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Abstract: The time-delay estimation (TDE) method is the primary method for predicting leakage
locations in buried water distribution pipelines. The accuracy of TDE depends on the acoustic speed
and attenuation of the leakage signal propagating along the pipeline. The analytical prediction
model is the typical approach for obtaining the propagation speed and attenuation of leakage waves.
However, the embedding parameters of the buried pipe in this model must be measured using soil
tests, which are very difficult, costly, and time-consuming. These factors restrict the application
of the TDE method in pinpointing pipeline leakage. A method for inverse identification of pipe
embedding parameters using discrete wavenumbers obtained in field testing is presented in this
paper, and the differential evolution algorithm is introduced as an optimization solution. A field
experiment is conducted to validate the method, and the test wavenumbers are measured in a cast-
iron pipeline. The estimated sensitive parameters in the analytical model using the method are soil
elastic modulus, Poisson’s ratio, and pipe–soil contact coefficient, while the conventional soil test
is used to measure the soil density due to the character of the optimization algorithm and the soil
properties. The application effects show that the estimated parameters are close to those measured
from a conventional soil test. The wave speed based on the estimated parameters was an excellent
match for the on-site test in the engineering application. This work provides a less costly and more
straightforward way to apply the TDE method for leak localization in buried pipelines.

Keywords: buried water pipe; pipe embedding parameters estimation; differential evolutionary
algorithm; wavenumber estimation

1. Introduction

Water leakage, especially in buried pipelines, is a subject of increasing concern across
the world because of the potential public health danger, economic constraints, environ-
mental damage, and wastage of energy. Detecting and pinpointing leakage provides a key
means to solving the issue. The leak detection methods in pipes can be classified into three
categories [1]: methods based on signal processing, methods based on state estimation, and
methods based on knowledge. Most methods based on signal processing focus on utilizing
measurements collected from different sensors and applying different analytical techniques
to detect and localize faults. The state estimation methods thus far focus on developing
and using models based on fundamental principles to detect and localize leaks. Most of the
methods based on knowledge were initially designed to detect leaks in systems with single
flow. Among these methods, acoustic-based technology is more suitable for leak detection
in water distribution pipelines.

Acoustic-based leak detection techniques have been in common use in water-distribution
networks over the past 30 years [2,3]. They usually use the cross-correlation function
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between leak noise signals measured using hydrophones or accelerometers placed on both
sides of the leak. The efficacy of a correlator depends upon knowledge of the speed at
which the leak noise propagates along the pipe as well as how much it attenuates with
distance. As is known, the fluid-borne wave in the pipe is the predominant energy-carrying
mode in the pipe leakage detection field, and its propagating characteristics are profoundly
influenced by the pipe and soil properties, especially in the pipe–soil strong coupling
pipeline systems, e.g., buried plastic pipe systems. Muggleton [4] and Gao [5,6] observed
that the medium outside the pipe acts on the pipe with additional mass and additional
stiffness through the interface shear effect, affecting the acoustic speed and attenuation.
Based on the analytical and finite element models, Brennan [7] further studied the effects of
the soil properties surrounding the pipe on the propagation speed of the leakage acoustic
wave, pointing out that the shear properties of the soil mainly affected the propagation
speed of the acoustic wave, and the compression properties mainly affected the attenuation
of the acoustic wave. The models were subsequently applied to two different types of
soil—one sandy, the other clay—to validate the above study.

The theoretical model plays an important role in predicting leak wave speed and
attenuation along the pipe. Although the pipe property parameters in this model can be
determined relatively easily, estimation of the soil property parameters surrounding the
pipe is more problematic. Representative soil samples—used for parameter testing—are
difficult to obtain due to the large covering scale and the complex embedding conditions of
the on-site pipeline. The subsequent time-consuming soil tests of the soil samples make
them costly for practical applications. Meanwhile, the presumption of the theoretical
model generally reduces agreement between predicted and actual wave propagating
speed. Accordingly, in leakage-location engineering practice, a more accurate estimation
method for soil properties is needed, along with a more convenient and precise method of
determining propagating speed and attenuation of the leak wave.

Currently, in many industrial applications, the inversion identification of model pa-
rameters using field test data is an emerging approach to obtaining the soil parameters
in a model [8,9]. Jesenik et al. [10] tested different soil models on measured data and
used different metaheuristics to determine soil parameters. These inversion methods of
soil parameters are worthy of reference, but the required test methods are not suitable
for buried pipe conditions. Scussel et al. [11] introduced the idea of inversion into the
buried liquid-filled pipe and used the cost-function algorithm to estimate the bulk modulus
and shear modulus of the soil. However, the two above estimated parameters are not
independent, which easily leads to multiple solutions. Meanwhile, it is easy to be trapped
in local optima when solved by the cost-function algorithm for optimization problems with
unclear gradient information.

An embedding parameters identification method for water-filled pipes based on the
differential evolutionary algorithm is put forward using field test data. With this method,
the pipe embedding parameters can be quickly inverted based on a few discrete leakage
test data. The continuous speed in the full frequency band of interest can be obtained easily
through the amended analytical model.

2. Method for Wavenumber Prediction

The leakage acoustic wave propagation has multiple modes and dispersion charac-
teristics for the liquid-filled pipe system with a high coupling of pipe/soil. To predict
the wave speed more accurately, Fuller [12] and Pinnington [13] proposed a wave-speed
prediction analytical model for a liquid-filled pipe in a vacuum, which considered the
dispersion characteristics for the modes of sound propagation along with the fluid and
pipe. Muggleton [4] and Gao [5] proposed a theoretical model of wavenumber prediction
considering the effect of external pipe medium on sound-wave propagation under the
assumed extreme condition of lubricated contact and compact contact between pipe and
soil. They then proposed the method for calculating the propagation speed of buried
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liquid-filled pipe, meanwhile observing that the fluid-dominated axisymmetric wave is the
primary mode in leak detection.

Lu et al. [14] introduced the pipe–soil contact state variable into the fluid-dominated
axisymmetric wave equations for the first time, which broke through the assumption of the
extreme buried conditions, and the general wave equation of the axisymmetric wave of the
buried liquid-filled pipe is obtained as follows:

In the above equations, the parameters of the pipe and fluid are easily available. The
factors needing identification in the system are usually the soil parameters, which include
Young’s modulus, Poisson’s ratio, density, and contact coefficient between pipe and soil.
The first three parameters are generally obtained through conventional soil tests. The main
on-site test methods for soil density are the ring knife method and the irrigation method,
which are both mature technology [15]. The Poisson’s ratio is obtained by measuring the
volume change, and is difficult to test accurately. The determination of the elastic modulus
requires a high production level of instrument and equipment [16], which are not easy to
operate in practice. Meanwhile, the determination method for the deformation modulus
and shear modulus is easier to realize. The actual elastic modulus of the soil is often
converted from the bulk modulus and shear modulus, and the conventional test method
for both is the three-axis test [17]. At present, there is no suitable test technology for the
contact coefficient of pipe and soil interface, which can only be gained by experience.

k2
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β
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where α stands for the surrounding medium loading and pipe parameters, which can be
used to evaluate the influence of soil load on the pipe wall displacement, β refers to fluid
and pipe parameters that can be used to evaluate the influence of fluid load on the pipe
wall displacement, Ω is the non-dimensional frequency, Ω = ωa/cL = kLa, k f = ω/c f
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kr
ds, kr

rs are the compression and shear wavenumbers of soil in the radial direction respec-
tively, which can be expressed by compressed wavenumber kd, shear wavenumber kr, and
wavenumber in the axil direction ks as follows:{

(kr
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2 − ks

2

(kr
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2 , (4)

{
kd

2 = ρmω2/(λm + 2µm)
kr

2 = ρmω2/µm
, (5)
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λm, µm are Lame coefficients, and ρm is the density of the medium.

kL = ω2ρp

(
1− vp

2
)

/Ep, (6)

{
λm = Emvm/(1 + vm)(1− 2vm)
µm = Em/2(1 + vm)

, (7)

ξ ∈ [0, 1] represents the contact coefficients to the actual boundary conditions at the
pipe–soil interface, among which ξ = 1 represents compact contact, and ξ = 0 repre-
sents lubrication contact. The other parameter details in Equations (1)–(7) are given in
reference [14].

In the above equations, the parameters of the pipe and fluid are easily available. The
factors needing identification in the system are usually the soil parameters which include
Young’s modulus, Poisson’s ratio, density, and contact coefficient between pipe and soil.
The first three parameters are generally obtained through conventional soil tests. The main
on-site test methods for soil density are the ring knife method and the irrigation method,
which are both mature technology [15]. The Poisson’s ratio is obtained by measuring the
volume change, and is difficult to test accurately. The determination of the elastic modulus
requires a high production level of instrument and equipment [16], which are not easy to
operate in practice. Meanwhile, the determination method for the deformation modulus
and shear modulus is easier to realize. The actual elastic modulus of the soil is often
converted from the bulk modulus and shear modulus, and the conventional test method
for both is the three-axis test [17]. At present, there is no suitable test technology for the
contact coefficient of pipe and soil interface, which can only be gained by experience.

By Equation (2), β can be obtained directly, but α, related to the unknown wavenumber
k1, cannot be solved directly. As it is difficult to obtain the closed analytical solution of
Equation (1), the numerical method is adopted by transforming the differential equation
solving problems into optimization problems.

The above theoretical model can be solved using the Nelder–Mead method [18] to
obtain the wavenumber information. To pick out effective design variables in the algorithm
in Section 3, the sensitivity of the wavenumber was analyzed for each parameter, as shown
in Figures 1–3. The parameters of the pipe system are shown in Table 1.
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Table 1. Properties of the theoretical model for the cast iron pipeline.

Properties Fluid Pipe Surrounding Medium

Density (kg/m3) 1000 7800 1999
Young’s modulus (N/m2) - 1.22 × 1011 4.5 × 107

Bulk modulus (N/m2) 2.25 × 109 - 5.0 × 107

Shear modulus (N/m2) - - 1.67 × 107

Poisson’s ratio - 0.25 0.35
Material loss factor - 0.01 -

It can be seen from Figures 1–3 that the effects of soil density and Poisson’s ratio on the
wavenumber are similar, both having a considerable influence on the imaginary part, but
little influence on the real part. The elastic modulus affects both the real and imaginary parts
of the wavenumber, especially when the elastic modulus increases above 4.5 × 107 N/m2.
From the optimization algorithm viewpoint, the design variables with similar influences
on the objective function are likely to produce thematical multiple solution problems. Thus,
soil density and Poisson’s ratio could not be used simultaneously as design variables for the
optimization algorithm. Density is relatively stable and easy to measure, while Poisson’s
ratio is the physical parameter that is not easy to measure accurately by the current test
means. Therefore, the Poisson’s ratio was taken as the identification target parameter of the
optimization algorithm, while the density was still determined by the conventional soil test
method.
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3. The Estimation Method of Pipe Embedding Parameters

According to the theory of wavenumber prediction, there is a mapping relationship
between pipeline embedding parameters and wavenumbers. When the wavenumbers
corresponding to some frequencies are obtained by field testing, theoretically, the pipe
embedding parameters approaching the test wavenumber can be obtained through mathe-
matical optimization.

Traditional mathematical optimization methods rely on the derivative or gradient
matrix of each iteration step to determine the next step’s search direction and step length.
However, the above theoretical wavenumber is not directly expressed by the wave equation
but obtained by numerical methods, which leads to the difficulty in obtaining a gradi-
ent matrix, and even to singularity. Consequently, the methods dependent on gradient
information are difficult to use directly for pipeline embedding parameter identification.

Due to the particularity of the engineering problems, optimization algorithms that do
not require a gradient matrix are widely adopted. The EM algorithm is a commonly used
tool for estimating the parameters for a mixture model but is more dependent on the initial
values [19]. Bio-inspired optimization that does not need to iterate with a gradient matrix
and does not depend on the initial values is a growing research topic to solve large-scale
complex optimization problems. Jesenik, et al. [20] employed bio-inspired methods to
determine a DC motor and drive parameters. Due to its huge computational amount,
complex structures and many parameters are needed to control the bio-inspired algorithm
in the application. LaTorre et al. [21] proposed methodological guidelines to prepare a
successful proposal through many surveys. Liu et al. [22] introduced a parameter control
approach utilized as feedback to control evolution processes adaptively.

Genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution
algorithm (DE) are very excellent bio-inspired optimization processes; however, each
would need to be adapted according to the actual engineering problem. DE was chosen
mainly because the algorithm does not have patent protection, which means it is possible
to popularize the soil parameter estimation method. DE was put forward by Storn and
Price [23] in 1995 and has gained wide applications [24–26].

DE is a parallel direct search method that utilizes NP dimensional parameter vectors
as population X for each generation. In searching the optimal solution, two-parent vectors
were selected and subtracted to obtain the differential vector. DE generates new parameter
vectors by adding the weighted difference between two population vectors to a third
vector, called the mutation operation. Then, the mutated vectors are mixed with the
parameters of another predetermined vector to yield the trial vector. If the trial vector
yields a lower cost function value than the target vector, the trial vector replaces the target
vector in the following generation, which is called the selection operation. Through the
several-generation evolution of mutation, crossover, and selection operation, the optimal
individuals are retained, inferior individuals are eliminated, and the population is guided
to approach the optimal value gradually.

According to the analysis in Section 2, the parameters to be identified are the Elastic
modulus E, Poisson’s ratio v of the medium surrounding the pipe, and the contact coef-
ficient of pipe and soil ξ, which constitute the vectors of the optimized design variables
x:

x = (E, v, ξ). (8)

The parameters based on their physical meaning are set as:{
xmin = [1× 103, 0, 0]
xmax = [1× 1010, 0.5, 1]

. (9)

NP sets of initial values are randomly generated within the constraints of the vector,
which form a population X:

X = [x1, x2, · · · , xNP], (10)
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The approximation of the wavenumber corresponding to the target value of each
group of the individual vector was calculated using the function f :

f (E, v, ξ) =

√
(wre fre)

2 + (wim fim)2 → min. (11)

Since the wavenumber is complex, it is commonly difficult to simultaneously achieve
the same degree of approximation in real and imaginary parts. Therefore, the weight
coefficient wre, wim is introduced to consider the relative importance of the real part fre and
the imaginary part fim: fre(E, v, ξ) = ∑M

i=1
|kre

tar(ωi)−kre
calc(ωi)|

Mkretar(ωi)

fim(E, v, ξ) = ∑M
i=1
|kim

tar(ωi)−kim
calc(ωi)|

Mkim
tar(ωi)

(12)

where M is the number of frequencies requiring calculation, ktar is the target wavenumber,
and kcalc is the calculated wavenumber in the current step.

After several generation populations of mutation, crossover, and selected operation,
the function f approximates to a minimum. When the smallest function value f in the
population no longer decreases in the subsequent t cycles, the loop will exit, and the exit
condition can be expressed as: ∣∣min fg −min fg+t

∣∣ < ε, (13)

where g is the current number of cycles, termed the generation number, and ε is the tolerance
error.

The final identified pipe embedding parameters are the vector corresponding to the
individual minimizing the function f in the last population. The solution process is shown
in Algorithm 1.

In Algorithm 1, j is the individual sequent number, and j ∈ [1, NP]; bj is the mutated
individual, uj is the crossovered individual, and xj is the individual in current population,
respectively; F is the amplification factor of the differential variation; rand(m) indicates
generating a random value from [0, 1] in each dimension; q is a dimensional sequent of the
individual vector; and CR is the crossover constant that influences computational efficiency
and accuracy—in this paper, CR = 0.5.

Choosing a reasonable amplification factor F is essential for the algorithm to weigh
the global convergence difficulty and computational efficiency. Larger values of F can
help the function jump from the local optimum to the global optimum but deteriorate the
algorithm’s convergence. Smaller values of F are in favor of the convergence; however,
against the computational efficiency and prone to a local optimum. The elastic modulus as
the design variable varies widely, and its effect on the objective function is non-monotonic.
It is improper to use a traditionally constant value for F. A variable F is employed with the
increasing generation number, termed F = 2 − g/300, and 300 is the maximum number
of cycles in this paper. At the beginning of the algorithm’s operation, a particularly high
value should be set to ensure the population’s approximation to the global optimum. In the
following stages of the algorithm, the value of F becomes smaller to ensure convergence.
F is a real and constant factor in a particular generation and varies with each generation.
If a mutant individual exceeds the boundary values shown in Equation (9), the mutant
individual will be replaced by the boundary values.
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Algorithm 1 Pseudo-Code for the DE Process

1. set control parameters NP, CR, ε.
2. randomly generate the initial population of vectors in 3-dimensional search space
3. g = 1
4. repeat
5. for each individual j in the population do
6. // begin mutation operation
7. F = 2 − g/300
8. select three mutually exclusive random individuals xr1, xr2, xr3
9. where, r1 6= r2 6= r3
10. generate a donor individual by Equation (14)
11.

bj = xr1 + F(xr2 − xr3) (14)

12. // end mutation operation
13. do
14. while (g ≤ 300 AND Equation (13) is false)
15. // begin crossover operation
16. m = a random integer in the range of [1, 3]
17. randD = [1, 2, 3]
18. generate a trial individual uj employing crossover by Equation (15)
19.

ujq =

{
bjq, if rand(m

)
≤ CR or randD(q) = m, q ∈ [1, 2, 3]

xjq, for all other dimensions
(15)

20. // end crossover operation
21. // begin selection operation
22. evaluate the candidate individual uj using Equation (11)
23. replace xj with uj, if fitness of uj is better than fitness of xj
24. // end selection operation
25. end while
26. g = g + 1
27. end for

4. Application of the Method

To validate the feasibility of the method, the cast-iron pipe embedding parameters
were estimated using a set of wavenumbers obtained from the on-site test. Figure 4 shows
a schematic diagram of the test of the acoustic wave propagation in a buried water pipe.
The test platform is shown in Figure 5. Sensor 0 was installed on a hydrant to collect the
vibration response in the normal direction caused by water discharge from the hydrant.
Sensors 1 and 2 were installed on the pipe wall in the inspection wells on both sides of the
hydrant to collect the leakage propagation signals.

The time delay between the two-way leak signals collected by Sensor 1 and Sensor
2 can be acquired using the cross-correlation analysis method. The corresponding wave
speed and attenuation are easily available through the acquisition of the interval distance
from the hydrant to either test point. Accordingly, the test can obtain wavenumbers at the
characteristic frequencies, as shown in Table 2, which shows the target wavenumber ktar in
Equation (12).
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Table 2. The real and imaginary parts of the test wavenumber.

No. Angular Frequency
(rad/s)

Real Part of
Wavenumber

Imaginary Part of
Wavenumber

1 3121.9580 2.5080 0.00544
2 4167.0400 3.3276 0.00882
3 7221.7360 5.9966 0.02740
4 10,314.4800 8.1600 0.05960

In DE calculation, each population vector serves once as the target vector, so that NP
competitions occur in one generation. The larger the NP, the more computation in a single
cycle; however, there are fewer total cycles with larger NP. Because the NP competitions
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within the same generation can be performed in parallel, NP should be set as a multiple of
the number of computer threads. Moreover, it is also undesirable to significantly increase
NP to reduce the cycles, as this would result in a longer overall calculation time. In this
calculation, the number of computer threads is 10, setting NP as 50, and wre = 1, wim = 5
according to experience and convenience. Figure 6 shows the trend of the approximation
function f with the elastic modulus and the Poisson’s ratio. The approximation function
has a local minimum on each side of the elastic modulus of 1 × 109 N/m2. The proposed
algorithm randomly generates the initial population in the whole domain, which can
effectively jump from the local optimum to the global optimum. The final estimate is the
parameters corresponding to the minimum value of f in the figure.
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Table 3 shows the respective values of the pipe embedding parameters obtained
according to the conventional soil test and estimated method. As shown in the table,
the values estimated by the inversion identification approach are very close to the soil
test measurement. The deviation rate of the elastic modulus is about 6.44%, and the
deviation rate of Poisson’s ratio is about 4.97%, meeting the accuracy requirements for soil
engineering applications.

Table 3. Comparison between the identified values and the test values for soil parameter.

Items Elastic Modulus
N/m2 Poisson Ratio Contact Coefficient

Test Values 4.5 × 107 0.35 -
Estimated Values 4.79 × 107 0.3326 0

The parameter estimation aims to provide a quick and accurate way to obtain the
continuous wave speed in the full interest frequency domain through the wavenumber
theoretical model. The soil test and estimated parameter values in Table 3 were each
substituted into the theoretical formula in Section 2. Theoretical Wavenumbers 1 and 2 were
obtained, as shown in Figure 7, and compared with the test wavenumber. The Wavenumber
1 curve represents the results calculated by soil test values, and the Wavenumber 2 curve
represents those calculated by the estimated values. As is generally believed, the test
wavenumber is the most accurate for water leakage pinpoint localization. There was a good
consistency for the real part; however, there was a notable difference for the imaginary part
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between Wavenumber 1 and Wavenumber 2. Wavenumber 2 was closer to the test value
for both the real and imaginary parts.
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The deviation rate of the two theoretical wavenumbers relative to the test wavenumber
is shown in Table 4. The theoretical wavenumber deviation rate of the real part calculated
using the estimated values of pipe embedding parameters was slightly higher than that
calculated using the soil test values generally. The deviation rates were within 5.68%,
meeting the engineering requirements. Meanwhile, regarding the deviation rate of the
imaginary part, Theoretical Wavenumber 2 had a better performance. For the soil samples
used in the soil test, it was difficult to fully represent embedding soil properties along
the pipeline due to the inhomogeneity of the site soil. This may be one of the reasons
for the large deviation of the imaginary part, as well as the real part at high-frequency
in Theoretical Wavenumber 1. Since they were derived from on-site buried conditions,
the estimated values of pipe embedding parameters adequately matched the on-site pipe
buried situation in the engineering application.

Table 4. The deviation rate relative to the test wavenumber.

No.
Angular

Frequency
(Hz)

Real Part of Imaginary Part of
Wavenumber

1
Wavenumber

2
Wavenumber

1
Wavenumber

2

1 3121.9580 0.41% 2.60% 34.38% 19.12%
2 4167.0400 1.16% 1.85% 34.01% 18.37%
3 7221.7360 1.32% 4.36% 29.45% 13.47%
4 10,314.4800 10.17% 5.68% 103.29% 9.06%

5. Conclusions

An estimation method for pipe embedding parameters was put forward to improve
the applicability of the wavenumber prediction theory model for leakage location. This
method can quickly identify the sensitive pipeline embedding parameters according to the
test wavenumber based on the differential evolutionary algorithm.

To ascertain the effective design variables in the algorithm from the pipe embedding
parameters, an analysis of the sensitivity of the soil parameters to wavenumber was carried
out in this work. Since the conventional soil test can easily measure the soil density, it was
reasonable and feasible to choose the soil elastic modulus, Poisson’s ratio, and the pipe/soil
contact coefficient as the design variables to be estimated.

The DE algorithm was briefly introduced in Section 3 of this paper, and the procedure
of the DE algorithm was given considering the specific situation of the soil parameter
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identified. Control methods for population mutation and crossover in soil parameter
estimation were given, and the feasibility of the method was validated based on the cast-
iron pipeline field test. The outputs showed that the estimated parameters were very close to
those obtained from the soil test, the deviation rate of the elastic modulus was about 6.44%,
the Poisson’s ratio is about 4.97%, and the estimated pipe–soil contact coefficient is 0, which
is consistent with traditional cast-iron pipes. Compared with the tested wavenumbers, the
maximum deviation rate of the theoretical wavenumbers calculated with the estimated
parameters was 5.68% for the real part and 19.12% for the imaginary part, which satisfies
the leakage localization requirement in engineering applications.

According to the acoustic wave propagation theory of the buried liquid-filled pipe,
the coupling effect of soil on the plastic pipe is enhanced, and wave propagating speed
and attenuation are seriously affected by the surrounding medium. Future work will
explore methods for estimating soil parameters for plastic pipes. Meanwhile, research on
the application of this method to on-site pipe leak localization engineering will also be
conducted.
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