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ABSTRACT: As a field, computational toxicology is concerned with using in silico models to
predict and understand the origins of toxicity. It is fast, relatively inexpensive, and avoids the
ethical conundrum of using animals in scientific experimentation. In this perspective, we
discuss the importance of computational models in toxicology, with a specific focus on the
different model types that can be used in predictive toxicological approaches toward
mutagenicity (SARs and QSARs). We then focus on how quantum chemical methods, such as
density functional theory (DFT), have previously been used in the prediction of mutagenicity.
It is then discussed how DFT allows for the development of new chemical descriptors that
focus on capturing the steric and energetic effects that influence toxicological reactions. We
hope to demonstrate the role that DFT plays in understanding the fundamental, intrinsic
chemistry of toxicological reactions in predictive toxicology.
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1. INTRODUCTION

In the last few decades, the ethical conundrum of in vivo animal
testing has plagued toxicology; the use of animals in science has
been under intense scrutiny for many years, and finding fast,
sustainable, alternative ways to reduce animal testing is of huge
interest to both scientists and nonscientists across the globe.
Currently, there are many well established in vitro and in vivo
methods in toxicology, each having advantages and disadvan-
tages. Computational methods in toxicology, however, are not
so well established, and they will play an important role in
finding solutions to the complex ethical issue of animal testing.
Computational toxicology has seen a surge in popularity
throughout the last two decades; this is due to an increase in
the accessibility of toxicological databases, pressure from
industries to provide low-cost methods to test the safety of
compounds, and reducing the need for animal testing.1 If
sufficient accuracy can be achieved, then in silico methods are
typically inexpensive, are relatively fast, and allow circumvention
of the ethical issues attached to animal testing. For this reason,
legislative programs are increasingly keen to explore the use of
computational methods. Furthermore, computational chemistry
has an important role to play in the development of in silico
approaches in toxicology. Current computational approaches
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are not typically built on the fundamental chemical origins of
toxicity, and quantum mechanical methods such as density
functional theory (DFT) can be used to explore the intrinsic
chemistry behind a toxicological reaction. This perspective will
explore a few topics: the benefits and problems associated with
in vivo animal testing (Section 1), current and widely used
methodologies for in silico mutagenicity prediction (Section 2),
and last, how methods, such as quantum chemical methods, for
example, DFT, can be used to explore the chemistry of
mutagenicity (Section 3).
1.1. Animal Testing in Toxicology. Throughout the

course of history, animals have been utilized by humans for
many different uses: food supply, transport, and domestication
to name a few. However, the most contentious use of animals
since the dawn of the scientific era is their use in scientific
research, for example, testing new pharmaceutical products and
toxicological screenings.2 A formal definition for animal testing
(or animal experimentation) is given by the German Animal
Welfare act, “the use ormanipulation of animals that involves the
inflicting of suffering, pain or injury to them”.3 This applies to
any procedure involving an animal that subjects them to “stress
equivalent to, or higher than that caused by the introduction of a
needle in accordance with good veterinary practice” as defined in
a 2010 European directive on the protection of animals used for
scientific purposes.4 Animal testing remains contentious due to
the purposeful inflicting of pain for the acquisition of knowledge,
proposing the question, is it ethically justifiable to kill for the
advancement of knowledge? To understand the extent of animal
testing in the modern era, it is important to examine our
everyday lives. A colossal number of domestic products such as
food, utilities, and pharmaceuticals have likely used animal
testing in their development cycle at one stage or another.
Despite the widespread criticism of animal testing, it plays a
critical role in ensuring that substances are safe for human use
and consumption. Animal testing directly allows scientists to
empirically observe the emergent properties of chemical
exposure to organisms; without its widespread use, many
adverse toxicological properties would remain misunderstood
and unexplored. It is thus important to acknowledge the vital
role that animal testing has played and continues to play in the
development of in vitro and in silico approaches in toxicology.5

For toxicologists, a clear challenge lies in developing in vitro
assays and cheminformatic tools that are accurate and reliable
testing methods, without missing key information that could
lead to human harm or death. It has been argued that
experiments involving animals can often be poorly predictive
and wasteful by design.6 For this reason, combined with the
ethical considerations, it is imperative that science tries to reduce
animal testing where possible, and finds alternative solutions.
However, it is more realistic to acknowledge that animal testing
and alternative approaches (in silico, in vitro, in chemico
methods) could exist as complementary methods, as opposed
to permanent and direct replacements. A good starting point for
this movement was proposed by Russell and Burch in 1959;
three Rs were defined: replacement, reduction, and refinement.7

The three Rs should be applied to any experimental design or
methodology that involves animals. Can you replace the process
that involves in vivo testing with an alternative method? Can you
reduce the number of animals used in experiments? And last, if
you must use animals, can you refine the process such that
husbandry and care is refined? A recent study highlighted how
the three Rs have become an integral part of scientific research in
the United Kingdom while simultaneously becoming a “trans-

national gold standard” in laboratory ethics.8 Despite wide-
spread acceptance of the three Rs, a large number of animals are
still involved in scientific experimentation. A recent report
published by the U.K. government suggests that around 3.80
million experiments involving animals were performed in 2017.9

This is undoubtedly one of the largest drivers for the
development of computational methods within toxicology. As
a field, it absolutely meets the three Rs and at its core aims to
drastically reduce the use of animals in safety testing and
pharmaceutical drug design.

1.2. Legislation in Toxicology. To ensure widespread
consistency, and to minimize the risk of harm to society and
public health, legislation plays an important role in chemical
toxicology. There are many boards that regulate toxicology such
as the Organization for Economic Co-operation and Develop-
ment (OECD) and the International Council for Harmoniza-
tion (ICH). However, one of themost important and prominent
legislative programs is a European Union regulation called
REACH (Registration, Evaluation, Authorisation and restriction
of Chemicals). This regulation aims to protect human health
and keep the environment safe while simultaneously promoting
innovation in the EU chemicals industry. Its aims also prove to
meet a few principles of green chemistry as proposed by Anastas
and Warner.10 In particular, REACH aligns with principle 4
‘designing safer chemicals’ and principle 12 ‘safer chemistry for
accident prevention’. The principles of green chemistry should
be key considerations when designing any new, modern
chemical process or technology. One of REACH’s main goals
is to support the use and development of alternative methods for
the assessment of chemical safety, methods such as quantitative
structure activity relationships (QSARs, see Section 2). This is
indicative of the vital role that computational toxicology is set to
play in REACH’s vision of the future. It has become increasingly
common for alternative nontesting methods to be cited as
possible ways of meeting data requirements within a regulatory
context. For example, Annex VII of REACH regulation requires
in vitro/in chemico tests as a first step in addressing the skin
sensitization risk of a chemical.11 Traditionally, in vivo and in
vitro chemical safety assessment has been performed according
to test guidelines (TG) as put forward by the OECD, ensuring
that consistency and reliability are core to the test procedures
and outcomes. Although documentation does exist for guidance
on how to utilize and report data obtained from computational
approaches (e.g., QSAR), no formal test guidelines have been
put forward for in silico approaches.12 Evaluating in silico
approaches for the assessment of mutagenicity and other end
points of concern remains an area of active interest for
computational toxicologists. This perspective aims to introduce
and appraise how density functional theory (DFT) can and has
previously been used as a tool for the assessment of mutagenic
risk in pharmaceutically relevant organic molecules.

2. COMPUTATIONAL MODELS FOR THE PREDICTION
OF MUTAGENICITY

As a biological concept, mutagenicity refers to “the permanent
and transmissible changes in the amount or structure of the
genetic materials of cells and organisms”. These changes can be
focused toward a single gene, clusters of genes, or entire
chromosomes.13 The chemical causing changes to DNA is itself
termed a “mutagen”, andmutagens can cause direct (or indirect)
damage to DNA, resulting in different types of mutation to the
genome. A variety of experimental approaches exist for assessing
mutagenic risk, but these will not be discussed in this review.
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Please see Hasselgrin et al. for a thorough, in-depth analysis of in
silico genotoxicity assessment and associated experimental
protocols.12 Before broadly discussing in silico approaches for
mutagenicity prediction, it is first important to highlight the role
that in vivo and in vitro data play in constructing computational
models. Without large, high-quality experimental data sets, there
would be no method of anchoring chemical structures to their
associated adverse toxicological outcomes. However, computa-
tional methods are among the most dynamic, flexible tools for
the assessment of chemical safety. Predictions are relatively
inexpensive and fast when compared to in vivo and in vitro
methods, and this continues to drive the development of in silico
approaches. Since 1991, when Ashby and Tennant published a
study that successfully correlated chemical structure with
genotoxicity and DNA reactivity,14 in silico approaches to
predict mutagenicity have been at the forefront of toxicological
research. Models for the prediction of mutagenicity typically fall
into one of two categories. This section will explore these
categories and the approaches they take toward mutagenicity
prediction.
2.1. Structure−Activity Relationships (SARs). As a

concept, structure−activity relationships (SARs) underpin all
fundamental investigations in toxicology. SARs are computa-
tional models that attempt to link qualitative chemical structure
with biological activity. The central idea of SARs is that
molecular structure implicitly determines physical and chemical
properties. These properties then directly influence the
biological interactions and therefore the toxicological mode of
action.15 In 1991, Ashby and Tennant published ground-
breaking work that introduced the role of SARs and computa-
tional modeling in the prediction of mutagenicity.16 They chose
301 chemicals and categorized them according to pre-existing
chemical “structural alerts” that indicate a propensity toward
DNA reactivity (see Figure 1). The chemicals were split into 154

“alerting” chemicals and 147 “nonalerting” chemicals. The
alerting chemicals were further subcategorized into aromatic
amino/nitro types, DNA alkylating agents, and an “assorted”
structurally alerting group. The results of this study showed that
most structurally alerting chemicals were mutagenic, while
approximately 95% of the nonalerting chemicals were not
mutagenic. These results showed that using so-called “structural
alerts” can give a good level of confidence in predicting

mutagenicity. This work by Ashby and Tennant laid the
foundation for further work in attempting to correlate structural
features with mutagenicity, and their work still plays an
important role in modern predictive techniques. The idea of
“chemical category” formation is fundamental in the develop-
ment of SARs, and it is has previously been proposed that
chemicals should be categorized according to their initial mode
of action, the so-called “molecular initiating event” (MIE).17

Category formation and the MIE are built around the concept
that chemicals with similar profiles will exhibit similar
toxicological responses. The first discussion of the MIE can be
traced back to 2006, where Schultz et al. showed that a
framework for reactive toxicity can be constructed according to
the initial covalent reaction of biological nucleophiles (such as
DNA) with soft electrophiles.18 It is worth noting, however, that
directly applying mechanistic organic chemistry in toxicology
does have limitations; this is due to a wide range of conditions in
which reactions may be carried out. In organic chemistry,
reactions can be carried out in different solvents and at a range of
different temperatures. This differs greatly from an aqueous,
well-controlled biological or cellular environment. Thus,
reactions conditions can drastically affect reactivity and the
extent of reaction. Despite these limitations, understanding the
initial MIE, and the fundamental chemistry associated with a
toxicological end point is of paramount importance in predictive
toxicology. The approach of category formation according to the
MIE intrinsically focuses on the mechanistic chemistry as
opposed to previously obtained toxicological data sets that only
rely on empirical evidence (e.g., Ames test data).19 For
mutagenicity, the most important MIE for category formation
includes chemicals that can react to form covalent DNA adducts.
Although the chemistry of DNA adducts will not be discussed in
this work, Benigni and Bossa present a large number of chemical
categories that show evidence of mutagenicity and carcinoge-
nicity and act as a great starting point for understanding the
mechanisms behind DNA reactivity.20 Returning to the
structural alerts developed by Ashby and Tennant,17 a number
of “expert systems” exist that utilize structural alerts for toxicity
prediction, systems such as Derek and Toxtree.21,22 An expert
system is one of the earliest forms of artificial intelligence, which
uses rules and knowledge to make “if−then” decisions. It takes
advantage of information gathered from human experts and
makes decisions according to a set of rules. Derek and Toxtree
are widely used SAR software programs, and both use chemical
categories and structural alerts to make predictions about the
mutagenic risk of chemicals. However, despite their widespread
use, one problem that frequently occurs relates to the
“applicability domain” of the models. Computer models are
typically constructed and trained with a limited data set. A recent
study by Bossuyt et al. showed that the applicability domain is
important in assessing the confidence of a predictive model. The
study showed that the predictive potential is moderately low for
chemicals that are new to a model and not included in the initial
training data set.23 This therefore leads to difficulties in
evaluating test compounds that are structurally different to
those in the initial training data set. To evaluate the predictive
performance of SAR models, sensitivity, accuracy, specificity,
positive predictivity, and negative predictivity are all parameters
that should be evaluated according to the OECD guidance
document.24 In particular, model sensitivity and accuracy are
two of the most important metrics when developing SAR
models. Overall, studies show that SARs are widely used and
well developed in the field of toxicology. However, due to the

Figure 1. Diagram showing 5 structural alerts associated with DNA
reactivity. These compounds sit within the mechanistic domain of
“Michael addition”. These were developed more recently by Enoch and
Cronin. However, Ashby and Tenant laid the foundation for this type of
work.

Chemical Research in Toxicology pubs.acs.org/crt Perspective

https://dx.doi.org/10.1021/acs.chemrestox.0c00113
Chem. Res. Toxicol. 2021, 34, 179−188

181

https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00113?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00113?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00113?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.0c00113?fig=fig1&ref=pdf
pubs.acs.org/crt?ref=pdf
https://dx.doi.org/10.1021/acs.chemrestox.0c00113?ref=pdf


size of their wide-ranging applicability domains, there can exist
issues with model performance.25 Begging the question, can
large robust models with a large applicability domain be
developed, allowing for universal models that allow the accurate
and sensitive prediction of mutagenicity? Alternatively, does the
key lie in the construction of individual small models for each
chemical category; although these models may have a limited
applicability domain, can their targeted focus ensure they remain
highly sensitive and highly predictive?
2.2. Quantitative Structure Activity Relationships

(QSARs). Quantitative structure activity relationships
(QSARs) are models built from biological, chemical, and
statistical data to better understand toxicological events (see
Figure 2). The fundamental principle of a QSAR is to establish

links between a chemical descriptor and the biological activity.
In this section, the use of QSAR models in mutagenicity is
examined, with particular emphasis on how computational
chemistry can play a powerful role in underpinning the data used
in QSAR models. Molecules are represented as numerical
models and their properties can be calculated using classical and
quantum equations; these properties, alternatively called
descriptors (e.g., Number of bonds, HOMO/LUMO energies),
can then be analyzed for variation and coupled to their
associated biological activity. This allows development of a
model that contains “rules” for predicting the activity AB of any
chemical structure.26 Generally, QSARs adopt the form of a
linear equation as below:

A c c PB o
i

N

i i
1

∑= +
= (1)

where ci is a coefficient, Pi is a parameter derived frommolecular
structure (e.g., hydrophobicity), and N is the number of
parameters included within the model. The descriptors are
computed for each molecule in a given data set, followed by
calculating the coefficient for each parameter; this is done by
fitting variation in both parameters and the biological activity.
QSAR models can be one of two types: global or local. Global
QSAR models take large data sets of chemicals (which are both
structurally comparable and noncomparable) and attempt to
refine the predictive potential of the model. Alternatively, local
QSAR models take congeneric groups of chemicals and refine
the models predictivity, for example, Gramatica et al.
successfully developed a local (Q)SAR model to predict the
toxicological response of phenylureas and s-triazines.27 They
arrived at an important conclusion; although the same

toxicological end point was considered for the two different
groups of chemicals, the descriptors showing highest predictivity
were different between groups. This highlights the variability in
chemical structure, and how not all adverse outcomes arise from
the same chemical “origin”. Despite the widespread use of local
models, global models come with the advantage of being able to
offer predictions on any chemical entity, accompanied by a
numerical level of confidence in the prediction. Two of the most
popular global (Q)SARs are Sarah Nexus28 and CAESAR,29

both of which have shown to be successful models. A recent
study by Honma et al. compared the performance of global
(Q)SAR models for the prediction of Ames test results in three
different phases over the course of three years.30 In 2014 (phase
I), the models respectively showed a sensitivity of 51.2% and
69.5%, while three years later in 2017 (phase III), the models
showed a sensitivity of 44% and 67.5%. This study demonstrates
that the prediction of Ames test results using global (Q)SAR
models has room for improvement. Despite the success of global
(Q)SAR models such as Sarah Nexus and CAESAR, the
confidence in prediction for large data sets of congeneric
compounds can suffer; this is due to global models being built
around chemicals with largely varying structures and phys-
icochemical properties. Due to the commercial success of global
models, (Q)SARs built specifically for congeneric groups of
chemicals can often be left underutilized. This is despite the fact
that improved levels of confidence and predictivity may be
achieved through use of a local model as opposed to a large
global (Q)SAR model.31 The development of QSARs to predict
mutagenicity has been an active area of research for many years,
with an increasing focus on using them as part of evidence-based
regulatory submissions. The OECD proposed a set of guidelines
for the validation of (Q)SARs when used for a regulatory
purpose.24 It is suggested that any (Q)SAR should be
constructed with the following characteristics: (i) a clearly
defined end point, (ii) an unambiguous algorithm, (iii) a defined
applicability domain, (iv) appropriate measures of predictivity
and robustness, and last, (v) if possible, a mechanistic
interpretation. These guidelines are deemed heavily appropriate
for the development of a useful, highly applicable (Q)SAR. The
authors encourage particular emphasis on guideline 2; often,
commercially available software can be difficult to interpret due
to the ambiguity in its algorithm. This often means that the
reliable use of (Q)SAR models is restricted to experts in
programming and computer science. Ensuring that transparent,
easily interpretable algorithms are available to accompany
regulatory submissions is vital in ensuring that models can be
independently assessed.

3. DENSITY FUNCTIONAL THEORY IN PREDICTIVE
TOXICOLOGY

One of the fundamental steps in developing a (Q)SAR is the
selection of relevant toxicological descriptors. Chemical
descriptors are at the core of any (Q)SAR model, and many
types of descriptor have been proposed that represent different
levels of chemical structure (e.g., atom counts (0D),
substructures (1D), topological (2D), geometrical (3D)
descriptors). Many of these descriptors can be calculated
using quantum chemical methods. This section will explore the
basics of DFT, the quantum chemical descriptors that can be
calculated (such as HOMO/LUMO energies), and discuss why
DFT transition state modeling could have an important role to
play in the prediction of mutagenicity.

Figure 2. (Q)SARs are computational models that rely on statistics,
chemistry, and biology to make predictions in toxicology.
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3.1. Introducing Density Functional Theory (DFT). It is
well established that chemicals, when seen as atomic scale
constructs, obey the laws of quantummechanics. Thus, to gain a
detailed energetic understanding of chemicals, it is necessary to
use the mathematical toolset provided by quantum chemistry.
As a field, quantum chemistry is defined by the application of
quantum mechanical models to study chemical reactions. For
the last 40 years, DFT has been one of the primary methods in
physics and chemistry for probing the electronic structure of
periodic systems such as crystals.32 However, more recently, the
uses of DFT have become more widespread. As a quantum
chemical method, DFT has the best trade-off between accuracy
and speed. Thus, in the last 20 years, DFT has become widely
used for the calculation of molecular properties in toxicologically
relevant organic and inorganic species. DFT is a quantum
mechanical method used in computational chemistry for
calculating potential energy surfaces (PES) of chemical systems;
a PES provides information about the energy of a chemical at a
multitude of geometries and degrees of freedom.
Quantum chemistry is primarily concerned with solving the

time-independent, nonrelativistic electronic Schrödinger equa-
tion as follows:

H r r r E r r r( , , ... ) ( , , ... )N N1 2 1 2
̂ Ψ = Ψ (2)

where Ĥ is the Hamiltonian operator, E is the energy, Ψ is the
wavefunction, and ri is the coordinate of each electron. In
quantum chemical methods, the Born−Oppenheimer approx-
imation is invoked meaning that electronic (electrons) and
nuclear motion (nuclei) has been decoupled and separated. The
electronic Schrödinger equation can be solved through the
construction of approximate many-electron wavefunctions, for
example, in the Hartree−Fock (HF) theory.33 The central
object in DFT, as proposed by Hohenberg and Kohn, is the
electron density distribution ρ(r) rather than the wavefunction.
The electronic ground state energy of a molecule can be
calculated as a functional of its density, E[ρ(r)]. To understand
the principles of DFT from an intuitive, nonmathematical point
of view, E. B. Wilson proposed three fundamental ideas about
the electron density (see Figure 3): (i) so-called “cusps” in the
electron density correspond to the position of nuclei, (ii) the

heights of these cusps are directly linked to nuclear charge, and
(iii) numerical integration of the electron density gives the total
number of electrons in the system, for example, the electron
density in benzene would integrate to 42.34 These core ideas are
what allow us to understand the direct relationship between the
electron density and the energy of a system under study. To use
DFT in computational chemistry (and therefore toxicology), an
orbital approach needs to be adopted as put forward by Kohn
and Sham.35 The Kohn−Sham (KS-DFT) approach defines the
total electron density as a sum over Kohn−Sham orbital
densities as seen in the following equation:

r r( ) ( )
i

n

i
2

elec

∑ρ φ=
(3)

Where ψi are individual Kohn-Sham orbitals and nelec is the
number of electrons in the system. A problematic term in the
overall energy expression is the unknown exchange−correlation
energy functional. Many, approximate functional forms of this
term have been developed over the years, and thus, it is not
always clear which one to choose for a given chemical problem.
One of the most commonly used functionals is B3LYP, but
benchmarking studies should be consulted to determine which
functional will likely perform best for a chemical system of
interest.36−38

The advantages of DFT are best described by comparing it to
wavefunction based approaches. Speed of calculation is an
important consideration when working with large data sets of
chemical structures. Although calculation length will differ for
each functional, generalizations can be made for different
quantum chemical methods. The simplest wavefunction based
method, HF theory, can show N4 scaling, where N is a relative
measure of the system size. Higher level wavefunction methods
such as MP2 can show N5 scaling, while coupled-cluster singles,
doubles, and perturbative triples (CCSD(T)) can show very
expensive N7 scaling.39 DFT can show a substantial reduction in
computational cost, withN3 scaling.40 Further, a research field of
wide-ranging interest, linear-scaling DFT, aims to further reduce
the scaling to N for very large systems.39 Although a reduced
scaling can be attached to DFT, many popular functionals show
improved performance when compared to HF.36 Some
functionals have also been shown to outperform MP2.38 It is
this fine balance between accuracy and computational efficiency
that makes Kohn−Sham DFT so desirable for the calculation of
molecular properties. This is paramount in predictive toxicology
and (Q)SAR, where accurate geometries and molecular
properties are vital in building consistent, reliable models.

3.2. DFT-Derived Chemical Descriptors in Mutagenic-
ity Prediction. Molecular structures are complex entities.
Much research has been concerned with trying to capture and
utilize the theoretical information embedded within chemical
structures for the construction of (Q)SARs. Evidence of
scientific focus on molecular descriptors is shown by many
(>5000) proposed descriptors for use in fields such as toxicology
and environmental protection. Molecular descriptors are
described as “the final result of a logic and mathematical
procedure which transforms chemical information encoded
within a symbolic representation of a molecule into a useful
number or the result of some standardized experiment”, and
have an important role to play in predictive toxicology (see
Figure 4).41 Many mutagenic events are initiated by the reaction
between exogenous electrophiles with nucleophilic atoms in
DNA nucleobases such as nitrogen and sulfur.42,43 A number of

Figure 3. Graphical representation of the electron density surface for a
water molecule. Cusps are observed at the position of nuclei, and the
total electron density must integrate to the total number of electrons.
Diagram reprinted with permission from Koch and Holthausen.34

Copyright 2001 Wiley-VCH.
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mechanisms and reaction types can occur, such as the formation
of cyclic adducts, frameshift mutations, and strand breaks.44

Many of these mechanisms will be fundamentally governed by
electrophilicity, nucleophilicity, and regioselectivity, and build-
ing models that utilize the descriptors that control this behavior
can prove powerful in predictive potential.45 Quantum
mechanical methods such as DFT can be used to calculate
and develop such descriptors for use in predictive toxicological
models. These descriptors can be simple zero-dimensional
parameters such as molecular weight or higher-dimensional
descriptors such as free energy of activation. This chapter will
detail and examine some of themost commonly used descriptors
in the prediction of mutagenicity.
3.2.1. HOMO/LUMO Energies. The highest occupied

molecular orbital (HOMO), lowest unoccupied molecular
orbital (LUMO), and difference between them can be key
determinants in the likelihood of reaction between two chemical
species. These descriptors are easily and routinely calculated
using quantum chemical methods such as DFT. They find their
origins in the frontier molecular orbital (FMO) theory as
proposed by Fukui, who argued there is better orbital overlap
when the nucleophile HOMO and the electrophile LUMO are
closer in energy.46 TheHOMO−LUMOenergy gap can be used
in predictive (Q)SAR models; however, it is not uncommon for
studies to neglect the toxicant-target HOMO-LUMO inter-
action, and to examine only toxicant energies, for example,
individual LUMO energies for a range of congeneric toxicants. A
recent study by Kuhnke et al. used the DFT-derived HOMO−
LUMO energy gap as a descriptor to predict Ames mutagenicity
data for primary aromatic amines.47 Their results showed that
the HOMO−LUMO gap was an effective descriptor, partic-
ularly when combined with a quantummechanical stability term,
when applied to the prediction of Ames mutagenicity. HOMO/
LUMO energies can also be utilized for calculation of chemical
hardness η and chemical softness S according to the hard and
soft, acids, and bases (HSAB) theory and the following
equations:

2
LUMO HOMOη

ε ε
=

−
(10)

S
1 2

LUMO HOMOη ε ε
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LoPachin et al. used DFT to show that hardness and softness
as chemical descriptors can be instrumental in understanding
irreversible, covalent toxicant−target interactions.48 They
showed that soft−soft and hard−hard interactions are favorable,
and nucleophile−electrophile selectivity is significant when
examining toxicological phenomena. The authors believe this
paper highlights the importance of developing parameters that
relate to the molecular initiating event. Building QSAR models
that utilize DFT-derived chemical descriptors associated with
regioselectivity could be key to predicting the most prevalent

molecular sites that control covalent toxicological phenomena.
We also consider that many descriptors focus exclusively on a
single molecule of interest, andmore research should be pursued
to examine the fundamental chemistry between toxicant and
target.

3.2.2. Molecular Size and Shape. The size and shape of a
molecule play important roles in its degree of bioavailability.
Once a structure has been geometrically optimized using DFT,
its shape can be graphically visualized. The relevant metrics may
be both molecular weight and molecular volume, for example,
oral bioavailability is not significant with a molecular weight
>1000 Da.49 These descriptors are among the simplest
descriptors to calculate yet can often be vital building blocks
when constructing multivariate QSAR models.

3.2.3. Partial Charges. Partial charges are extremely useful for
understanding inter- and intramolecular electrostatic interac-
tions. In chemistry, a partial charge is typically considered to be a
noninteger charge on atoms in molecules, brought about by the
asymmetrical distribution of electrons between chemical bonds.
These charges play a vital role in steering where reactivity is
likely to occur and therefore which molecular regions will likely
be involved in mutagenicity. Although many different methods
exist for the calculation of partial charges, accurate atomic
charges are generally obtained only through quantum
mechanical calculations such as DFT. For example, a study by
Korchowiec et al. showed the strength of DFT for examining the
relative reactivity of different sites in purine bases.50 By
examining charge distribution in guanine, regions that would
likely be involved in electrophilic attack were ascertained; many
toxic chemicals are known electrophiles that cause genetic
damage, and this type of model allows better prediction of where
and why these reactions occur. There are different types of
charge that may be calculated for use in QSAR. Class I charges
are obtained by matching to experimental data or using
nonquantum models that involve methods employed from
classical physics. The advantage of using class I charges relates to
the speed of acquiring data: they can be very useful for
investigating large data sets.51 Class II charges are obtained by
using wavefunction or electron density-based approaches, such
as HF or DFT, with the charges being partitioned into individual
atomic contributions. An example of a class II approach is
Mulliken population analysis (MPA). This method has been
used previously in toxicology, where Kim et al. used DFT to
perform MPA for examination of partial charges on exocyclic
nitrogen atoms in aryl amines.52 Their results showed that
nitrenium ions formed from known mutagenic aryl nitro drug
candidates show greater partial charges on their exocyclic
nitrogen, when compared to other similar drug classes. This
work directly shows that partial charges can control the extent of
mutagenic activity and has an important role to play in
understanding mutagenesis, allowing them to be utilized as
chemical descriptors where possible. Class III charges are
obtained through the direct analysis of physical observables that

Figure 4. Chemical descriptors can vary from simple 0D parameters (e.g., number of atoms) up to complex 3D descriptors such as free energy of
activation. The graphic on the right is a typical output from quantum chemical DFT calculations.
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are predicted from the molecular wavefunction. However, for an
understanding of intermolecular interactions, Class III charges
appear to have limited accuracy and applicability.51 Class IV
charges show remarkable accuracy for fast, low-cost calculations
and can be considered semiempirical in nature. They typically
utilize predetermined values from Class II charges that are
mapped onto the atom types, both of which can be calculated
using DFT.53

3.2.4. Hydrogen Bonding. As a phenomenon, hydrogen
bonding is one of the most important concepts in the field of
biochemistry. Proteins, DNA, RNA, and many reactive bio-
logical nucleophiles have a variety of residues that can accept and
donate hydrogen bonds. Hydrogen bonding as a descriptor can
be approached by understanding the energetics behind
hydrogen bond formation using quantum chemical methods
such as DFT. Numerous studies have used DFT to investigate
hydrogen bonding and the associated interaction energies
between toxicological phenomena.54−56 However, in predictive
toxicology, detailed energetic studies are limited, and the
number of hydrogen bond donors/acceptors is typically chosen
as a simple descriptor. It has been shown that when probing
these energetics, wavefunction based approaches can show
improved performance when compared to DFT. Boese tested
over 50 DFT functionals and their performance for assessing
hydrogen bonding and showed that large errors are omnipresent
when compared to higher level wavefunction-based methods
such as Møller−Plesset (MP2, MP3) perturbation theory and
Coupled-Cluster (CC) methods.57 It should be made clear to
the reader that when working with quantum mechanical
methods, a fine balance exists between accuracy and computa-
tional feasibility. Many high-level wavefunction based methods,
such as Coupled-Cluster, can take impractical lengths of
computation time, ranging from hours to days for large,
individual molecules. Naturally, a cheminformatic setting will
often consider thousands of molecules, ensuring that high-level
wavefunction methods are difficult to consider.58

As described earlier, there are many types of chemical
descriptor that can be included in (Q)SAR models for
mutagenicity prediction. However, many of these descriptors
are solely obtained from the potential toxicant itself and neglect
any target−toxicant interaction. As discussed in Section 2.1, the
molecular initiating event is an important step in toxicological
reactions, and more broadly, adverse outcome pathways
(AOPs).59 To fully probe this step, and gain a detailed
understanding of the MIE, methods that investigate the steric
and energetic interactions between toxicant and target, could
reveal a hidden layer of information when attempting to build
and develop new descriptors and models.
3.3. DFT Transition State Modeling for Mutagenicity

Prediction. DFT transition state modeling is a quantum
mechanical method for exploring complex organic reaction
mechanisms (see Figure 5). Many mutagenic events arise due to
reaction between a biological nucleophile and an organic
molecule, and thus, transition state modeling can be an
invaluable tool for probing these reactions. According to
IUPAC nomenclature, a transition state is defined as a specific
geometric assembly of atoms, which when randomly placed at
the saddle point, would have an equal probability of forming the
reactants or of forming the products.60 Reaction activation
barriers can be calculated by using quantum chemical methods
to calculate the energy of the reactants (toxicant and target) and
transition states (toxicant-target). The magnitude of the
activation barrier gives an indication to the likelihood of

reaction between a biological nucleophile and an exogenous
electrophile. If this methodology can be successfully imple-
mented into predictive computational toxicology, new insights
into the energetic and mechanistic details of mutagenic events
may be possible. Transition state modeling can give the user
insight into competing reaction pathways and will often reveal
the lowest energy pathway.61−63 Few attempts at using this
methodology for the prediction of mutagenicity have previously
been performed but will be highlighted further. In 2011, Cronin
et al. used DFT to show that transition state modeling can be
used to predict the reactivity of α,β-unsaturated carbonyl
compounds with glutathione.64 They showed that steric
hindrance plays a key role in the reactivity profiles and that
mechanistic information is an invaluable tool in predicting
electrophilic toxicity. Although this study was not targeted
directly at mutagenicity, it showed that transition state modeling
can be successfully used to group compounds according to their
intrinsic reactivity. In the same year,Mulliner et al. studied a data
set of 35 electrophilic 1,4-Michael acceptors using DFT
transition state modeling. Although this study focused on
correlating transition state barriers to experimental rate
constants, with a targeted end point of aquatic toxicity, it
proved that modeling transition states can be vital for the in silico
study of the MIE.65 In 2012, Kostal et al. used transition state
modeling to examine an SN2 reaction between 15 epoxides and a
chloride anion.66 Their results showed that free energy of
activation (ΔG⧧) could not be used effectively to examine the
mutagenic potential of their epoxide data set. However, in this
case, a chloride anion was chosen as the nucleophile due to
“comparable nucleophilic strength to DNA nucleotides in
aqueous solution”. This could be an oversimplification of the
true situation due to DNA nucleotides having multiple
nucleophilic sites with different relative strengths. An unsuitable
choice of nucleophile for examination in transition states could
drastically affect the predictive performance of a model.
Following this in 2013, Leach et al. carried out a set of Ames
test procedures on a virtual array of aminopyrazoles, and in
parallel, used DFT to predict the associated probability of being
positive in the Ames test.67 The dissociation energy ΔE was
calculated for a variety of activated aminopyrazole conjugates at
the B3LYP/6-31G* level of theory. The probabilistic results
generated from DFT calculations showed excellent promise for

Figure 5. Diagram of a reaction coordinate showing reactants,
products, and a transition state. Transition state modeling involves
calculating reactant and transition state energies with quantum
mechanical methods, for example, DFT and HF.
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predicting the risk of mutagenic activity in the Ames test. This
work directly highlights the pivotal role that DFT can play in
making predictions related to mutagenicity. In 2018, Goodman
et al. published a study investigating whether DFT transition
state modeling can be used to predict the Ames test result and
thus the mutagenic potential, of 19 1,4 Michael acceptor-type
compounds.61 Their chosen nucleophile was methylamine, and
the results demonstrated that free energy of activation shows
good predictivity for the mutagenic potential of Michael
acceptors. This study has importance in showing that transition
state modeling may be widely applicable for studying the
mutagenicity of different groups of electrophilic chemicals. We
have since published work that builds upon this model, where
improvements were made to the previously published transition
state barriers, and LUMO energies were proven to show
significant predictivity toward Ames test results and thus their
mutagenic risk.68 The study showed that a data set of 29 1,4
Michael acceptors could be separated by their Ames test result,
with 100% of compounds being correctly predicted and
categorized. The work showed that compounds with reaction
barriers less than 20.7 kcal/mol and LUMO energies less than
−1.85 eV should be Ames positive, while those with reaction
barriers greater than 22 kcal/mol and LUMO energies greater
than −1.83 eV should be Ames negative. We believe that
transition state modeling has an important role to play in the
future of predictive toxicology. We further propose that free
energy of activation (with a relevant biological nucleophile)
should be more commonly examined as a chemical descriptor
when building future (Q)SAR models for mutagenicity. In
previous years, quantum chemical calculations required
considerable time and expertise to perform. However, with the
continued increase in computational processing power and
automation, DFT transition state calculations are more readily
performed than ever, thus unlocking the potential for
toxicologists to incorporate them into chemical risk assessment.

4. CONCLUSION

This perspective has provided a broad insight into the current
status of how in silico methods can identify genotoxicants,
specifically mutagens, with particular emphasis on howDFT can
aid in the computational prediction of mutagenicity. We first
discussed the importance of developing predictive in silico
methods in toxicology, along with the increasing desire to reduce
animal testing where possible. Different in silico approaches
(SARs and QSARs) for examining mutagenic potential were
discussed, followed by rationalizing how DFT and transition
state modeling are both powerful tools for calculating molecular
descriptors in predictive toxicology. Despite the broad approach
in this perspective, we have discussed and highlighted why the
computational sciences have an important role to play in the
prediction of mutagenicity. We further ask the research
community to consider transition state modeling as a
fundamental method for assessing the mutagenic potential of
electrophilic toxicants. We thank you for your attention and
hope that reading this perspective has been a fruitful endeavor.
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