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Abstract

Background: Nonalcoholic fatty liver disease (NAFLD) is recognized as one of the most common chronic liver diseases world-
wide. This study aims to assess the efficacy of automated machine learning (AutoML) in the identification of NAFLD using a
population-based cross-sectional database.

Methods: All data, including laboratory examinations, anthropometricmeasurements, and demographic variables,were obtained from
the National Health and Nutrition Examination Survey (NHANES). NAFLDwas defined by controlled attenuation parameter (CAP) in liver
transient ultrasound elastography. The least absolute shrinkage and selection operator (LASSO) regression analysis was employed for
feature selection. Six algorithms were utilized on the H2O-automated machine learning platform: Gradient Boosting Machine (GBM),
Distributed Random Forest (DRF), Extremely Randomized Trees (XRT), Generalized Linear Model (GLM), eXtreme Gradient Boosting
(XGBoost), and Deep Learning (DL). These algorithmswere selected for their diverse strengths, including their ability to handle complex,
non-linear relationships, providehighpredictiveaccuracy, andensure interpretability. Themodelswereevaluatedbyareaunder receiver
operating characteristic curves (AUC) and interpreted by the calibration curve, the decision curve analysis, variable importance plot,
SHapley Additive exPlanation plot, partial dependence plots, and local interpretable model agnostic explanation plot.

Results: A total of 4177 participants (non-NAFLD 3167 vs NAFLD 1010) were included to develop and validate the AutoML
models. The model developed by XGBoost performed better than other models in AutoML, achieving an AUC of 0.859, an
accuracy of 0.795, a sensitivity of 0.773, and a specificity of 0.802 on the validation set.

Conclusions: We developed an XGBoost model to better evaluate the presence of NAFLD. Based on the XGBoost model, we cre-
ated an R Shiny web-based application named Shiny NAFLD (http://39.101.122.171:3838/App2/). This application demonstrates the
potential of AutoML in clinical research and practice, offering a promising tool for the real-world identification of NAFLD.
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Introduction
Nonalcoholic fatty liver disease (NAFLD) has become a
major global health concern, affecting approximately 25%
of the population worldwide. It is one of the leading
causes of chronic liver diseases, which can progress to
severe complications such as cirrhosis and hepatocellular
carcinoma within 10 to 20 years post-diagnosis.1 Despite
less than 10% of NAFLD patients developing these
severe outcomes, the absolute numbers are still consider-
able, considering the high prevalence of NAFLD.2 With
the global incidence of NAFLD escalating swiftly, there
is an imperative need to intensify efforts towards the devel-
opment of precise, non-invasive diagnostic techniques and
the formulation of efficacious prevention strategies for
those at elevated risk of NAFLD and its associated progres-
sive liver diseases. Furthermore, the majority of patients
with NAFLD are asymptomatic.3 The timely and accurate
identification of individuals predisposed to NAFLD is
crucial, facilitating the implementation of targeted interven-
tions that can halt disease advancement, prevent complica-
tions, and ultimately alleviate the strain on healthcare
infrastructures.4

While liver biopsy remains the gold standard for diag-
nosing NAFLD, its invasiveness and potential for compli-
cations, including pain, infection, and bleeding, limit its
practicality for widespread screening.5,6 The diagnosis of
NAFLD via ultrasound examination is often hampered
by numerous factors, particularly the subjectivity of the
examiner.5 Previous studies have analyzed NAFLD in
the United States population using data from the
National Health and Nutrition Examination Survey
(NHANES).7 These studies have relied on diagnostic
methods with inherent limitations, such as standard ultra-
sound and noninvasive biomarkers. Furthermore, liver
transient ultrasound elastography (LUTE) (FibroScan),
which is based on ultrasonic attenuation of the echo
wave measurement (controlled attenuation parameter
[CAP]), has emerged as a promising non-invasive diag-
nostic tool.8–10 Data from transient elastography are now
available in the NHANES database (2017–2020), allow-
ing for real-world analysis of NAFLD within the United
States population. Traditional scoring systems such as
the Fatty Liver Index (FLI), Lipid Accumulation Product
(LAP), Hepatic Steatosis Index (HSI), Fatty Liver
Disease Index (FLD Index), NAFLD Index, ZJU Index,
and Framingham Steatosis Index (FSI) enable non-
invasive detection of NAFLD.11–17 However, their clinical
utility is compromised by limitations inherent in these
traditional algorithms, which constrain further perform-
ance enhancements. Advancements in the management
and diagnostic accuracy of NAFLD hinge upon the devel-
opment of sophisticated analytical tools.

Machine learning (ML), a burgeoning field of medicine
combining computer science and statistics into medical

problems, is being widely used based on its efficient com-
puting algorithms and its ability to deal with massive clin-
ical data.18,19 Developing prediction models based on
statistical associations among features from a given input
data is one of the most common objectives of ML in medi-
cine. Notably, recent literature20–30 corroborates the for-
midable capacity of ML in crafting diagnostic models for
fatty liver disease. However, the deployment of ML
extends beyond mere algorithmic applications; it necessi-
tates a full spectrum of methodical steps, including data pre-
treatment, feature engineering, ML algorithm selection, and
hyperparameter tuning. These steps demand substantial
programming experience and ML knowledge, posing sub-
stantial hurdles for clinicians. This gap has led to the rise
of Automated Machine Learning (AutoML), a significant
breakthrough in artificial intelligence that minimizes
human oversight and automatically selects optimal algo-
rithms, tunes hyperparameters, and generates robust
models.

Zhang et al. developed a rapid and cost-effective tool
to enhance the detection of clinically significant prostate
cancer using an AutoML platform, leveraging data from
routine clinical examinations.31 Wang et al. developed
and validated models to predict 12-month esophageal
variceal bleeding using the H2O-automated machine
learning platform (algorithms include DL, XGBoost,
GLM, GBM, RF, and stacking).32 Liu et al. utilized
AutoML to predict liver metastasis in patients with gastro-
intestinal stromal tumors, based on an analysis of SEER
data.33 The ability of AutoML to streamline the develop-
ment of diagnostic tools presents a promising solution for
clinicians, particularly in the context of NAFLD. Early
detection and accurate diagnosis of NAFLD are critical
yet challenging due to the disease’s asymptomatic
nature. Despite its potential, to the best of our knowledge,
there have been few reports on the application of AutoML
in diagnosing NAFLD, highlighting this as a nascent yet
promising area of research. This study aims to address
this gap by investigating the effectiveness of AutoML in
identifying the presence of NAFLD using patient demo-
graphic data, laboratory results, and physical examination
data in the NHANES database, thereby providing a novel
approach to improving clinical outcomes for patients with
NAFLD.

Utilizing the H2O AutoML platform, this research is
designed to leverage data from the NHANES to develop
and validate a series of machine learning models for the
identification of NAFLD, as determined by FibroScan
CAP measurements. By deploying these models and creat-
ing the subsequent R Shiny web-based application, Shiny
NAFLD, based on the optimal model, we aim to signifi-
cantly improve clinicians’ diagnostic capabilities. This
approach promises a more precise, efficient, and less inva-
sive method for identifying NAFLD compared to existing
diagnostic techniques.
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Materials and methods

Data source

NHANES, a nationally representative survey of the United
States, is administered by the National Center for Health
Statistics (NCHS). The NHANES program is notable for
its comprehensive approach, integrating both interviews
and physical examinations to assess the health and nutri-
tional status of the United States population. Conducted
annually since 1999, the survey systematically evaluates
a representative national sample of approximately 5000
individuals. The NHANES interview covers a broad spec-
trum of topics including demographics, socioeconomic
status, dietary habits, and health. The examination compo-
nent of the survey comprises thorough medical assess-
ments, physiological measurements, and laboratory tests,
all performed by highly trained medical professionals.
Comprehensive details on survey variables can be accessed
at https://wwwn.cdc.gov/nchs/nhanes/Default.aspx. The
survey was approved by the NCHS research ethics
review board, and the consent of all participants was
recorded.

Participants

The data was obtained from the NHANES January 2017 to
March 2020 database, which contained data on LUTE. A
total of 15,560 participants were included. We excluded
5862 participants without CAP data, 677 with ineligible
FibroScan data (either < 10 complete FibroScan readings,
a fasting time <3 hours, or a liver stiffness interquartile
(IQRe) range/median stiffness >30%), and 4515 partici-
pants who were not included in the fasting subsample,

which chose some participants aged 12 and older to fast
for 8 to 24 hours in preparation for the examination the fol-
lowing morning. Additional exclusions were applied to
high alcohol consumers, defined in the NHANES alcohol
use survey as having an average daily intake of ≥20 g/
day and ≥30 g/day for women and men from the
NHANES alcohol use survey, or if there were any add-
itional potential factors for liver disease, including viral
hepatitis (defined as positive for serum hepatitis B surface
antigen or hepatitis C antibody or if hepatitis B or C was
reported). The final sample size for our analysis was there-
fore 4177. The flowchart of the inclusion of this study par-
ticipants is shown in Figure 1.

Fibroscan CAP

By measuring the ultrasonic attenuation of the echo wave,
also known as CAP, LUTE can quantify hepatic stea-
tosis.9,10 FibroScan model 502 V2 Touch fitted with a
medium (M) or extra-large (XL) wand (probe) was utilized
in the NHANES database to measure CAP value. In add-
ition, liver steatosis was assessed using the mean CAP
value in more than ten complete measurements taken
throughout the examination. Individuals were identified as
having NAFLD if the CAP values were ≥302 dB/m,
which is regarded as the best cutoff for the detection of
hepatic steatosis.8

Variables

The machine learning models in this study were developed
using data from laboratory examinations, anthropometric mea-
surements, and demographic variables from NHANES. The

Figure 1. Flowchart of the inclusion of study participants.
NHANES: National Health and Nutrition Examination Survey; CAP: controlled attenuation parameter.
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demographic characteristics included gender, age, race, and
ratio of family income to poverty (PIR), and anthropometric
parameters included weight, body mass index (BMI), arm cir-
cumference, waist circumference, hip circumference, systolic
pressure (SBP), and diastolic pressure (DBP). The laboratory
parameters were composed of alanine aminotransferase
(ALT), albumin (ALB), alkaline phosphatase (ALP), aspartate
aminotransferase (AST), creatinine (CR), globulin (GLB),
gamma-glutamyl transferase (GGT), lactate dehydrogenase
(LDH), phosphorus (P), total bilirubin (STB), total calcium
(Ca), total protein (TP), uric acid (UA), platelet count
(PLT), ferritin, iron, total iron binding capacity (TIBC), trans-
ferrin saturation (TSF), glycohemoglobin (HbA1c), fasting
plasma glucose (FPG), high-density lipoprotein cholesterol
(HDL-C), high-sensitivity c-reactive protein (hs-CRP),
insulin (INS), total cholesterol (TC), triglyceride (TG),
and low-density lipoprotein-cholesterol (LDL-C) levels.
Additionally, the study’s main outcome was determined by
the presence or absence of hepatic steatosis, indicated by a
CAP value of ≥302 dB/m.

Missing data handling

Variables with more than 30% missing values were
removed, while those with less than 30% missing values
were interpolated using an appropriate technique. The
remaining missing data, identified as missing at random,
were addressed using the random forest algorithm for mul-
tiple imputation and interpolation, as implemented in the R
package “mice” (version 3.15.0).34

Feature selection

Feature selection was conducted through the least absolute
shrinkage and selection operator (LASSO) regression ana-
lysis, which strategically penalizes coefficient magnitude
to streamline the number of predictive variables. The fine-
tuning of the regularization parameter, λ, was meticulously
carried out via a 10-fold cross-validation method, ensuring
a rigorous optimization process. The coefficients of the
variables from the lasso regression models were arranged
in ascending order. Variables with nonzero coefficients
were selected due to their significant contribution to the
model’s predictive accuracy. LASSO penalizes less import-
ant features, reducing model complexity and enhancing
interpretability. By focusing on variables with the strongest
predictive power, we ensured that only the most relevant
and impactful features were included in the final model.

Automated machine learning

The AutoML analysis was implemented using the H2O
package (version 3.40.0.1) installed from the H2O.ai plat-
form (http://www.h2o.ai/). For binary classification pro-
blems, this platform’s AutoML feature automatically

employs six distinct algorithms: Gradient Boosting
Machine (GBM), Distributed Random Forest (DRF),
Extremely Randomized Trees (XRT), Generalized Linear
Model (GLM), eXtreme Gradient Boosting (XGBoost),
and Deep Learning (DL). XGBoost is a composite
method that integrates several decision-tree classifiers. It
reduces the discrepancy between predicted and actual
values during training by utilizing objective functions.
These functions include differentiable convex loss compo-
nents and regularization terms to enhance model robustness
and prevent overfitting. The descriptions of the remaining
algorithms can be found in the supplementary documenta-
tion. Participants were randomly allocated into two
groups, with a training-to-validation set ratio of 7:3. A
5-fold cross-validation was conducted on the training
dataset to assess model performance. AutoML used these
evaluations to rank the models based on their area under
the ROC curve (AUC), considering various combinations
of hyperparameters across six distinct algorithms.
Following this ranking, the models were evaluated on the
validation set to determine their generalization capabilities.
The model with the highest AUC on the validation set was
selected as the optimal model. Based on the optimal model,
an R Shiny web-based application, Shiny NAFLD, was
developed to facilitate the practical identification of
NAFLD by clinicians. (http://39.101.122.171:3838/App2/).

Evaluation and interpretation of models

To evaluate the performance of the models on the validation
set, a confusion matrix was compiled, which included true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). These metrics were utilized to calcu-
late sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), positive likelihood
ratios (LR+), negative likelihood ratios (LR−), and AUCs.
This comprehensive analysis allowed for a detailed assess-
ment of the models’ discrimination capabilities. Formulas
were as follows: ACC= (TP+TN)/(TP+FP+ FN+TN);
PPV=TP/(TP+NP); NPV=TN/(TN+ FN); LR+= sen-
sitivity/(1-specificity); LR−= (1-sensitivity)/specificity.
The calibration curve was applied to evaluate the model’s
calibration, while the decision curve analysis (DCA) pro-
vided insight into the clinical net benefit. Models interpret-
ability was presented in the form of variable importance,
SHapley Additive Explanations (SHAP) partial dependence
plot (PDP), and Local Interpretable Model-Agnostic
Explanations (LIME). Variable importance is used to
assess the statistical significance and impact of each
feature within the model. The SHAP analysis is an approach
that elucidates the separate contributions of each feature in
the development of a prediction model while retaining con-
sistency and local accuracy for a particular prediction.35 In
addition, the marginal influence of features on the predicted
outcome can also be displayed in PDP, and the LIME
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analysis provides an understanding of the influence of main
features on predictions for randomly selected examples
from the validation set.

Statistical analysis

In our study, all statistical analyses were performed using R
(version 4.2.2). To assess the normality of the data, the
Shapiro–Wilk test was employed, which tests the null
hypothesis that the data follow a normal distribution.
Continuous data were presented as medians with interquar-
tile ranges (IQR), while categorical variables were reported
as counts (percentages). The Wilcoxon rank-sum test, a
non-parametric test suitable for continuous variables that
are not normally distributed, was applied to the continuous
data. This test assumes independent groups and similar dis-
tribution shapes. For categorical variables, Pearson’s
Chi-square test was used to determine associations, assum-
ing that the data are in the form of counts or frequencies,
with independent samples. These tests were chosen for
their robustness and appropriateness given our data charac-
teristics. A two-sided p-value of less than 0.05 was consid-
ered statistically significant, indicating a low probability
that the observed differences were due to chance.

Results

Demographic and clinical characteristics

The study included 4177 participants, with data randomly
divided into a training set and a validation set at a ratio of
7:3 (2874 in the training set and 1303 in the validation set).
After excluding participants with hepatitis and excessive
alcohol consumption, 1010 participants (24.2%) were diag-
nosed with NAFLD. Significant differences were observed
between the groups in various demographic, biochemical,
clinical, and anthropometric variables. The CAP≥302 dB/m
group had a higher proportion of males (training set p<
0.001 and validation set p=0.043) and a higher median age
(p<0.001 for both sets). Racial distribution also differed sig-
nificantly, with more non-Hispanic whites in the CAP≥
302 dB/m group (p<0.001 for both sets). No significant dif-
ferences were found in the ratio of family income to poverty
(training set p=0.804 and validation set p= 0.868).
Biochemical measurements such as ALT, ALB, AST, Cr,
GLB, GGT, LDH, phosphorus, calcium, total protein, UA,
HbA1c, FPG, HDL-C, hs-CRP, insulin, TC, TG, and
LDL-C showed significant differences (p<0.05) between
the groups in both sets. Anthropometric measurements,
including weight, BMI, arm circumference, waist circumfer-
ence, and hip circumference, were significantly higher in the
CAP≥302 dB/m group (p<0.05). Blood pressure measure-
ments (SBP and DBP) were also significantly higher in the
CAP≥302 dB/m group (p<0.001). Detailed characteristics
are presented in Table 1.

Performance of AutoML models and existing scoring
systems

The procedures for the selection of variables are shown in
Supplemental Figure 1, with seven key variables with
nonzero coefficients identified via the “λ_1se” criterion of
LASSO regression analysis, including ALT, waist circum-
ference, HbA1c, FPG, HDL-C, insulin, and TG. The
detailed coefficient values of the LASSO regression
models are listed in Supplemental Table 1. The AutoML
in our study developed a total of 29 models by several
machine learning algorithms, including GBM, DRF,
XRT, GLM, XGBoost, and DL. The hyperparameters of
the optimal XGBoost model are listed in Table 2. The
hyperparameters of the remaining assessment models are
detailed in Supplemental Table 2.

The AUC of each model was tested with the validation
set, as shown in Figure 2. According to Table 3, the
XGBoost model performed best with the highest AUC
value of 0.859 on the validation set. The AUC values
obtained by the other models were 0.858 for DL, 0.857
for GBM, 0.853 for GLM, 0.850 for DRF, 0.849 for
XRT, 0.838 for FLI, 0.814 for LAP,0.811 for HSI, 0.747
for FLD index, 0.699 for NAFLD index, 0.824 for ZJU
index, and 0.844 for FSI.

In terms of sensitivity, the XGBoost model achieved a
sensitivity of 0.773, indicating strong performance in iden-
tifying true positives. This was followed by DL and GBM
with sensitivity rates of 0.747 and 0.753, respectively.
XRT achieved a sensitivity of 0.687, while DRF had the
lowest sensitivity at 0.568. Among the existing scoring
systems, the ZJU index and FLI showed higher sensitivities
of 0.860 and 0.803, respectively, while the NAFLD index
had the lowest sensitivity at 0.463.

For specificity, GLM recorded the highest value at
0.855, demonstrating strong performance in identifying
true negatives. XRT and DRF followed with specificities
of 0.846 and 0.840, respectively. XGBoost and DL had
slightly lower specificities of 0.802 and 0.808. In compari-
son, the NAFLD index showed the highest specificity
among existing scoring systems at 0.839, while the ZJU
index had the lowest specificity at 0.640.

Regarding overall accuracy, GLM achieved the best
value of 0.816, indicating balanced performance in both
sensitivity and specificity. DRF and XRT followed with
accuracy values of 0.808 and 0.809, respectively, while
XGBoost and DL had accuracies of 0.795 and 0.794.
Among the existing scoring systems, the FSI showed the
highest accuracy at 0.758, while the FLD index had the
lowest accuracy at 0.703. In summary, XGBoost was
chosen as the best model due to its highest AUC, strong
sensitivity and NPV, and overall balanced performance
across key metrics. Other predictive models for fatty
liver as detailed in recent studies are catalogued in
Supplemental Tables 3 and 4.
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Table 1. Demographic and clinical characteristics of participants in the training and validation set.

Variables

Training set, N= 2874 Validation set, N= 1303

CAP < 302 dB/m, N= 2164# CAP≥ 302 dB/m, N= 710# p-value* CAP < 302 dB/m, N= 1003# CAP≥ 302 dB/m, N= 300# p-value*

Gender <0.001 0.043

Male 1006 (46%) 393 (55%) 475 (47%) 162 (54%)

Female 1158 (54%) 317 (45%) 528 (53%) 138 (46%)

Age 41.00 [22.00,60.00] 53.00 [37.00,64.00] <0.001 39.00 [22.00,60.00] 54.00 [41.00,64.25] <0.001

Race <0.001 <0.001

Mexican American 261 (12%) 124 (17%) 118 (12%) 63 (21%)

Other Hispanic 219 (10%) 71 (10%) 107 (11%) 31 (10%)

Non-Hispanic White 698 (32%) 270 (38%) 300 (30%) 98 (33%)

Non-Hispanic Black 602 (28%) 132 (19%) 268 (27%) 56 (19%)

Other Race 384 (18%) 113 (16%) 210 (21%) 52 (17%)

Family income to poverty ratio 0.804 0.868

ratio < 1 432 (20%) 133 (19%) 195 (19%) 58 (19%)

1≤ ratio < 2 559 (26%) 197 (28%) 265 (26%) 82 (27%)

2≤ ratio < 3 368 (17%) 119 (17%) 162 (16%) 50 (17%)

3≤ ratio < 5 432 (20%) 134 (19%) 190 (19%) 61 (20%)

ratio≥ 5 373 (17%) 127 (18%) 191 (19%) 49 (16%)

ALT (U/L) 15.00 [11.00,21.00] 22.00 [16.00,34.00] <0.001 16.00 [11.00,22.00] 23.00 [16.00,30.25] <0.001

ALB (mg/L) 41.00 [39.00,43.00] 40.00 [38.00,42.00] <0.001 41.00 [39.00,43.00] 40.00 [38.00,42.00] <0.001

ALP (IU/L) 76.00 [61.00,96.00] 77.50 [65.00,94.00] 0.166 76.00 [63.00,98.00] 80.00 [65.75,96.00] 0.344

AST (U/L) 18.00 [15.00,22.00] 20.00 [16.00,26.00] <0.001 18.00 [16.00,22.00] 20.00 [17.00,25.00] <0.001

Cr (μmol/L) 70.72 [59.23,84.86] 74.26 [61.00,85.75] 0.007 72.49 [61.00,85.30] 71.60 [59.89,87.52] 0.738

GLB (g/dL) 3.00 [2.80,3.30] 3.10 [2.90,3.40] <0.001 3.10 [2.80,3.30] 3.10 [2.80,3.40] 0.098

GGT (IU/L) 17.00 [12.00,25.00] 26.00 [18.00,40.00] <0.001 17.00 [13.00,26.00] 26.00 [18.00,41.00] <0.001

LDH (IU/L) 152.00 [134.00,173.00] 154.00 [139.00,174.00] 0.018 153.00 [136.00,173.00] 154.00 [137.00,174.25] 0.959

P (mmol/L) 1.16 [1.03,1.29] 1.10 [1.00,1.23] <0.001 1.16 [1.03,1.29] 1.10 [0.99,1.23] <0.001

STB (μmol/L) 6.84 [5.13,10.26] 6.84 [5.13,10.26] 0.101 6.84 [5.13,10.26] 6.84 [5.13,8.55] 0.485

Ca (mmol/L), 2.33 [2.27,2.38] 2.30 [2.25,2.35] <0.001 2.33 [2.25,2.38] 2.30 [2.25,2.38] 0.012

TP (g/L) 72.00 [69.00,74.00] 71.00 [69.00,74.00] 0.021 72.00 [69.00,74.00] 71.00 [68.00,74.00] 0.030

UA (μmol/L) 303.30 [249.80,356.90] 345.00 [291.50,404.50] <0.001 303.30 [249.80,356.90] 339.00 [279.60,398.50] <0.001

(continued)
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An intuitive comparison of the consistency risk assess-
ment model was conducted between the ideal calibration
curve and the calibration curves. The evaluation of consist-
ency was further refined by analyzing the slope, ideally
valued at 1, and the Brier score, where the deal value is
0, and values exceeding 0.3 indicate poor calibration. The
calibration curves presented in Figure 3 demonstrate a
robust calibration of the XGBoost model, affirming its reli-
ability. This is evidenced by the close alignment of pre-
dicted probabilities with the actual observed probabilities.
The model’s precision is further highlighted by Brier

scores of 0.112 for the training set and 0.121 for the valid-
ation set, along with a calibration slope of 1.110 in the train-
ing phase and 0.935 in the validation phase. These metrics
underscore the model’s consistent performance across both
the development and application stages.

To evaluate the clinical utility of the XGBoost model on
NAFLD identification, DCA was conducted. The clinical
decision curves, illustrated in Figure 4, revealed that the
net benefit of using the model for assessing NAFLD sur-
passed that of the “no assessment” or “all assessment” regi-
mens. This analysis confirms the XGBoost model as an

Table 1. Continued.

Variables

Training set, N= 2874 Validation set, N= 1303

CAP < 302 dB/m, N= 2164# CAP≥ 302 dB/m, N= 710# p-value* CAP < 302 dB/m, N= 1003# CAP≥ 302 dB/m, N= 300# p-value*

Weight (kg) 72.10 [60.30,85.80] 96.25 [82.30,111.97] <0.001 72.40 [60.95,84.70] 92.00 [77.30,107.50] <0.001

BMI (kg/m2) 26.05 [22.40,30.32] 33.70 [29.70,38.87] <0.001 26.10 [22.60,29.90] 32.30 [28.70,37.52] <0.001

Arm circumference (cm) 31.40 [27.90,34.70] 36.90 [33.50,40.27] <0.001 31.20 [28.10,34.50] 35.60 [33.00,39.20] <0.001

Waist circumference (cm) 91.20 [79.70,102.62] 112.50 [102.60,123.27] <0.001 91.90 [80.50,101.30] 110.35 [99.97,121.23] <0.001

Hip circumference (cm) 100.25 [93.40,109.00] 113.00 [105.30,124.20] <0.001 100.30 [94.20,107.30] 110.00 [102.77,121.93] <0.001

SBP (mmHg) 116.00 [106.67,129.00] 123.00 [112.67,135.92] <0.001 116.00 [107.33,127.67] 125.00 [114.67,139.08] <0.001

DBP (mmHg) 70.33 [63.33,77.67] 76.67 [69.33,83.67] <0.001 70.33 [63.67,77.33] 75.67 [68.00,83.75] <0.001

PLT (1000 cells/μL) 241.00 [202.00,285.00] 238.00 [203.00,284.00] 0.834 241.00 [205.00,280.00] 237.00 [198.75,285.50] 0.948

Ferritin (μg/L) 82.20 [37.60,156.00] 126.00 [59.05,232.00] <0.001 83.40 [40.80,161.50] 131.50 [65.25,225.50] <0.001

Iron (μmol/L) 15.00 [11.10,19.90] 14.90 [11.30,18.80] 0.214 15.00 [10.90,19.70] 14.90 [11.45,17.90] 0.358

TIBC (μg/dL) 57.85 [52.30,64.12] 58.03 [52.52,63.76] 0.849 57.85 [52.30,63.94] 58.12 [53.37,62.51] 0.978

TSF (%) 26.50 [19.00,35.00] 26.00 [20.00,34.00] 0.333 27.00 [20.00,34.00] 26.00 [20.00,32.00] 0.340

HbA1c (%) 5.40 [5.20,5.70] 5.80 [5.50,6.60] <0.001 5.40 [5.20,5.80] 5.85 [5.50,6.70] <0.001

FPG (mmol/L) 5.55 [5.22,5.94] 6.16 [5.62,7.33] <0.001 5.55 [5.22,5.94] 6.16 [5.66,7.50] <0.001

HDL-C (mg/dL) 1.37 [1.14,1.63] 1.14 [0.98,1.34] <0.001 1.37 [1.16,1.63] 1.16 [1.01,1.38] <0.001

hs-CRP (mg/L) 1.27 [0.57,3.21] 3.13 [1.41,6.26] <0.001 1.33 [0.57,3.13] 2.89 [1.35,6.71] <0.001

Insulin (μU/mL) 8.84 [5.89,13.34] 17.00 [11.27,25.66] <0.001 8.26 [5.55,13.18] 17.78 [10.38,25.77] <0.001

TC (mg/dL) 172.00 [149.00,199.25] 179.00 [156.00,207.00] <0.001 174.00 [150.00,200.00] 183.00 [155.00,210.25] 0.004

TG (mmol/L) 0.83 [0.58,1.25] 1.38 [0.96,1.95] <0.001 0.86 [0.60,1.21] 1.29 [0.93,1.87] <0.001

LDL-C (mmol/L) 2.59 [2.04,3.21] 2.77 [2.20,3.41] <0.001 2.61 [2.10,3.21] 2.81 [2.22,3.39] 0.009

CAP: controlled attenuation parameter; ALT: alanine aminotransferase; ALB: albumin; ALP: alkaline phosphatase; AST: aspartate aminotransferase; Cr: creatinine; GLB: globulin;
GGT: gamma glutamyl transferase; LDH: lactate dehydrogenase; P: phosphorus; STB: total bilirubin; Ca: total calcium; TP: total protein; UA: uric acid; BMI: body mass index; SBP:
systolic pressure; DB: diastolic pressure; PLT: platelet count; TIBC: total iron binding capacity; TSF: transferrin saturation; HbA1c: glycohemoglobin; FPG: fasting plasma glucose;
HDL-C: high-density lipoprotein cholesterol; hs-CRP: high-sensitivity c-reactive protein; TC: total cholesterol; TG: triglyceride; LDL-C: low-density lipoprotein-cholesterol.
#n (%); Median [25%,75%].
*Pearson’s Chi-squared test; Wilcoxon rank sum test.
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Figure 2. ROC curves of different models and traditional scoring systems on the validation dataset. (A) ROC curves comparing the
performance of various machine learning models. (B) ROC curves comparing the performance of the XGBoost model with traditional
scoring systems.
XGBoost: eXtreme Gradient Boosting; GBM: Gradient Boosting Machine; GLM: Generalized Linear Model; DRF: Distributed Random Forest;
XRT: Extremely Randomized Trees; FLI: fatty liver index; LAP: lipid accumulation product; HSI: hepatic steatosis index; FSI: Framingham
steatosis index; FLD index: fatty liver disease index.

Table 2. Hyperparameters of AutoML classification algorithms.

Hyperparameter Argument

XGBoost max_depth 3

min_child_weight 20

subsample 0.6

colsample_bytree 0.8

reg_alpha 0.5

reg_lambda 100

stopping_metric logloss

stopping_tolerance 0.01865334

tree_method exact

calibration_method PlattScaling

categorical_encoding OneHotInternal

seed 670
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effective diagnostic tool for NAFLD, demonstrating signifi-
cant clinical net benefits in identifying the condition.

Interpretation of AutoML models

Furthermore, we identified the most significant clinical fea-
tures contributing to the identification of NAFLD. The vari-
able importance plot was constructed using XGBoost
algorithms. The variable importance plot, shown in
Figure 5, ranks these features in descending order of rele-
vance. As depicted in Figure 5, waist circumference
emerges as the most crucial risk factor for NAFLD. It is fol-
lowed by insulin, TG, ALT, FPG, HbA1c, and HDL-C
levels. This ranking highlights the relative importance of
each variable in the predictive model, with waist circumfer-
ence having the most substantial impact on NAFLD
identification.

In Figure 6, we present the SHAP summary plot, which
illustrates the contribution of each variable to the prediction
of NAFLD for each instance. This plot provides a detailed
view of how individual features influence the model’s

predictions. Notably, the plot shows that higher values of
certain features are positively correlated with an increased
likelihood of NAFLD. Specifically, waist circumference,
insulin levels, ALT, TG, and HbA1c are prominently asso-
ciated with the presence of NAFLD. Each point on the plot
represents a SHAP value for a feature, with the color gradi-
ent indicating the normalized value of the feature (ranging
from low in blue to high in red). The SHAP values (posi-
tioned on the x-axis) reflect the impact of each feature on
the model’s output. Features with positive SHAP values
push the prediction towards higher risk, while negative
values push it towards lower risk. For instance, higher
waist circumference and insulin levels significantly increase
the likelihood of NAFLD, as indicated by their clustering
on the right side of the plot with predominantly red points.

To interpret the influence of individual features on pre-
dicted outcomes, we utilized the PDP technique for inter-
preting our machine learning model. As presented in
Figure 7, waist circumference, insulin, TG, ALT, FPG,
and HbA1c exhibit positive correlations with the likelihood
of NAFLD. This indicates that higher values of these

Table 3. Performance of models on the validation set.

AUC Accuracy Sensitivity Specificity PPV NPV LR+ LR−

AutoML

XGBoost 0.859 0.795 0.773 0.802 0.538 0.922 3.898 0.283

DL 0.858 0.794 0.747 0.808 0.537 0.914 3.880 0.314

GBM 0.857 0.803 0.753 0.818 0.553 0.917 4.129 0.302

GLM 0.853 0.816 0.683 0.855 0.586 0.900 4.727 0.370

DRF 0.850 0.808 0.568 0.840 0.568 0.903 4.389 0.357

XRT 0.849 0.809 0.687 0.846 0.572 0.900 4.472 0.370

Existed scoring systems

FLI11 0.838 0.738 0.803 0.719 0.461 0.924 2.857 0.274

LAP12 0.814 0.750 0.753 0.749 0.473 0.910 2.998 0.329

HSI13 0.811 0.728 0.797 0.708 0.449 0.921 2.727 0.287

FLD index14 0.747 0.703 0.697 0.705 0.414 0.886 2.361 0.430

NAFLD index15 0.699 0.753 0.463 0.839 0.463 0.839 2.886 0.639

ZJU index16 0.824 0.691 0.860 0.640 0.417 0.939 2.389 0.219

FSI17 0.844 0.758 0.790 0.749 0.485 0.923 3.144 0.280

AUC: area under receiver operating characteristic curves; PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR−:
negative likelihood ratio; XGBoost: eXtreme Gradient Boosting; DL: Deep Learning; GBM: Gradient Boosting Machine; GLM: Generalized Linear Model; DRF:
Distributed Random Forest; XRT: Extremely Randomized Trees; FLI: fatty liver index; LAP: lipid accumulation product; HSI: hepatic steatosis index; FSI:
Framingham steatosis index; FLD index: fatty liver disease index.
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features are associated with an increased risk of NAFLD.
Conversely, HDL-C levels show a negative association
with NAFLD, as higher HDL-C levels are associated with
a reduced risk.

Figure 8 provides an insightful illustration of the
XGBoost model’s predictions using the LIME technique.

This figure showcases the model’s explanations for four
randomly selected cases from the validation set, highlight-
ing the contributions of various features to each prediction.
The color-coded bars indicate whether each feature sup-
ports (blue) or contradicts (red) the predicted outcome.
The length of the bars represents the weight of each

Figure 3. Calibration curves of the XGBoost model on the training set (A) and the validation set (B). The calibration curves demonstrated a
high degree of reliability by showing that the predicted probability was close to the observed probability.

Figure 4. Decision curve analysis of the XGBoost model on the training set (A) and validation set (B). Decision curve analysis of the XGBoost
model on the training and validation set, indicating clinical net benefits of approximately 25%. The threshold probability was represented
on the x-axis, while the clinical net benefits were displayed on the y-axis. The grey line indicated the strategy of the assumption that all
patients have received the assessment of the XGBoost model, while the horizontal black line demonstrated the strategy of the assumption
that no patient has received the evaluation of the XGBoost model.
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feature’s contribution to the prediction. For instance, in case
#7 (label 1, indicating the presence of NAFLD), the
XGBoost model predicted a high probability of 0.71 for
NAFLD. The most significant variable contributing to the

prediction was TG, followed by HbA1c, HDL-C, FPG,
waist circumference, ALT, and insulin levels. Similarly,
case #3 (label 0, indicating the absence of NAFLD) had a
predicted probability of 0.87 for not having NAFLD. The

Figure 5. Variable importance of the XGBoost model on the training set.
TG: triglyceride; ALT: alanine aminotransferase; FPG: fasting plasma glucose; HbA1c: glycohemoglobin; HDL-C: high-density lipoprotein
cholesterol.

Figure 6. SHAP plot of the XGBoost model. The closer the variable values were to 1, the greater the likelihood that NAFLD would be
identified.
SHAP: SHapley additive explanation; ALT:alanine aminotransferase; TG: triglyceride; FPG: fasting plasma glucose; HbA1c: glycohemoglobin;
HDL-C: high-density lipoprotein cholesterol.
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primary contributors to this prediction were TG and HbA1c
levels, which strongly contradicted the presence of
NAFLD, while HDL-C supported the prediction.

The code for automated machine learning modeling is
available on the following website: https://osf.io/nvwek,
while the code for model deployment can be accessed at
https://osf.io/6cxmb. Clinical practitioners are invited to
further refine and optimize the model by utilizing these
open-source resources in their future work.

Discussion
In this investigation, we have developed a series of
AutoML models to detect NAFLD utilizing the NHANES
database. These models were all superior to existing
scoring systems such as FLI, LAP, HSI, NAFLD index,
ZJU index, FSI, and FLD index. Notably, the model
employing the XGBoost algorithm emerged as the superior
performer within the ensemble of AutoML models on the
validation set. To augment the interpretability of the
model, we implemented an array of explanatory tools
including variable importance, SHAP, PDP, and LIME.
Additionally, we introduced ‘Shiny NAFLD’, a newly
developed R Shiny tool based on the XGBoost model for

identifying NAFLD using demographic data and clinical
data. ‘Shiny NAFLD’ stands as a testament to the practical
utility of our research, offering an accessible platform for
healthcare professionals to identify NAFLD.

The significant demographic differences observed in
our study suggest that higher CAP values are associated
with specific population characteristics. The higher pro-
portion of males and the older median age in the CAP
≥ 302 dB/m group indicate that gender and age may
influence liver fat accumulation, as noted previously.36

The significant racial differences, with a higher propor-
tion of non-Hispanic whites in the CAP≥ 302 dB/m
group, point to potential genetic or lifestyle factors that
warrant further investigation.37

In addition, the biochemical differences highlight several
health risks associated with higher CAP values. Consistent
with Ayada et al.’s findings, elevated levels of ALT, AST,
and GGT suggest that individuals in the CAP≥302 dB/m
group may have a higher risk of liver dysfunction.38 The
higher levels of HbA1c and FPG in the CAP≥302 dB/m
group underscore a greater prevalence of impaired glucose
metabolism or diabetes, which aligns with studies showing a
strong association between NAFLD and metabolic disorders
such as type 2 diabetes.39 Additionally, the abnormal lipid

Figure 7. PDP for the important variables in the XGBoost model.
PDP: partial dependence plot; TG: triglyceride; ALT: alanine aminotransferase; FPG, fasting plasma glucose; HbA1c: glycohemoglobin;
HDL-C: high density lipoprotein cholesterol.
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profiles, including elevated TC, TG, and LDL-C, suggest an
increased risk of cardiovascular diseases, corroborating previous
research that highlights the link between NAFLD and cardiovas-
cular risk.40 Furthermore, the anthropometric measurements
further emphasize the health risks, with significantly higher
weight, BMI, arm circumference, waist circumference, and hip
circumference in the CAP≥302 dB/m group, indicating a
strong association between NAFLD and obesity, which is a
known risk factor for various metabolic disorders.41,42 Overall,
our findings highlight the importance of regular monitoring
and targeted interventions for individuals with NAFLD.43

These individuals are at an increased risk for liver dysfunction,
metabolic disorders such as diabetes, cardiovascular issues,
and obesity-related complications.38–41 Comprehensive health

assessments and personalized treatment plans are crucial for
managing these risks and improving health outcomes.

Considering the adverse effects associated with invasive
liver biopsies, the subjectivity inherent in ultrasound exam-
inations, and the prohibitive costs associated with
FibroScan diagnostics, our AutoML models stand out as
high-quality tools for NAFLD diagnosis. Traditional
scoring systems, including FLI,11 LAP,12 HSI,13 NAFLD
index,15 ZJU index,16 FSI,17 and FLD index,14 demon-
strated inferior accuracy and AUC compared to the
models we built using AutoML. This aligns with recent lit-
erature emphasizing the need for more accurate and non-
invasive diagnostic tools for NAFLD.5,8 In this study, we
evaluated a suite of models constructed using AutoML’s

Figure 8. LIME plots of the XGBoost model. Four individuals were selected randomly from the validation set to see the impact of the main
features on the outcome.
LIME: local interpretable model agnostic explanation; TG: triglyceride; HbA1c: glycohemoglobin; HDL-C: high-density lipoprotein
cholesterol; FPG: fasting plasma glucose; ALT: alanine aminotransferase.
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six algorithms (GBM, DRF, XRT, GLM, XGBoost, and
DL) to assess the presence of NAFLD. The XGBoost
model demonstrated superior performance with an AUC
of 0.859, an accuracy of 0.795, a sensitivity of 0.773, a spe-
cificity of 0.802, a PPV of 0.538, an NPV of 0.922, an LR+
of 3.898, and an LR− of 0.283. The AUC metric proved
particularly useful in addressing the challenges of unba-
lanced data, as it inherently weights both classes equally,
unlike accuracy.44 Additionally, a high AUC indicates
that the model has a strong capability to distinguish
between patients with and without NAFLD, making it a
reliable measure for evaluating the effectiveness of our
diagnostic approach.

Given that early-stage NAFLD is often asymptomatic
and, if left untreated, may progress to more severe condi-
tions such as cirrhosis and hepatocellular carcinoma, our
research prioritizes the early detection of NAFLD patients,
making the sensitivity metric particularly critical.
Sensitivity, defined as the proportion of true positives
among all confirmed cases, measures our model’s ability
to correctly identify actual cases of NAFLD. The
XGBoost model’s high sensitivity of 0.773 underscores
its success in accurately detecting NAFLD among those
afflicted, which is particularly significant given the asymp-
tomatic nature of early-stage NAFLD, where early detec-
tion is crucial for preventing disease progression.

Furthermore, specificity indicates the model’s ability to
correctly identify patients without NAFLD, thus reducing
the rate of false positives. The XGBoost model achieved
a specificity of 0.802, minimizing unnecessary further
testing and patient anxiety. PPV measures the proportion
of true positive results among all positive predictions,
with the XGBoost model demonstrating a PPV of 0.538,
indicating the reliability of a positive NAFLD diagnosis.
NPV represents the proportion of true negative results
among all negative predictions, and the XGBoost model
showed an impressive NPV of 0.922, highlighting its
effectiveness in ruling out NAFLD when the prediction is
negative. Moreover, LR+ and LR− provide additional
insights into the model’s diagnostic utility, with a high
LR+ indicating a strong association between a positive
test result and the presence of NAFLD, and a low LR− sug-
gesting that a negative test result is effective in ruling out
the disease. Consequently, given its optimal balance of
these metrics, the XGBoost model emerged as the most
effective tool in our analysis for NAFLD detection.

The XGBoost model demonstrated robust calibration,
with Brier scores of 0.112 for the training set and 0.121
for the validation set, and calibration slopes of 1.110 and
0.935, respectively. The DCA showed that the XGBoost
model provides a higher net benefit for NAFLD identifica-
tion compared to “no assessment” or “all assessment” strat-
egies. Combining the results of the calibration curves and
DCA, we can assert that our XGBoost model not only per-
forms well in terms of predictive accuracy but also offers

tangible benefits in clinical settings. The robust calibration
ensures that the predicted risks are reliable, while the deci-
sion curve analysis highlights the practical advantages of
implementing the model in patient care.

To enhance the interpretability of our XGBoost model,
we employed several techniques: variable importance ana-
lysis, SHAP, PDP, and LIME. These techniques highlight
the most critical predictors, such as waist circumference
and insulin levels, and provide detailed insights into how
individual features influence the model’s predictions.
Variable importance analysis ranks features based on their
contribution to the model’s predictions, thereby identifying
the most influential factors. Additionally, SHAP values
quantify the contribution of each feature to individual pre-
dictions, demonstrating the positive correlation of features
like waist circumference and insulin with NAFLD risk.
Furthermore, PDP illustrates the relationship between a
feature and the predicted outcome while keeping all other
features constant, which helps in understanding the mar-
ginal effect of a feature. Finally, LIME offers local explana-
tions for specific predictions, providing case-specific
insights that clarify the model’s decision-making process.
By using these methods, we ensure that our model’s predic-
tions are understandable, trustworthy, and clinically rele-
vant. These interpretability techniques improve the
transparency and applicability of the model, enhancing
trust in its use for clinical decision-making.

NAFLD exhibits a complex, bidirectional association
with metabolic syndrome components, acting both as a con-
tributing factor and a result of the metabolic syndrome
(MetS).1,45 In our study, waist circumference was found
to be the most crucial variable in the variable importance
plot, followed by insulin, TG, ALT, FPG, HbA1c, and
HDL-C. It is noteworthy that the majority of these critical
variables (waist circumference, insulin, TG, FPG, and
HbA1c) are core components of MetS, which demonstrates
the feasibility of metabolic syndrome markers in identifying
NAFLD.

Previous research has established waist circumference as
an independent risk factor and a potent predictor of
NAFLD.46,47 A substantial retrospective study that ana-
lyzed physical examination data from Chinese adults
yielded predictive models for NAFLD, accentuating the
value of waist circumference as an indicator.20 Several
studies have demonstrated a strong correlation between
obesity and NAFLD.48–50 However, emerging research
suggests that this relationship might be impacted by fat dis-
tribution.51 A condition termed ‘lean NAFLD’ occurs in
individuals who develop NAFLD despite having a normal
BMI (<25 kg/m2 in non-Asian, <23 kg/m2 in Asian).52

Such patients usually have central obesity or possess add-
itional metabolic risk factors.53 A meta-analysis from
Pang et al. investigated the independent associations of
central and general obesity with NAFLD.42 Their findings
highlighted that the pooled OR for waist circumference
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(3.14 [2.07–4.77]) was higher compared to BMI (2.85
[1.60–5.08]), with binary variables and using the nonobese
cohort as a reference. This indicates that abdominal obesity
may pose a higher risk for NAFLD than general obesity.

Insulin has been proven as a strong predictor of NAFLD
according to previous studies.54,55 Bril et al.56 demonstrated
that intact molecules of insulin by mass spectrometry hold a
high AUC of 0.90 for identifying NAFLD in individuals
without diabetes. They also suggested measuring fasting
intact insulin levels as a simple, non-invasive method of
identifying the presence of NAFLD.

TG and FPG are two keymetabolic variables that are modi-
fied in fatty liver and have a strong correlation with insulin
resistance.57 Insulin resistance, which is defined as the
ability of insulin to inhibit glucose generation, lipid synthesis,
and lipolysis, is the underlying cause of hyperglycemia and an
increase in TG in NAFLD. Insulin resistance also limits the
receptor-mediated entry of insulin into the liver, which
reduces insulin clearance.58,59 Furthermore, there will be
hyperinsulinemia, leading to hepatic steatosis.58 Tomizawa
et al. reported that TG was the strongest predictor of
NAFLD among markers of hyperlipidemia and diabetes.60

Another study by Liu et al. proposed that elevated levels of cir-
culating TG and high glucose levels are likely to increase the
risk for NAFLD.61 In addition, Zhang et al. observed that indi-
viduals with NAFLD had significantly higher FPG and TG
levels than those with non-NAFLD.62 Recently, the triglycer-
ide and glucose index (TyG), derived from the product of TG
and FPG, has been validated as a reliable biomarker for iden-
tifying NAFLDwith a sensitivity of 72.2% and a specificity of
70.5%.62 Lee et al. have also reported the predictive powers of
the homeostatic model assessment for insulin resistance
(HOMA-IR), a hepatic insulin resistance index consisting of
FPG and Insulin, for predicting NAFLD.63 Their findings
reveal that HOMA-IR exhibits excellent predictive capacity
for NAFLD with an AUC of 0.831.

HbA1c serves as a valuable marker for chronic glycemic
control by reflecting average blood glucose levels over the
preceding 8–12 weeks.64 Ma et al. and Bae et al. discovered
serum HbA1c level was significantly and independently
associated with the risk for NAFLD.65,66 In clinical prac-
tice, a mild to moderate elevation in ALT is frequently
the sole laboratory abnormality in NAFLD patients and is
considered an early, surrogate biomarker for the disease.67

Furthermore, Zhang et al. conducted research on ALT as
a diagnostic tool for NAFLD, with an AUC of 0.715.62

Additionally, a Mendelian randomization analysis has
demonstrated that genetically predicted elevated serum
liver enzymes could increase NAFLD risk, whereas
HDL-C was linked to a decreased risk of NAFLD.68

Logistic regression, a linear model commonly employed
for binary classification tasks, struggled to tackle complex
learning tasks. With the development of machine learning,
leveraging algorithms, such as XGBoost, GBM, support
vector machine (SVM), deep learning, and DRF, have

significantly improved the efficacy of handling more intri-
cate problems. Recent studies69,70 provide robust evidence
of the exceptional potential of machine learning in disease
diagnosis and the anticipation of risk factors. Qin et al.23

have demonstrated the efficacy of the SVM model for
NAFLD screening achieving an impressive accuracy of
0.801 and an AUC of 0.850, using data from annual
health examinations. Additionally, using data from
NHANES 1988–1994, Atsawarungruangkit et al.29 devel-
oped a random undersampling boosted trees model to
predict NAFLD with an accuracy of 0.711. Due to the
use of different databases and diagnostic methods, compar-
ing the results is inappropriate. Noureddin et al.28 have
developed six different machine-learning models to identify
NAFLD by leveraging demographic and clinical data from
the NHANES 2017–2018 cohort, with participants identi-
fied through transient elastography. The performance
metrics of the tested models exhibit an AUC in the range
of 0.79 to 0.84, an accuracy spanning from 0.75 to 0.79,
and a sensitivity varying between 0.53 and 0.71. These
figures are comparatively lower than those of our proposed
model, which has an AUC of 0.859 and an accuracy of
0.795, underscoring its superior diagnostic efficacy. The
use of AutoML automates the selection and tuning of
machine learning models, thereby simplifying the process
for clinical practitioners and enhancing diagnostic efficacy.

Innovative imaging techniques leverage sophisticated
algorithms and neural networks to significantly improve
the precision of diagnostics.71 However, such models
require parameter adjustment and feature engineering that
rely on human machine learning experts, hence constrain-
ing their widespread implementation. Our study addresses
this challenge by using the H2O AutoML platform,
which automates these processes, making machine learn-
ing more accessible to individuals lacking expertise in
this domain and enhancing the efficiency of machine
learning processes. Moreover, our development of the
Shiny NAFLD web application provides a practical and
user-friendly tool for healthcare professionals, offering a
non-invasive method to enhance diagnostic accuracy.
This is particularly significant in the context of NAFLD,
where early and accurate diagnosis is crucial for prevent-
ing disease progression and implementing effective treat-
ment strategies.

The integration of AutoML into NAFLD diagnostics
represents a shift towards a more streamlined, individua-
lized, and objective approach. This innovation is poised
to markedly enhance patient outcomes by enabling the
early detection of conditions, thereby improving prognoses
and reducing dependence on diagnostic methods that are
often costly and limited in availability. Particularly advan-
tageous in primary care settings and regions with limited
resources, AutoML emerges as a cost-effective and scalable
solution, optimizing the distribution of medical resources.
The incorporation of AutoML into clinical practices may
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signify an advancement towards an accessible and efficient
strategy for managing NAFLD.

This study highlights several key features: firstly, the
application of AutoML streamlines the process of algorithm
selection, hyperparameter adjustment, and optimal model
output, offering a user-friendly tool for clinicians of
varied statistical expertise. Based on the optimal model in
AutoML, we present an R Shiny web-based application,
Shiny NAFLD, to facilitate the identification of NAFLD
in real clinical practice. Secondly, it leverages demographic
and clinical information from NHANES, an open-accessed
cross-sectional study in the United States, to develop and
validate models to identify the presence of NAFLD in
study participants. Furthermore, the diagnosis of NAFLD
via ultrasound examination is often hampered by numerous
factors, particularly the subjectivity of the examiner. This
research utilizes the CAP measured at a threshold of
≥302 dB/m through LUTE, which has been shown to
yield greater accuracy and sensitivity compared to conven-
tional ultrasound methodologies. Lastly, the study enhances
the interpretability of complex ‘black-box’ models through
various visualization techniques, such as variable import-
ance, SHAP, PDP, and LIME.

Some limitations of this study should be noted. Firstly,
the same database was used for both the training and valid-
ation sets, which may constrain the model’s generalizabil-
ity. Using only the NHANES database for modeling may
limit the generalizability of our findings, as the dataset
may not fully represent diverse populations and clinical set-
tings. To ensure broader applicability, it is essential to test
the model with external datasets from various demographic
and geographic backgrounds. Additionally, as a retrospect-
ive study, there is an inherent risk of selection bias and other
potential biases that could affect the findings. Secondly, due
to the limitations and restrictions of the NHANES database,
secondary causes of hepatic fat accumulation, such as
Wilson disease and inborn errors of metabolism (e.g.,
lecithin-cholesterol acyltransferase deficiency, cholesterol
ester storage disease, Wolman disease), could not be ruled
out. Additionally, the scope of the data, including any tem-
poral limitations, should be considered, as data collected
over a specific time may not capture all relevant trends and
patterns. Lastly, there is ongoing debate surrounding the
established cutoff values for steatosis when using CAP, sug-
gesting that further research is required to reach a consensus
on these diagnostic thresholds. Future research should focus
on validating and refining the model across different popula-
tions and clinical environments. Additionally, extending this
model to incorporate real-time data integration will enhance
its usability and adaptability in diverse clinical scenarios.

Conclusion
This study demonstrated the effectiveness of using machine
learning algorithms on the H2O AutoML platform to

identify NAFLD by analyzing key variables. XGBoost
emerged as the best performer, highlighting its potential
for clinical diagnosis. We developed Shiny NAFLD, an R
Shiny web application (http://39.101.122.171:3838/App2/
), providing healthcare professionals with a non-invasive
tool to enhance NAFLD diagnostic accuracy and support
personalized treatment strategies. Future research should
validate the models on external datasets, explore interpret-
ability techniques, and investigate applications to other
diseases.
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