elements is too big. In any 
experimentally reasonable situation we have access only to a few (sometimes just one or two) observables. It is 
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therefore natural to imagine situations in which the outcomes of measurements are compatible with the assump-
tion of thermal equilibrium, while the rest of the density matrix of the system is not.

Despite that, we think that the fact that a distribution is compatible with its thermal counterpart will lead to 
the emergence of certain thermal properties, concerning the specific observable under scrutiny. Building our 
intuition on that, we propose a new notion of thermal equilibrium specific for a given observable, experimentally 
verifiable and which relies on a figure of merit that is not the von Neumann entropy. A good choice for such a 
figure of merit comes from quantum information theory and it is the Shannon entropy H of the eigenvalues 
probability distribution {p(λj)} of an observable . The well-known operational interpretation of H26 matches 
our needs since it addresses the issue of the knowledge of an observable and it provides a measure for the entropy 
of its probability distribution.

Throughout the paper we will work under the assumption that the Hilbert space of the system has finite 
dimension and we will refer to the case in which the Hamiltonian of the system has no local conserved quantities, 
even though it is possible to address situations where there are several conserved quantities, like integrable quan-
tum systems. We will also assume that the observable has a pure-point spectrum with the following spectral 
decomposition  λ= ∑ Πj j j, where Π​j is the projector onto the eigenspace defined by the eigenvalue λj. H is the 
entropy of its eigenvalues probability distribution p(λj) ≡​ Tr(ρΠ​j)




∑ρ λ λ≡ −
λ σ∈

ˆH p p[ ] ( )log ( )
(1)j

j j
: j

where σ  is the spectrum of .
We propose to define the notion of thermal equilibrium, for an arbitrary but fixed observable , via a charac-

terisation of the probability distribution of its eigenvalues. We will say that
 is at thermal equilibrium when its eigenvalues probability distribution p(λj) maximises the Shannon entropy 

H, under arbitrary perturbations with conserved energy. We call an observable with such a probability distribu-
tion: thermal observable.

It is important to note that this notion characterises only the probability distribution at equilibrium and it does 
not uniquely identify an equilibrium state. Given the equilibrium distribution p(λj) =​ peq(λj), there will be several 
quantum states ρ which give the same probability distribution for the eigenvalues λj. In this sense this is a weaker 
notion of equilibrium, with respect to the ordinary one.

In the rest of the paper we study the main consequences of the proposed notion of observable-thermal-equilbrium: 
its physical meaning and the relation with Gibbs ensembles. The investigation will show that the proposed notion of 
equilibrium is able to address the emergence of thermalisation. This is our first result.

Furthermore, we study the proposed notion of equilibrium in a closed quantum system and prove that there 
is a large class of bases of the Hilbert space which always exhibit thermal behaviour and we give an algorithm 
to explicitly construct them. We dub them Hamiltonian Unbiased Bases (HUBs) and, accordingly, we call an 
observable which is diagonal in one of these bases Hamiltonian Unbiased Observable (HUO). The existence and 
precise characterisation of observables which always thermalise in a closed quantum system is our second result. 
Furthermore, we investigate the relation between the notion of thermal observable and one of the main par-
adigms of pure states statistical mechanics: the Eigenstate Thermalisation Hypothesis (ETH)27–37. We find an 
intimate connection between the concept of HUOs and ETH: the reason why these observables thermalise is pre-
cisely because they satisfy the ETH. Hence, with the existence and characterisation of the HUOs we are providing 
a genuine new prediction about which observables satisfies ETH, for any given Hamiltonian. The existence of this 
relation between HUOs and ETH is a highly non trivial feature and the fact that we can use it to predict which 
observables will satisfy ETH is our third result.

In the conclusive section we summarise the results and discuss their relevance for some open questions.

Results
Information-theoretic equilibrium.  The request that the equilibrium distribution must be a maximum 
for H  is phrased as a constrained optimisation problem and it is solved using the Lagrange multipliers tech-
nique. The details are given in in the Methods section. Two sets of equilibrium equations are obtained and we now 
show how they account for the emergence of thermodynamic behaviour in the observable .

We assume that the only knowledge that we have on the system is the normalisation of the state and the mean 
value of the energy 〈​T〉​ =​ E0, where T is the Hamiltonian of the system. The Hamiltonian has the following spec-
tral decomposition T =​ ∑​αEαTα, where ≡α α αT E E  and we assume that its eigenvectors αE{ } provide a full 
basis of the Hilbert space. We call ψn  the eigenstates of the density operator, ρn are the respective projectors and 
qn its eigenvalues. To describe the state of the system we use the following convenient basis: j s{ , } in which the 
first index j runs over different eigenvalues λj of  and the second index s accounts for the fact that there might be 
degeneracies. We also make use of the projectors Π ≡ j s j s, ,js . Furthermore, we define the following notation 
 ψ ψ≡ Πj s T( , )n n j s n, . Using the overlaps ψ≡D j s,j s

n
n,
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It is worth to note that the knowledge of E0 is always subject to uncertainty, which we call δE. In this sense,  
all the states ρ ρ ∈ ≡ − +δ δT I E E: Tr [ , ]E E

0 0 2 0 2
 will be considered solutions of the constraint equation. Even 

though we do not make any assumption on δE, we note that it is usually assumed to be small on a macroscopic 
scale but still big enough to host a large number of eigenvalues of the Hamiltonian.

Exploiting Lagrange’s multipliers technique we obtain four sets of equations. Derivatives with respect to the 
multipliers enforce the validity of the constraints while the derivatives with respect to the overlaps give two inde-
pendent set of equations. Using two linear combinations of them we obtain the following equilibrium equations 
(EEs):

=j s j s( , ) ( , ) (4)n n 
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where the overbar indicates complex conjugation. λE and λN are the Lagrange multipliers associated to E and N , 
respectively.

The first step is to understand the physical meaning of these equations. The first one (Eq. (4)) gives the stability 
under the flow generated by the Hamiltonian and it implies that the equilibrium distribution peq(λj) has to be be 
invariant under the unitary dynamics. Indeed, writing the time evolution equation for p(λj) we obtain

� E E∑λ∂
∂

= − =i
t
p q j s j s( ) ( ( , ) ( , )) 0,

(6)
j

n s
n n n

eq

,

where the superscript “eq” stands for “after plugging in the EEs”.
The second equation (Eq. (5)) fixes the functional form of the distribution with respect to the Hamiltonian 

and to the Lagrange multipliers. It can be shown that it is responsible for the emergence of a thermodynamical 
relation between the entropy H  and the mean value of the energy. Integrating Eq. (5) over the whole spectrum 
of  we obtain

 λ λ= − − .H E(1 ) (7)eq
N E 0

There is a linear contribution in the mean value of the energy, plus a “zero-point” term  λ= −H (1 )N
(0) . This 

relation brings to light the thermodynamical relevance of Shannon entropy H eq
  since such linear dependence on 

the average energy is a distinguishing feature of thermodynamic equilibrium. We note a strong analogy with the 
properties of von Neumann entropy, which acquires thermodynamical relevance once the state of the system is 
the Gibbs state 


ρ =

β−

G
e T

, where = β−eTr T  is the partition function

ρ β λ λ= + ↔ = − − .S E H E( ) log (1 ) (8)G
eq

N EvN 0 0Z O

Relation with statistical mechanics.  We now come to the issue of understanding if our proposal is com-
patible with Gibbs ensembles. First we note that the ordinary notion of thermal equilibrium is much more strin-
gent than ours, being a complete characterisation of the state of the system. Thus, we need to find the condition 
under which our criterion gives the full state of the system. Since we are using a maximum-entropy principle, a 
plausible auxiliary condition is the maximisation of the smallest among all Shannon entropies. Such a request 
fully characterises the state of the system because the lowest Shannon entropy of the state is unique: it is the 
one in which the density matrix is diagonal. Indeed, using the Schur-concavity of the Shannon entropy and the 
Schur-Horn theorem26 it is easy to prove that

O A
O ρ ρ ρ ρ= ≡ −

∈
H Smin ( ) ( ) Tr( log ), (9)vN

where  is the algebra of the observables38. Our minimalist request to maximise the lowest Shannon entropy is 
translated in the maximisation of von Neumann entropy, which gives Gibbs ensembles. It is therefore clear that 
our proposal constitutes an observable-wise generalisation of the ordinary notion of thermal equilibrium.

In the next section we will apply the proposed notion of thermal observable to the so-called “pure-states statis-
tical mechanics”5–10 and we will investigate the relation with one of its main paradigm: the ETH.

Closed Quantum Systems - Relation to ETH.  ETH, in its original formulation27–33, is an ansatz on the 
matrix elements of an observable when it is written in the Hamiltonian eigenbasis | 〉αE{ }:

 δ ω≈ +αβ αβ αβ
−f E e f E R( ) ( , ) , (10)O

S EETH (1) ( )
2 (2)

where ≡
+α βE

E E

2
, ω ≡​ Eα −​ Eβ while fO

(1) and fO
(2) are smooth functions of their arguments. S E( ) is the thermo-

dynamic entropy at energy E defined as δ≡ ∑ −α ε αe E E E( )S E( ) , where δε is a smeared version of the Dirac delta 
distribution. Rαβ is a complex random variable with zero mean and unit variance. Furthermore, we remember 
that ETH by itself does not guarantee thermalisation, we need to impose that the initial state has a small 
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dispersion in the energy eigenbasis30. When this is true one says that ETH thermalises in the sense that its 
dynamically evolving expectation value is close to the microcanonical expectation value

ψ ψ ρt t( ) ( ) Tr( ) (11)mc
ETH ETH 

where ρmc =​ ρmc(E0, δE) is the microcanonical state defined by the condition on the average value of the energy 
TrρT ∈​ I0.

From the conceptual point of view, the “small energy-dispersion assumption” is a key element of the emer-
gence of thermal equilibrium but it has nothing to do with ETH which, by itself, is only the ansatz in Eq. (10). 
Nevertheless, this assumption is expected to hold in real experiments because, when working with a many-body 
quantum system, it is almost impossible to prepare coherent superpositions of states with macroscopically  
different energies18,19.

Before we continue we define the following short-hand notation: ∑′ ≡∑α α∈I0
, where α ∈​ I0 means α: Eα ∈​ I0.

Hamiltonian Unbiased Observables and ETH.  To study the relation with ETH we need to change perspective. 
The point of view that we are adopting is the following. One of the key-points behind the ETH is that, in many real 
cases, the expectation values computed onto the Hamiltonian eigenvectors can be very close to the thermal expec-
tation values. Moreover, when one wants to argue that thermalisation in a closed quantum system arises because 
of ETH, a main assumption is that the initial pure state of the system ψ0  has a very small energy uncertainty Δ​E, 
with respect to the average energy E0: ∆

 1E
E0

. Following these two insights, we take the extreme limit in  
which Δ​E =​ 0. With such a choice, we are left with an Hamiltonian eigenstate and a constraint equation given by 
TrρH =​ Eα. We note that Eq. (4) is trivially satisfied for an Hamiltonian eigenstate. Hence we assume that 
ψ = ∈α αE E I: 0 and use the solvability of Eq. (5) as a criterion to look for observables which can be thermal. 
While this is a very specific choice, we will show that it unravels some interesting features regarding the ETH.

With this assumption, the second equilibrium equation becomes

λ λ λ λ λ λ− = − − αp p p p E( )log ( ) (1 ) ( ) ( ) (12)j j N j E j

After crossing p(λj) on both sides, the right-hand side does not depend on the label j. Hence, keeping in mind 
that xlogx →​ 0 for x →​ 0, the most general solution of this equation is a constant distribution with support on 
some subset (I Oσ⊂α  depending on Eα) of the spectrum and zero on its complementary:

λ
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where =α αd dim  is the number of orthogonal states on which the distribution has non-zero value. The distri-
bution of eigenvalues of  given by Eq. (13) fully agrees with the prediction from the microcanonical ensemble 
ρ αmc

( ), defined by the condition in Eq. (13). This is true, in particular, for the expectation value

O O
I
∑ λ ρ= =

α λ

α

∈ α
d
1 Tr( )

(14)j
j mc

:

( )

j

It has to be understood here that Eq. (13) is a highly non-trivial condition on , which is not going to be ful-
filled by every observable since it imposes a very specific relation between its eigenstates and the energy 
eigenvectors.

A similar relation has already been studied within the context of quantum information theory. Two bases of a 
−dimensional Hilbert space ( ≡ | 〉v{ }v i  and  ≡ | 〉w{ }w j ) are called mutually unbiased bases (MUB)39–41 when


|〈 | 〉| = ∀ = …v w i j1 , 1, , (15)i j

2

Such a concept is a generalisation, expressed in term of vector bases, of canonically conjugated operators. In 
other words, each vector of v is completely delocalised in the basis w  and viceversa. Here we mention the result 
about MUBs which matter most for our purposes: given the 2N-dimensional Hilbert space of N qubits, there are 
2N +​ 1 MUBs and we have an algorithm to explicitly find all of them42. Therefore, if we are in an energy eigenstate, 
an observable unbiased with respect to the Hamiltonian basis will always have a microcanonical distribution. This 
is also true if our state is not exactly an energy eigenstate, it is enough to have a state that has a sufficiently nar-
rowed energy distribution. We now provide a simple argument to prove such a statement. We also note that such 
condition is closely related to the small dispersion condition briefly discussed before and that it is necessary to 
guarantee thermalisation, according to the ETH.

By assumption, the pure state in Eq. (??) has an energy distribution ≡α α α=p c{ }2
1

  with small dispersion. This 
implies that its Shannon entropy HT has a small value, because the profile of the distribution will be peaked 
around a certain value. For such a reason ψH ( )T 0  will be much smaller than its maximum value

ψ H ( ) log (16)T 0
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Moreover, it can be proven that between any pair of MUB, like the Hamiltonian eigenbasis and an HUB, there 
exists the following entropic uncertainty relation, involving their Shannon entropies39:

D Hφ φ φ+ ≥ ∀ ∈H H( ) ( ) log (17)T HUB

Putting together Eqs (16) and (17) we obtain that, for all the states with a small energy dispersion, the Shannon 
entropy of an HUB will always have a value close to the maximum:

ψ H ( ) log (18)HUB 0

This in turn implies that the distribution of all the HUO will be approximately the same as the one computed 
on the microcanonical state.

For such a reason, we now study the properties of a HUO:

∑λ= =α

θ α

j s j s j s E e, , ,
(19)j s

j

i

,

js,
O

D

HUOs and ETH: diagonal matrix elements.  In order to investigate the relation with ETH we need to study the 
matrix elements of a HUO in the energy basis:

∑λ=αβ
ωαβe1 ,

(20)j s
j

i

,

jsO
D

with ω θ θ= −αβ
β α( )js js js, , . It is straightforward to conclude that its diagonal matrix elements are constant in such 

a basis and therefore the so-called (Hamiltonian) Eigenstate Expectation values reproduce the microcanonical 
expectation values:

O
D D

O O O∑λ ρ= = = =αα
1 1 Tr Tr( )

(21)j s
j mc mc

,

This is the first part of our third result and as it is, it can already be used to explain the emergence of thermal-
isation in a closed quantum system. In refs 18,19 Reimann proved an important theorem about equilibration of 
closed quantum systems. He was able to show that under certain conditions, the mean value of an observable is 
not much different from its value computed on the time-averaged density matrix, or Diagonal Ensemble (DE):

∑ρ ≡
α

α α αc E E
(22)DE

2

where cα ≡​ 〈​ψ0|Eα〉​ and ψ0  is the initial pure state of the isolated system. Roughly speaking, the two main 
assumptions made by Reimann are the following: first, that in any experimentally realistic condition the state of 
the system will occupy a huge number of energy eigenstates, even if the average energy is known up to a macro-
scopically small uncertainty; second, that the observable under study has a finite range of average values, due to 
the fact that we wish to measure it. For a clear and synthetic discussion on this topic we suggest14 and we send the 
reader to the original refs 18 and 19. We note that the first assumption does not contradict the small energy dis-
persion assumption. Indeed, as argued by Reimann, in a many-body quantum system, even if the energy is known 
up to a macroscopically small scale δE, there will be a huge number of eigenstates within the range Eα ∈​ I0. To 
conclude, given a HUB it is always possible to obtain a HUO which satisfies the finite-range assumption. We can 
therefore apply Reimann’s theorem to HUOs.

It is important to note that Reimann’s theorem explains equilibration around the DE but this does not neces-
sarily entail thermalisation. The DE still retains information about the initial state while thermalisation is defined 
(also) by the independence on the initial state. This is the point where our result is able to take a step forward 
and explain the emergence of thermal equilibrium in the HUOs. We can use Eq. (21) to prove that all the HUOs 
exhibit complete independence from the initial conditions:

∑ρ ψ ρ= = =
α

α ααTr( ) Tr( )
(23)DE mc mc

0 2
   

HUOs and ETH: off-diagonal matrix elements.  In order to prove that a HUO satisfies ETH we need to study also 
its off-diagonal matrix elements. By using Eq. (19), we can investigate how the phases ω θ θ≡ −αβ

β α( )js js js, ,  are 
distributed. This can be done numerically, exploiting the available algorithms to generate MUBs42. The numerical 
investigation of the distribution of ωαβjs  is reported in the Supplementary Material. Here we simply state the result: 
for a fixed value of the energy quantum numbers, the observed distributions of ωαβcos js , ωαβsin js  are well 
described by the assumption that ωαβjs  are independent and randomly distributed in [−​π, π], with a constant 
probability distribution.

There are different ways in which this result can be used. The general argument is the following: in Eq. (20), the 
phases ωαβjs  will have a randomising action on the eigenvalues λj and this will make the value of the off-diagonal 
matrix elements severely smaller than the value of the diagonal ones:
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O O
D

O O=αβ αβ ααRe , Im 1 Tr (24)

The randomness of the coefficients involved in the evaluation of the off-diagonal matrix elements has been 
recently proposed as the basic mechanism to explain the 1


 scaling behaviour which was observed to occur in 

some models43–47. The maximisation of Shannon entropy is therefore giving us a recipe to find the observables for 
which this is true.

HUOs and ETH: two important examples.  In order to understand how this works in practice we need to say 
something specific about the eigenvalues. We highlight two important cases in which our result is helpful: an 
observable which is highly degenerate and an observable whose eigenvalues distribution is not correlated with the 
phases ωαβjs .

Highly degenerate observable.  Assuming that = …j 1, , 1  while = …s 1, , 2  with ~ 2 1   , the sum 
in Eq. (20) splits into 1  terms and each one of them is a sum of  2 1 identically distributed random varia-
bles. We can apply the central limit theorem to the real and imaginary part of Eq. (20) and obtain the following 
expression for the off-diagonal matrix elements

D

D
N

D D
R

D

∑λ≈











αβ

αβ
αβ

=
~

Re

Im
0, 1 1

(25)

deg

deg
j

j j
1 2

1

In which  σx( , )2  indicates a gaussian probability distribution with mean x and variance σ2 and αβ is a zero 
mean and unit variance random variable. This proves that a highly degenerate observable satisfies the ETH ansatz, 
Eq. (10). The diagonal matrix elements reproduce the microcanonical expectation values and the off-diagonal 
matrix elements are well described by a random variable with zero mean and 


~

1  variance. This is precisely what 
we expect from a local observable, since its eigenvalues have a huge number of degeneracies, which grows expo-
nentially with the size of the system, and it is in full agreement with the randomness conjecture made in ref. 46,47.

Uncorrelated distribution.  If the eigenvalues distributions {λj}j,s and the phases ωαβe{ }i
j s,

js  are not correlated 
Eq. (20) becomes

∑ ∑λ δ≈

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=αβ

ω
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αβ
e1 Tr

(26)
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j

j s

i

, ,

jsO
D

O
D

Where we used the fact that the two sequences are uncorrelated to approximate the sum as the product of two 
sums and in the second identity we used the fact that j s{ , } is a complete basis. We conclude that the off-diagonal 
matrix elements of such an observable are much smaller than the diagonal ones and therefore we can neglect 
them when we compute its dynamical expectation value:

O O O O�∑ ∑ψ ψ ψ ψ ψ= ≈ =
α β

α β αβ
α

α αα
− −α βt t e( ) ( )

(27)
unc i E E t unc unc unc

mc
,

0 0 ( ) 0 2

These results follows from the study of the equilibrium equations, under the assumption that the state is an 
Hamiltonian eigenstate ψ = αE  belonging to the energy shell I0. It is straightforward to see that the same 
results hold when the state is the microcanonical state ρmc(E0,δE) involved in Eq. (11) and defined by the condi-
tion TrρT ∈​ I0.

Discussion
We proposed a new notion of thermal equilibrium for an observable : we say that  is a thermal observable when 
its eigenvalues probability distribution maximises its Shannon entropy H. Setting up a constrained optimisation 
problem we derived two equilibrium equations and studied their physical implications. Eq. (4) enforces the sta-
bility of the distribution with respect to the dynamics generated by the Hamiltonian while Eq. (5) fixes the func-
tional form of the distribution. Integrating the second equation we obtained a linear relation between Shannon 
entropy and the mean value of the energy, which shows that H  at equilibrium has thermodynamic properties. 
We also studied the relation of the proposed notion of equilibrium with quantum statistical mechanics. The 
request to maximise the lowest among all the possible Shannon entropies lead to Gibbs ensembles and therefore 
to the ordinary characterisation of thermal equilibrium. Together, the physical meaning of the equilibrium equa-
tions and the proven relation between maximisation of Shannon entropy and Gibbs ensemble, show that the 
maximisation of Shannon entropy is an observable-wise generalisation of the ordinary notion of thermal equilib-
rium. This is our first result.

In the second part of the paper we studied the emergence of thermal observables in a closed quantum system 
and especially their relation with the ETH. Using maximisation of H we were able to find a large class of observ-
ables which always thermalise and provide an algorithm to explicitly construct them. We call them Hamiltonian 
Unbiased Observables (HUOs). The existence and precise characterisation of a set of observables which always 
thermalises is our second result.
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Using this characterisation, we studied the matrix elements of an HUO in the Hamiltonian eigenbasis. The 
study of the diagonal matrix elements reveals that they always satisfy ETH. This has been used to prove thermal-
isation of the average value of HUOs, in connection with Reimann’s theorem about equilibration of observables. 
The study of the off-diagonal matrix elements revealed that their value is exponentially suppressed, in the dimen-
sion of the Hilbert space. This completes the proof that HUOs satisfy the ETH. The proven relation between ETH 
and HUOs is our third and last result. The relevance of this result for the pure-states statical mechanics is related 
to the two main objections usually raised against ETH: the lack of predictive power for what concern both which 
observables satisfy ETH and how long it should take them to reach thermal equilibrium. The proposed notion of 
thermal equilibrium is therefore revealing its predictive power since it gives us a way of finding observables which 
always satisfy ETH, in a closed quantum system.

We would like to conclude by putting this set of results in a more general perspective. ETH is one of the main 
paradigms to justify the applicability of statistical mechanics to closed many-body quantum systems. However, it 
is just a working hypothesis, it is not derived from a conceptually clear theoretical framework. For such a reason, 
one of the major open issues is its lack of predictability. Despite that, there has been a huge effort to investigate 
whether the ETH can be invoked to explain thermalisation in concrete Hamiltonian models43–57 and it’s use it is 
nowadays ubiquitous. For these reasons, we think it is important to aim at putting ETH under a conceptually clear 
framework. In this sense, the relevance of our work resides in the fact that we obtain the ETH ansatz as a predic-
tion, by using a maximum-entropy principle as starting point. Furthermore, using the proposed notion of ther-
mal equilibrium is already giving concrete benefits. We now have a way of computing observables which satisfy 
the ETH and this prediction can be tested both numerically and experimentally. Our investigation proves that 
maximisation of H  is able to grasp the main intuition behind “thermalisation according to ETH” and the results 
suggest that it can be the physical principle behind the appearance of ETH.

Further investigation in this direction is certainly needed, but we would to suggest a way in which this new 
tool can be used to address the long-standing issue of the thermalisation times. From our investigation one can 
infer that Shannon entropy is a good figure of merit to study the dynamical onset of thermalisation in a closed 
quantum system. Within this picture, the time-scale at which thermalisation should occur for  is therefore given 
by the time-scale at which H  reaches its maximum value. A prediction about the time-scale at which H is max-
imised will translate straightforwardly in a prediction about the thermalisation time.

Methods
Here we present the full derivation of the equilibrium equations, using the Lagrange multipliers’ technique. Our 
purpose is to find the distribution which maximises Shannon entropy of an observable . The space on which 
such an optimisation is formulated is the space of the finite-dimensional density matrices, which is the space of 
positive semi-definite and self-adjoint matrices. The maximisation is constrained by two equations: the first one 
accounts for the normalisation of the state while the second one accounts for a fixed value of the average energy.

We present here the derivation, in the general case of a mixed state ρ ψ ψ= ∑ qn n n n  and of a degenerate 
observable  λ= ∑ j s j s, ,j s j, , in which j s{ , } is a complete basis of the Hilbert space. Here are the two 
constraints:

 ∑ ∑ρ ρ≡ − = − ≡ − = −
′ ′

′ ′ ′ ′q D T E q D T D ETr( ) 1 1 Tr( )
(28)

N
n j s

n js
n

E
n j s j s

n js
n

js j s j s
n

; ,

( ) 2
0

; , ; ,

( )
,

( )
0

in which ψ≡D j s,js
n

n
( ) . Moreover = ′ ′′ ′

ˆT j s T j s, ,js j s; . Exploiting Lagrange’s multipliers technique one 
defines an auxiliary function Λ , specific for the  observable, that can be freely optimised

ρ λ λ ρ λ λΛ ≡ + +ˆ ˆH[ , , ] [ ] (29)E N N N E EC CO O

The derivatives with respect to the Lagrange’s multipliers =δ
δλ
Λ 0

N

  and  =δ
δλ
Λ 0

E
 enforce the validity of the 

constraints  = 0N  and = 0E , respectively. The derivatives with respect to the overlaps and with respect to the 
statistical coefficients qn gives three equations, of which only two are independent:  = =δ
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δ
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Instead of using these equations, we use the two following independent linear combinations
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which give the two equilibrium equations that we used in the main text
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∑ λ λ= −
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