HERG-like K* Channels in Microglia
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ABSTRACT A voltage-gated K* conductance resembling that of the human ether-a-go-gorelated gene product
(HERG) was studied using whole-cell voltage-clamp recording, and found to be the predominant conductance at
hyperpolarized potentials in a cell line (MLS-9) derived from primary cultures of rat microglia. Its behavior dif-
fered markedly from the classical inward rectifier K* currents described previously in microglia, but closely resem-
bled HERG currents in cardiac muscle and neuronal tissue. The HERG-like channels opened rapidly on hyperpo-
larization from 0 mV, and then decayed slowly into an absorbing closed state. The peak K* conductance—voltage
relation was half maximal at —59 mV with a slope factor of 18.6 mV. Availability, assessed by a hyperpolarizing test
pulse from different holding potentials, was more steeply voltage dependent, and the midpoint was more positive
(—14 vs. =39 mV) when determined by making the holding potential progressively more positive than more neg-
ative. The origin of this hysteresis is explored in a companion paper (Pennefather, P.S., W. Zhou, and T.E. De-
Coursey. 1998. J. Gen. Physiol. 111:795-805). The pharmacological profile of the current differed from classical in-
ward rectifier but closely resembled HERG. Block by Cs™ or Ba?" occurred only at millimolar concentrations, La%*
blocked with K; = ~40 wM, and the HERG-selective blocker, E-4031, blocked with K; = 37 nM. Implications of the
presence of HERG-like K* channels for the ontogeny of microglia are discussed.
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INTRODUCTION in response to their environment (reviewed in DeCour-
sey and Grinstein, 1998). Under many conditions, mac-
rophages express inward rectifier K* channels. In rat
microglia in culture, we observed inward K* currents,
but with properties quite distinct from inward rectifier,
and closely resembling those of the human ether-a-go-go-
related gene (HERG)! product. To our knowledge, this
is the first report of HERG channels in any immune
cell, including monocytes, macrophages, and related
cell lines. The presence of this novel channel type is
consistent with microglial ontogeny distinct from that
of bone marrow-derived circulating monocytes/mac-
rophages.

HERG K* channels have been the focus of intense in-
terest after the discovery that HERG mutations contrib-
ute to the genetic heart disease “long QT syndrome”
(Curran et al., 1995). HERG (Warmke and Ganetzky,
1994) has been identified as encoding I, a K* channel
of human cardiac myocytes (Sanguinetti et al., 1995).
Iy, has been characterized in cardiac myocytes (Shi-
Portions of this work were previously published in abstract form basaki, 1987; _Sangun]et.tl and ]urklew1c?, 1990@)_’ but
(Zhou, W., F.S. Cayabyab, P.S. Pennefather, L.C. Schlichter and T.E. ~ MRNA for ergis present in a number of different tissues

DeCoursey. 1998. Biophys. J. 74:A109).
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Microglia are macrophage-like cells of the brain that
are capable of serving typical phagocytic functions.
However, excessive microglial activity may play a perni-
cious role in Alzheimer’s disease, AIDS-associated de-
mentia, and other diseases (Streit and Kincaid-Colton,
1995). There is a long-standing controversy regarding
the origin of microglia (reviewed by Theele and Streit,
1993). Although it is generally accepted that they are
derived from mesoderm (del Rio-Hortega, 1932; for a
contrary view, see Schelper and Adrian, 1986; Fedoroft,
1995), it is not clear whether they entered the fetal
brain directly from a distinct pool of myelomonocyte
stem cells or first entered the bloodstream as circulat-
ing monocytes (reviewed in Ling and Wong, 1993). Mi-
croglia resemble macrophages both in the types of ion
channels they express and in their plasticity; i.e., the
ability to alter their pattern of ion channel expression
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(Wymore et al., 1997). K* currents closely resembling
HERG have been described in mammalian neuroblas-
toma cells (Arcangeli et al., 1995; Faravelli et al., 1996;
Hu and Shi, 1997), quail neural crest cells (Arcangeli et
al., 1997), Xenopus oocytes (Bauer et al., 1996), GHj
cells (Weinsberg et al., 1997), and in the present study
in rat microglia. In this paper, we characterize the elec-
trophysiological, kinetic, and pharmacological proper-
ties of the HERG-like K* current in microglia. Compar-
ison of the properties of this current with HERG reveals
general similarities, but also some apparent differ-
ences. We speculate that the HERG-like K* channels in
microglia are closely related but not identical to HERG
channels. In a companion paper (Pennefather et al.,
1998), we propose a simple kinetic model that describes
the gating of these channels.

MATERIALS AND METHODS

Microglia Cell Culture

Microglia were isolated from brain explants of 2—3-d-old Wistar
rats using a modified version of established protocols (see
Schlichter et al., 1996, for detailed methods and references). In
brief, neopallial tissue was digested in minimal essential medium
containing 0.25% trypsin and 25 pg/ml DNAse I (all from Sigma
Chemical Co., St. Louis, MO), triturated, and centrifuged to re-
move cell debris. The pelleted cells were resuspended in com-
plete culture medium (MEM, 5% horse serum, 5% fetal bovine
serum, 50 wg/ml gentamicin), seeded into tissue culture flasks
and fed on day 7. After 12 days, flasks were shaken (180 rpm, 15 h),
floating cells were replated, allowed to adhere 1.5-2 h, and then
gently shaken by hand for 5 min to remove any remaining astro-
cytes. At this stage, the cultures were >95% microglia, as deter-
mined by labeling all cells with nuclear dyes, acridine orange or
propidium iodide (Molecular Probes, Inc., Eugene, OR), the liv-
ing or fixed microglia with isolectin B4 (Streit, 1990), and the
fixed and permeabilized astrocytes with an antibody directed
against glial fibrillary acidic protein (both from Sigma Chemical
Co.). Thereafter, the weekly feedings were supplemented with su-
pernatant collected from the mouse fibroblast cell line, LM 10-5
(gift of Dr. S. Fedoroft, University of Saskatchewan, Saskatoon,
Saskatchewan, Canada), which secretes large amounts of CSF-1, a
well-known stimulus of microglia proliferation (Fedoroff et al.,
1993).

After several weeks in culture, it was often possible to withdraw
the CSF-1 containing supernatant and continue to grow the cells
in complete culture medium for many passages. Inasmuch as the
cells continued to proliferate without added growth factors, we
call this a cell line. All cells in the present study were from the
line that we have called MLS-9. (We have confirmed the presence
and fundamental properties of the HERG-like current in two
other similarly derived cell lines.) The cells stained positive with
several microglia markers: 100% with isolectin B4 (Streit, 1990),
100% with Dil-acetylated LDL and Lucifer Yellow (markers for
microglial endocytosis and pinocytosis; Booth and Thomas, 1991;
Giulian, 1997), 98% with OX-42 antibody, and 99% with ED-1 an-
tibody (Booth and Thomas, 1991). They did not label with anti-
bodies against the astrocyte protein, glial fibrillary acidic protein
(0%), or the fibroblast protein, fibronectin (0%), under condi-
tions that clearly stained astrocytes and fibroblasts in primary
mixed cultures. A manuscript further describing these properties
of the MLS-9 cells is in preparation.

Electrophysiology

For patch-clamp recording, adherent microglia cells were re-
leased by incubating for 15 min in citrate solution (130 mM
NaCl, 15 mM Na citrate, 10 mM HEPES, 10 mM d-glucose, pH
7.4), and then plated onto glass coverslips at least 2 h before re-
cording. A coverslip bearing microglia was placed in a superfu-
sion bath on the stage of an inverted microscope. Experiments
were carried out in two separate labs using slightly different
equipment and solutions. Most of the experiments on current ki-
netics were performed at the Rush Presbyterian St. Luke’s Medi-
cal Center, while most of the pharmacological characterization
was performed at the Toronto Hospital Research Institute and
the University of Toronto. In Chicago, micropipettes were pulled
in several stages using a Flaming Brown automatic pipette puller
(Sutter Instruments Co., San Rafael, CA) from EG-6 glass ob-
tained from Garner Glass Co. (Claremont, CA). Pipettes were
coated with Sylgard 184 (Dow Corning Corp., Midland, MI) and
heat-polished to a tip resistance measured in bath saline of typi-
cally 2-5 M{). Both pipette and the initial bath solutions were fil-
tered with 0.22-um pore diameter filters (Millipore Corp., Bed-
ford, MA). The current signal from the patch clamp (Axopatch
1A; Axon Instruments Inc., Burlingame, CA) was digitized and
stored in computer files for off-line analysis using Indec Labora-
tory Data Acquisition and Display Systems (Indec Corp., Sunny-
vale, CA) and pCLAMP 6.0.3 (Axon Instruments Inc.). In Tor-
onto, a pipette puller (PP83; Narashige USA, Inc., Greenvale, NY)
was used to fabricate electrodes from thick-walled borosilicate
glass capillaries (WPI, Sarasota, FL) that were neither fire pol-
ished nor coated and typically had resistances of 5-10 M{), and a
series resistance of 15-30 M{) after breakthrough. An Axopatch
200A amplifier (Axon Instruments Inc.) was used to record cur-
rents and both series resistance and capacitance compensation
were performed using the patch-clamp circuitry before data were
digitized. Currents were acquired and analyzed using pCLAMP
6.0 software. All experiments were done at room temperature
(20-23°C).

Solutions

Solutions are listed in Table I. Most salts and buffers were pur-
chased from Sigma Chemical Co. Methanesulfonate™ (MeSO3™)
salts were prepared by titrating methanesulfonic acid (Aldrich
Chemical Co., Milwaukee, WI) with the appropriate cation hy-
droxide to make a 1-M stock solution from which the solutions
were prepared. Except where stated otherwise, liquid junction
potentials were not corrected. When used, correction was based
on calculated junction potentials between the bath, pipette, and
ground agar bridge solutions (see Barry and Lynch, 1991). Ex-
cept where noted, bath and pipette K* salines contained MeSO3~
as the principal anion. At the Toronto Hospital Research Insti-
tute and the University of Toronto, the bath and pipette K* sa-
lines differed somewhat from those used at the Rush Presbyterian
St. Luke’s Medical Center, mainly in the use of aspartate™ as the
intracellular anion (Table I). No differences in the properties of
the HERG-like currents were noted. In the absence of internal
ATP, some current rundown was seen during ~30-min record-
ings. For pharmacological experiments, 2 mM ATP was added to
the pipette solution to prolong a stable baseline. In some cells, an
outwardly rectifying, time-invariant current was observed, which
resembled a swelling-sensitive anion current previously described
in primary rat microglia. In both primary cells and the cell line, it
was inhibited by flufenamic acid and ran down within minutes in
the absence of ATP in the pipette. When calculating HERG cur-
rent amplitudes for pharmacological studies, this time-invariant
current was subtracted, either as the current remaining after the
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TABLE 1
Composition of Saline Solutions (mM)
Name KCl  K-aanion NaCl CaCl, MgCl, EGTA HEPES
Standard 4.5 — 160 2 1 — 5
KCl 160 — — 2 1 — 10
KMeSO; — 160 — 2 1 — 10
K aspartate — 130 — 1 1 — 10
*KMeSO; — 160 — 1 2 11 10
*K aspartate ~ — 130 — 2 1 10 10
*KCl 160 — — 1 2 11 10

*Pipette solution. K-anion solutions are named according to the predomi-
nant anion (Cl~, MeSO;™, or aspartate™). Solutions were titrated with the
hydroxide of the predominant cation to pH 7.4 for extracellular solutions
or pH 7.2 for pipette solutions. Liquid junction potentials relative to stan-
dard saline solution were 11.1 mV for KMeSOj; and 4.5 mV for KCI. Most
measurements were made with KMeSO, solutions.

HERG channel closed at very negative potentials or after maxi-
mal block by E-4031. E-4031 is a class III antiarrhythmic methane-
sulfonanilide drug (Sanguinetti and Jurkiewicz, 1990a). The E-4031
used here was manufactured by Merck Research Labs (White
House Station, NJ).

RESULTS

Inward K* Currents

General description. Voltage-gated inward K* currents
were observed in nearly every microglial cell studied.
The general appearance of these currents is illustrated
in Figs. 1 and 2. The families of whole-cell currents in
Fig. 1 were obtained in isotonic K* solutions. When the
holding potential (V,,q) was —80 mV (Fig. 1 A), 300-
ms depolarizing pulses did not elicit detectable time-
dependent currents. However, when hyperpolarizing
pulses were applied from V4 = 0 mV (Fig. 1 B), large
inward currents were observed that increased to a peak,
and then decayed more slowly. A simple interpretation
is that the current is activated by hyperpolarization and
subsequently inactivates. No currents are seen during
pulses from Vi, 4 = —80 mV (Fig. 1 A), because at large
negative potentials all of the channels are inactivated,
defined as “a refractory or inactivated condition from
which [the channel] recovers at a relatively slow rate”
(Hodgkin and Huxley, 1952). As is discussed in more
detail in the companion paper (Pennefather et al.,
1998), various terminologies have been used to de-
scribe HERG and related currents. In describing our
results, we will define activation as the fast onset of cur-
rent with hyperpolarization, and inactivation as the
slower closing to a state C, that follows this opening.
The term deactivation will be used to describe the
rapid closing to a state C, that occurs at depolarized po-
tentials. The following general conceptual scheme
(Scheme I), in which hyperpolarization favors C, - O
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and O - G transitions and depolarization favors the
reverse, will be used to describe the data.

CLOSED OPEN INACTIVATED
activation inactivation
Cr o, Cs
deactivation recovery
FAST SLOW
(SCHEME 1)

As can be seen in Fig. 1 B, both activation and inacti-
vation became faster at more negative potentials. The
inactivation rate was especially voltage sensitive, with
little or no inactivation during pulses to —40 mV, and
rapid and substantial inactivation at large negative po-
tentials, resulting in cross-over of the currents. One
feature apparent in Fig. 1 A is that, after 300-ms pulses
to large positive potentials, large inward currents were
activated upon repolarization to —120 mV in high K*
saline. This indicates that the proportion of channels
in a resting closed state (C,) available for activation in-
creases at large positive potentials and that the rate
and/or completeness of this return to an available
state increases with depolarization. This process is
equivalent to recovery from classical inactivation. The
reverse nomenclature is sometimes used to describe
HERG currents.

[K* ], dependence of the currents. Fig. 2 compares the
behavior of the HERG-like conductance during identi-
cal pulse protocols in standard (low K*) saline (A) and
high K* saline (B). In both, the holding potential was 0
mV, where most channels are in the rapidly gating
closed state C,, enabling rapid activation on hyperpo-
larization. In Fig. 2, the current at the beginning of
pulses to large negative potentials appears to be some-
what greater than the leak current. In addition, the
small outward currents in Fig. 2 B decayed as the chan-
nels deactivated at more positive potentials. Both obser-
vations suggest that some channels were already open
at Vi = 0 mV. The K* currents in most cells were
small in standard (low K") saline, consistent with the
strong dependence of the maximal conductance of
HERG on external K* concentration (Sanguinetti et
al., 1995; Schonherr and Heinemann, 1996; Wang et
al., 1997). For this reason, we explored the properties
of this conductance mainly in high K* saline.

K* selectivity. The apparent reversal potential, V.,
was —78.0 = 7.9 mV (mean * SD) in standard saline
solution ([K*], = 4.5 mM) in eight cells selected for
relatively small leak currents (<10 pA at —100 mV) and
—1.9 = 4.8 mV (corrected for liquid junction poten-
tials, but without leak correction) in 12 cells in KCI sa-
line. Thus, the channels underlying the voltage- and
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FiGure 1. Whole-cell currents
in rat microglial cells in KCI sa-
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time-dependent currents activated on hyperpolariza-
tion are K* selective.

Gating Kinetics and Voltage Dependence

Voltage dependence of activation. Fig. 3 A shows the aver-
age normalized peak current-voltage relationship mea-
sured in K* saline during families of voltage-clamp
pulses from Vg = 0 mV. There is distinct inward recti-
fication, with large inward and small outward currents.
In 48 cells with a capacity of 18.4 = 5.6 pF (mean =
SD), the mean current at —120 mV was —565 * 250 pA
(mean * SD, without leak subtraction). This corre-
sponds with an average chord conductance of 2.6 pS/
pm? (assuming a capacitance of 1 wF/cm?). Because

80 mV

line (pipette and bath). (A) Cur-
rents were elicited by voltage
steps from —120 to 60 mV in
20-mV increments, from Vi 4 =
—80 mV. (B) Currents in the
same cell elicited by identical
voltage steps, but from V;,q = 0
mV. Voltage steps were given at
15-s intervals, from negative to
positive potentials. Calibration
bars apply to both parts.

the instantaneous current-voltage relationship was lin-
ear (see Fig. b B, below), the voltage dependence of
channel opening can be estimated directly from the
peak K* conductance (gg) during voltage pulses. The
average peak gy—voltage relationship is plotted in Fig. 3
B, along with the bestfitting Boltzmann curve. The
midpoint of the curve was —59 mV, and the slope fac-
tor was 18.6 mV.

Steady state availability of the K* conductance. The voltage
dependence of availability (the converse of inactiva-
tion) of the K* conductance was assessed by applying
test pulses to —120 mV from various holding potentials
(Fig. 4, A and B). The inward test currents have charac-
teristic rising and falling phases as channels first acti-
vate and then inactivate. At large negative Vj 4, no

80 mV

0mv

omv

-160 mV

Ficure 2. Currents recorded
in standard (low K*) saline (A)
and in the same cell in KCI saline
(B), with KCl in the pipette. Volt-
age steps in both were applied
from 80 to —160 mV in —20-mV
increments every 15 s from V4 =
0 mV. Calibration bars apply to
both parts.
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FIGURE 3.  (A) Average normalized peak current-voltage relation-
ship in KMeSOj salines (pipette and bath). Families of currents
were obtained by applying voltage steps between —140 and 60 mV
in 20-mV increments from V;,q = 0 mV, and then repeating the
same pulses in reverse order. There was little consistent hysteresis,
so the currents plotted are the average from both protocols in
each of five cells. Data were normalized to the current at —140 mV
and are plotted without leak correction as mean = SEM. (B) The
average chord conductance—voltage relationship in K* saline. The
curve shows the bestfitting Boltzmann relationship:

9k 1

'
_V1/2

Ok, max 1+ eXpV

where gi is the peak K* conductance, gk .. is the fitted maximal
gk V1/21s the midpoint of the curve, and kis a slope factor. The val-
ues obtained from averaged gy data were —59 mV (corrected for
junction potentials) for Vo and 18.6 mV for k. Leak subtraction
was based on the current at large positive potentials.

channels were available for activation by the step to
—120 mV, and no inward test current was elicited. (In
terms of our model, nearly all channels were in C, [in-
activated] states and few were in the C, [resting] state.)
When V4 was positive to 0 mV, the availability was
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maximal. The availability, evaluated as the normalized
peak inward test current (I/1,,,), is plotted against the
prepulse potential in Fig. 4 C. This figure illustrates hys-
teresis in the availability measured when Vy ;4 was made
progressively more positive (@) versus more negative
(). Vyoq was maintained for ~20 s at each potential
before the test pulse was applied. Evidently, 20 s is not
long enough for the system to achieve steady state, al-
though the slowest time constants observed by direct
measurements of gating kinetics were only several sec-
onds (see Fig. 8, below). Even when V,4 was main-
tained for 60 s at each potential, hysteresis was ob-
served. Shifts in the voltage dependence of inactivation
analogous to voltage shifts in various voltage-gated
channel properties seen in many cells after achieving
whole-cell configuration (Fenwick et al., 1982; Fernan-
dez et al., 1984) cannot explain this phenomenon; sim-
ilar hysteresis was observed during repeated measure-
ments in the same cell. Therefore, the hysteresis must
reflect the existence of a previously unknown ultra-slow
gating process (Pennefather et al., 1998).

To compare the behavior of HERG-like currents in
microglia with those in other cells, we fitted the avail-
ability data with a Boltzmann function normalized to
the peak test current when V4 = 40 mV. For measure-
ments in which V4 was made progressively more posi-
tive, starting at Vy,q = —100 mV (Fig. 4, @), the mid-
point, V; 5, was —14 mV and the slope factor, k, was 7.7
mV. In contrast, when V), was initially 40 mV, and
then progressively hyperpolarized (Fig. 4, L), V; o was
—39 mV and kwas 9.5 mV. Clearly, the method of mak-
ing this measurement strongly influences the results.
In earlier experiments, we used 2-s prepulses (from
Vhoa = —80 mV), and V, o averaged +13.5 mV in six
cells. The variability in the Vj, values reported in the
literature (see Table II) may reflect the existence of an
ultra-slow gating process in other HERG-related chan-
nels.

Window currents. The overlap we observed between
peak gg vs. voltage and availability vs. voltage relation-
ships suggests the possibility of “window currents” that
might occur in intact microglia. It is evident in the
records in Fig. 4 A that a window current exists after
20 s at each V4 just before applying a test pulse. That
this current is due to HERG-like channels (as opposed
to leak or anion current) is evident from the reduction
of inward current upon the return to V4 after each
test pulse, reflecting the inactivation of most K* chan-
nels during the test pulse. The voltage dependence of
this window current is plotted in Fig. 4 D. Much smaller
window currents were seen when V4 was made pro-
gressively more positive (Fig. 4 D, @). Like the availabil-
ity curves in Fig. 4 C, the window current measurement
thus exhibited pronounced hysteresis. The peak on the
hyperpolarizing branch occurred at —40 mV and when
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-120 mV
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-120 mv
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F1GURE 4. Hysteresis in the voltage dependence
of quasi-steady state inactivation (inverse of avail-
ability) in KMeSOj; (pipette and bath). (A) Super-
imposed are currents recorded during test pulses
to —120 mV, from various V4. Vio1q Was changed
progressively from 40 to —100 mV in —20-mV in-
crements and was maintained for ~20 s at each
potential before the test pulse was applied. (B)
Test currents from analogous measurements in

[l

C Normalized
peak current 1.0

200 pA\‘

100 ms

the same cell as in A in which V4 was increased
from —100 to 40 mV. (C) Average peak test cur-
rent amplitudes (n = 4 cells) are plotted as a func-
tion of Vj 4, normalized to the test current from
Vioda = 40 mV. In a few cells in which V4 was
changed up to 80 mV, there was no further en-
hancement of the test current beyond that at Vy,,q =
40 mV. In each cell, measurements were made
both by changing V},,q from —100 to 40 mV (@)
and from 40 to —100 mV ([J), not always in the
same order. The “up” and “down” relationships
(arrows) were fitted to a Boltzmann function:

L 1

V,,,-V’
1+ exp—2
k
where 1, is the peak test current when Vy,q = 40
mV. For measurements in which Vi 4 was made

max

r0.8

r0.6

- 0.4

r0.2

T T T 1

-120 -80 -40 0 40
Vhold (MV)

converted to conductance was 14% of gi .., in that cell.
In four cells analyzed in this way, the window current at
—40 mV averaged 13.6 = 0.5% of gg ..« (mean * SD).
The model described in the next paper (Pennefather
etal., 1998), using rate constants consistent with exper-
imental observations, predicts a peak window conduc-
tance (at —36 mV) of ~12% of the maximal conduc-
tance.

The instantaneous curreni—voltage relation. The instan-
taneous current-voltage relationship was determined
from experiments like the one in Fig. 5 A. The K* con-
ductance was activated by a brief pulse to —120 mV
from V4 = 0 mV, and then the voltage was stepped to
a range of potentials. The test current at most poten-
tials decayed rapidly as channels closed. The amplitude
of the “instantaneous” current was obtained by fitting
the decay with a single exponential and extrapolating
to the start of the test pulse. When measured in K* sa-
line, the resulting instantaneous current-voltage rela-
tion was essentially linear between —80 and 80 mV (Fig.
5 B). Thus, the strong inward rectification of the mac-

progressively more positive, starting at Vy,q =
—100 mV (B, @), the midpoint, V; 5, was —14 mV
and the slope factor, k, was 7.7 mV. When Vj g4
was initially 40 mV, and then progressively hyper-
polarized (A, ), V;,, was —39 mV and k was 9.5
mV. (D) Window currents from the experiment il-
lustrated in A and B. The current at V} ;q was mea-
sured just before each test pulse, and is plotted vs.
Vioa- Distinct window currents were seen consis-
tently in other cells when the protocol in A was
used, whereas the window currents measured us-
ing the protocol in Bwere very small.

roscopic current is due mainly to voltage-dependent
gating and not to intrinsic rectification of the open
channel current.

Activation and deactivation kinetics. When fitted by sin-
gle exponentials, the time constants of channel open-
ing and closing were moderately voltage dependent, as
illustrated in Fig. 6. The activation time constant, T,
(Fig. 6, ), measured during the turn-on of currents
during hyperpolarizing pulses (e.g., Figs. 1 and 2) was
~30 ms at —60 mV, decreasing efold in 54 mV to <10
ms at —120 mV.

Deactivation was evaluated in “tail current” experi-
ments like the one illustrated in Fig. 5 A. The test cur-
rent at most potentials decayed rapidly as channels
closed, in terms of our model, predominantly into state
C.. The time constant of current decay, 1; (Fig. 5 A, @),
was faster at more positive potentials, decreasing with
depolarization efold in 104 mV. 7, passed through a
local maximum at —40 mV of ~35 ms. It is noteworthy
that 1, and 7,; were identical at —60 mV, consistent
with a simple first-order transition between a single
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Normalized current

Ficure 5. Tail current and in-
stantaneous  current-voltage
relationship measurements in
1.0 7 KMeSOj, (pipette and bath). (A)
Tail currents were recorded with
voltage steps from —100 to 80
0.5 - mV in 20-mV increments at 15-s
intervals, after a 30-ms prepulse to
—120 mV, from V,,,,q = 0 mV. (B)

40 80 The average instantaneous cur-

) 1 I

open and a single closed state. At potentials more nega-
tive than —60 mV, the time constant of current decay
measured with the tail current protocol of Fig. 5 A in-
creased progressively, and with an increased variability.
Channels in this negative voltage range appear to enter
another closed state (C;) that behaves like an inacti-
vated state. It can be seen in Fig. 5 A that beginning at
—20 mV and increasingly at more negative potentials,

Time constant (ms)
-
&
[ 2l
—eo—

10

|
a

Voltage (mV)

Ficure 6. Time constants of activation (T,., [J) and deactivation
(T, @) in KMeSOg (pipette and bath). The rising phase of cur-
rents during hyperpolarizing pulses from Vy,q = 0 mV was fitted
with a single exponential to obtain 7,. Tail currents like those in
Fig. 5 A were fitted with a single exponential to obtain 7. Plotted
values are the mean = SEM of n = 22 and 7 cells for 7, and T,
respectively.
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Voltage (mV) rent-voltage relation (*SEM),
normalized to the initial current
at —80 mV (n = 7). The currents
during test pulses were fitted
with a single exponential, and
extrapolated to the beginning of

the voltage step.

the rapid closing process (to C,) becomes less com-
plete. This result is consistent with the voltage depen-
dence of the rapid G, ~ O transition shown in Fig. 3 B,
and with the existence of a window current (Fig. 4 D).
At larger negative potentials, the current again de-
cayed, but anomalously slowly, most likely due to chan-
nels inactivating (entering slowly equilibrating closed
C, states), rather than deactivating into the resting C,
state. The observed current decay at potentials more
negative than —60 mV is thus a mixture of two types of
closing, with the slow O - C; pathway becoming domi-
nant at more negative potentials. Indeed, at —120 mV,
the time constant measured with this protocol is identi-
cal to that of inactivation measured with the inactiva-
tion protocol (see Fig. 8). Further evidence supporting
this interpretation is presented in the following paper
(Pennefather et al., 1998).

The kinetics of inactivation (slow closing). The time con-
stants of inactivation (7;) and recovery (Tiecovery) WeTE
more strongly voltage dependent than those of activa-
tion (7,.,) and fast closing (7). Recovery from inacti-
vation at moderate potentials was slow. Recovery was
evaluated in paired-pulse experiments like the one il-
lustrated in Fig. 7. From V,,4 = 0 mV, most of the
channels opened, and then were inactivated during a
pulse to —120 mV. The potential was returned to 0 mV
and after a variable interval a second pulse to —120 mV
was applied. The amplitude of the inward current dur-
ing the second pulse reflects the recovery from inactiva-
tion that took place at 0 mV in the interval between
pulses. It is apparent that recovery required several sec-
onds and was not yet complete after the largest interval
illustrated (4 s). In other experiments, recovery was
measured at different potentials. The peak current dur-
ing the second pulse as a function of the interval be-
tween pulses was fitted by a single exponential to ob-
tain Tyecovery- At —20 to —40 mV, recovery seemed to be
slow and incomplete, and reliable data were not ob-
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FIGURE 7. Recovery from the inactivation at 0 mV in KMeSO; (pi-
pette and bath). Superimposed are currents recorded during pairs
of identical 300-ms pulses to —120 mV applied from Vy,,q = 0 mV,
separated by an interval of variable duration. The whole pulse pro-
tocol was given once every 30 s. To explore recovery at other volt-
ages, the potential in the interval between pulses was varied. The
time constant of recovery, T,ccover,» Was obtained by fitting the enve-
lope of peak test currents to a éingle exponential. In this experi-
ment, Tyecovery Was 0.74 s.

tained. As shown in Fig. 8 (O), T,ccovery Was strongly volt-
age dependent, decreasing on average efold in 35 mV.
Recovery from inactivation could be measured directly
in Cs™ saline as a rising outward current (Pennefather
et al., 1998), which showed that Ty decreased
steeply with depolarization also in Cs* saline.

Plotted in Fig. 8 is 7; (@), calculated from the decay
of current during hyperpolarizing pulses in K* saline.
Inactivation first became detectable at potentials nega-
tive to —40 mV, was incomplete and quite slow at mod-
erately negative potentials (1; = 10 s at —50 mV), and
then 1; decreased at larger negative potentials efold in
18.3 mV (between —80 and —120 mV). At potentials
negative enough for inactivation to develop rapidly,
there was often a small slower component of current
decay. Fast and slow components of current decay have
been described previously for HERG-like currents in
cardiac myocytes (Yang et al., 1994), and in HERG
current expressed in Xenopus oocytes (Spector et
al., 19964, 1996b) or in HEK cells (Snyders and Chaud-
hary, 1996). We did not investigate this slow compo-
nent systematically.

The time constants of both activation and inactiva-
tion appeared to be smaller in low than in high K* sa-
line, but activation in low K* saline was not resolved
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FIGURE 8. Mean time constants of inactivation, T; (@), and recov-
€T, Trecovery (O), measured in KMeSOj (pipette and bath). Decay-
ing currents during hyperpolarizing pulses from V,,q = 0 mV were
fitted with a single exponential to obtain 7; (n = 7), and each enve-
lope of peak currents during paired-pulse recordings like those il-
lustrated in Fig. 7 was fitted with a single exponential to obtain T,ecoyery
(n = 6). Measurements of 7; in standard saline are also plotted for
16 cells (M). The values of 7; in standard and K* saline differ signif-
icantly at both voltages (P < 1075). In ~10-20% of the cells stud-
ied, inactivation appeared to be qualitatively slower than usual, al-
though in other respects the conductance resembled HERG
rather than IR. The reason for this behavior was not determined
and those cells were excluded from analysis.

well enough to draw firm conclusions. In the voltage
range negative to the Nernst potential for K* (), T
was 5b-10X faster in standard saline (Fig. 8, W) than in
K* saline. Previous studies also report that the fast gat-
ing process is accelerated by low [K*], (Wang et al.,
1996, 1997; Yang et al., 1997), but in some studies the
slower process of inactivation/recovery was not affected
by [K*], (Shibasaki, 1987; Wang et al., 1997). In any
case, it is evident that the gating kinetics are affected
much less by changes in [K*], than are genuine inward
rectifier (IR) K* channels.

Pharmacological Sensitivity

Compared with IR, the HERG-like K* currents in mi-
croglia were less sensitive to block by extracellular cat-
ions (Na*, Cs*, and Ba?"), and block was only weakly
time and voltage dependent. There was no obvious
time- or voltage-dependent block by Na*, and nearly
complete inactivation of inward K* currents occurred
both in standard saline with 160 mM Na* and in Na*-
free K* saline (Fig. 2, A and B). This is clearly distinct
from the effects of Na* on IR channels. As seen in Fig.
9 A, when 10 mM Ba?* was added to the bath the in-
ward current was attenuated by >80% (n = 5), but the
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FIGURE 9. Pharmacological sensitivity of HERG-like currents. (A)
Block by Ba?*. Identical pulses to —80 mV from V} ;4 = 0 mV were
applied to a cell exposed to KCl saline (pipette and bath) with the
indicated concentration of BaCl,. (B) Block by La®*" in KCI saline
with K aspartate in the pipette. From V)4 = —80 mV, a 300-ms
prepulse to 80 mV to remove inactivation was followed by a test
pulse to —120 mV. In this cell, 30 pM La®* had a substantial effect
and 100 pM virtually abolished the current, with partial recovery
upon washout. (C) Block by 100 nM E-4031 in KClI saline with K as-
partate in the pipette. Pulses to —120 mV were applied after a
prepulse to 80 mV from V,,,q = 0 mV. To explore a range of con-
centrations, control currents were recorded for at least 5 min, the
lowest concentration of E-4031 was added to the bath and suffi-
cient time was allowed for steady state blockade (usually 5 min) be-
fore the next concentration was added. The time-independent
outward currents at 80 mV in B and C are most likely anion cur-
rents.
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decay time constant was only slightly faster than in the
control solution, in contrast to the more potent and
rapid time-dependent block of IR currents in microglia
(Schlichter et al., 1996) and other cells. We cannot rule
out the possibility that some part of the effect of Ba?*
reflects the presence of a few IR channels in these cells.
La®*, which reportedly blocks HERG-like currents in a
voltage-dependent manner (Faravelli et al., 1996), in-
hibited the microglial current (Fig. 9 B). There was lit-
tle block at 3 uM, 37 = 7% inhibition at 30 uM (mean *
SEM, n = 5), and 77 % 5% inhibition at 100 pM (n = 8).
The methanesulfonanilide drug, E-4031, is a classic
blocker of HERG channels. HERG-like currents in mi-
croglia were sensitive to this drug, with substantial
block at 100 nM (Fig. 9 C). The K; measured using the
illustrated protocol was estimated to be 37 = 8 nM (n = 5).

DISCUSSION

The Predominant K* Current in Cultured Rat Microglia Was
HERG-like and not Inward Rectifier

The presence of IR K* currents in microglia from
mouse and rat has been demonstrated repeatedly
(Kettenmann et al., 1990; Banati et al., 1991; Noren-
berg et al., 1992; Brockhaus et al., 1993; Eder et al.,
1995¢; Ilschner et al., 1995; Visentin et al., 1995; Fi-
scher et al., 1995; Schlichter et al., 1996), although
these studies also show that K* channel expression
changes dramatically after treatment with various cyto-
kines. IR channels in microglia exhibit classical proper-
ties of Kir2 channels, including high K* selectivity,
[K*],-dependent gating, voltage-dependent block by
Cs*, and voltage- and time-dependent block by Na*
and Ba?* (Visentin et al., 1995; Eder et al., 19955; Schlich-
ter et al., 1996). At a superficial level, the MLS-9 micro-
glia preparation studied here appeared to have similar
K* currents. However, closer inspection revealed sev-
eral properties that clearly distinguish these currents
from traditional IR currents.

The inward K* currents described here were affected
only by relatively high (millimolar) concentrations of
Ba?* or Cs*. The time dependence of Ba?* block was
distinctly weaker than for IR channels in microglia
(Schlichter et al., 1996) and other cells. Cs*™ was detect-
ably permeant so that in isotonic Cs* solution, distinct
inward and larger outward currents were observed
(Pennefather et al., 1998), as reported previously for
HERG (Schonherr and Heinemann, 1996).

Macroscopic IR currents in many cells exhibit volt-
age- and time-dependent block by extracellular Na*
and slower, weak block by Ca?* and Mg?* (Biermans et
al., 1987), but little genuine inactivation. The decay of
IR currents in primary cultures of murine microglia
also appears to be due to Na* block (Eder et al.,
19954). In contrast, the HERG-like currents described



here exhibited a strongly voltage-dependent inactiva-
tion (slow closing) process. Although T; was faster in
standard (high Na*) saline than in Na*-free K* saline
(Fig. 8), the current decayed almost completely at large
negative potentials in the complete absence of Na*.
Thus, the decay cannot be attributed to block by Na*.

A defining property of IR currents is their depen-
dence on [K'],. In a variety of cells, opening of IR
channels shows a nearly perfect dependence on [K*],
such that the kinetics of opening and the conduc-
tance—voltage relation nearly superimpose when plot-
ted as a function of V-Eg (Almers, 1971; Hestrin, 1981;
Harvey and Ten Eick, 1988; Silver and DeCoursey,
1990; Pennefather et al., 1992). Consistent with other
studies (Wang et al., 1997; Yang et al., 1997), activation
of the HERG-like current in microglia appeared to be
somewhat faster in low than high [K*],. In contrast,
lowering [K*], slows the activation of IR channels at a
given voltage. Also in stark contrast to IR channels, we
found little effect of [K*], on the position of the gg-V
relationship, consistent with previous studies of HERG-
like currents in neuroblastoma (Arcangeli et al., 1995),
and HERG in which V, , shifted only 30 mV when Fg
was changed by 99 mV (Wang et al., 1997).

Are HERG-like K* channels expressed in microglia in
situ? There are numerous reports of IR channels in
microglia in primary culture. We did not observe IR
currents in the MLS-9 cell line derived from microglia,
and instead consistently observed HERG-like K* cur-
rents. Clearly, the pattern of K* channel expression is
different in MLS-9 cells and in microglia in primary cul-
ture. This is not too surprising in light of the well-estab-
lished propensity of cultured microglia to change their
pattern of ion channel expression. The properties of
the K* currents reported previously in microglia iden-
tify them unambiguously as IR. An important question
is whether HERG-like K* channels are expressed in mi-
croglia in situ under any circumstances. In preliminary
experiments (Cayabyab, F.S., and L.C. Schlichter, un-
published observations), we have explored the possible
expression of HERG-like K* current in cultured micro-
glia soon after isolation, using E-4031 to distinguish it
from classical IR. Large currents with properties very
similar to those described herein were seen in a small
number of microglia, under apparently specific condi-
tions that have not yet been fully worked out. It may
well be that this current was not discovered earlier in
microglia because in most studies the conditions used
would minimize the HERG-like current: low extracellu-
lar K* (Fig. 2 A), and a negative V} 4 that would inacti-
vate HERG-like channels almost entirely (Fig. 1 A).

Implications for the ontogeny and functions of microglia.
There is a long-standing debate over whether microglia
originated in the brain from embryonic precursor cells,
or whether they are derived from circulating macro-

phages that migrated to the brain. A lack of delayed-
rectifier K* current in microglia, both in culture
(Kettenmann et al., 1990) and in brain slices (Brock-
haus et al., 1993), initially appeared to distinguish un-
stimulated microglia from macrophages. However, sub-
sequent studies have shown that microglia can express
a delayed-rectifier current that is apparently identical
to that in macrophages. Both cell types have Kvl.3
mRNA transcripts, suggesting that this channel under-
lies the observed currents (Norenberg et al., 1993; De-
Coursey et al., 1996). Delayed rectifier currents appear
spontaneously in a fraction of cells (Korotzer and Cot-
man, 1992; Schlichter et al., 1996), and more consis-
tently after exposure to astrocytes (Korotzer and Cot-
man, 1992; Sievers et al., 1994), to astrocyte-conditioned
medium (Eder etal., 1997), or to Teflon™ (Noérenberg
etal., 1993), and after stimulation with PMA (Yoo et al.,
1996), PMA and +y-interferon (Visentin et al., 1995), 1i-
popolysaccharide (Norenberg et al., 1994; Illes et al.,
1996), or granulocyte-macrophage colony stimulating
factor (Eder et al., 19958). Conversely, there are many
situations in which macrophages do not express de-
layed rectifier (Ypey and Clapham, 1984; Gallin and
Sheehy, 1985; Gallin and McKinney, 1988; Nelson et
al., 1990; DeCoursey et al., 1996) and in which they ex-
press inward-rectifier channels (Gallin and Sheehy,
1985; Randriamampita and Trautmann, 1987; Gallin
and McKinney, 1988; McKinney and Gallin, 1988, 1990;
DeCoursey et al., 1996) like those described in micro-
glia.

We demonstrate here that rat microglia cells main-
tained in prolonged tissue culture express HERG-like
K" channels that, to our knowledge, have never been
described in any immune cell (for review see DeCour-
sey and Grinstein, 1998). HERG channels were origi-
nally cloned from a brain (hippocampal) expression li-
brary (Warmke and Ganetzky, 1994), and HERG-like
channels are present in neuroblastoma cells (Arcangeli
et al., 1995; Faravelli et al., 1996; Hu and Shi, 1997).
Their expression in microglia is thus compatible with
a possible ectodermal origin (compare Schelper and
Adrian, 1986; Fedoroft, 1995). If microglia originated
from mesoderm, their precursor cells may have di-
verged from monocyte/macrophage precursor cells at
a relatively early developmental stage. Alternatively, the
expression of HERG-like channels in microglia may be
the result of their development in the brain microenvi-
ronment.

Possible roles for HERG in microglia. Based on their near
ubiquity in microglia, IR channels are widely believed
to contribute most of the K* conductance at the resting
membrane potential (Banati et al., 1991; Kettenmann
et al., 1990; Korotzer and Cotman, 1992; Norenberg et
al., 1992, 1994; Fischer et al., 1995; Schlichter et al., 1996).
The two stable membrane potentials that have been re-
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ported for microglia (=70 and —35 mV; Nérenberg et
al., 1994) are near the K* and CI~ equilibrium poten-
tials (—85 and ~—30 mV). In cardiac muscle, HERG
currents contribute to repolarization during the long
action potential. There is no evidence that microglia
are excitable cells. However, at least under certain con-
ditions, microglia possess a variety of channels that
upon activation would depolarize the membrane; e.g.,
purinergic receptor-gated (Kettenmann et al., 1993; II-
les et al., 1996), Ca?* (Colton et al., 1994), Na* (Ko-
rotzer and Cotman, 1992), and anion (Schlichter et al.,
1996) channels. The MLS-9 microglial cell line studied
here displayed little if any IR current and no delayed
rectifier K* current. Inasmuch as the HERGlike cur-
rent may be the only significant K* current in this cell
line, and conceivably also in specific functional states of
microglial cells, it is significant that its voltage depen-
dence of activation and inactivation predicts a standing
window current at membrane potentials within the
physiological range (—50 to +20 mV). The substantial
window currents exhibited by HERG-like channels in
microglia would oppose depolarizing stimuli, such as
produced by purinergic stimulation.

Quail neural crest cells during early development se-
quentially express HERG-like K*, and then classical IR
K*, channels (Arcangeli et al., 1997). These K* chan-
nels appear to set the resting membrane potential in
these cells, and the appearance of IR coincides with a
20-mV hyperpolarization of the membrane potential.
Evidently, the voltage dependence of HERG gating re-
sults in a less negative set point for the membrane po-
tential than Fg, whereas IR channels keep the mem-
brane potential near Eg. It has been speculated that this
more positive resting potential would reduce the excit-
ability of immature cells and promote proliferation
(Arcangeli et al., 1997).

Properties of HERG-like Currents in Microglia Compared with
Other Cells

Pharmacological sensitivity. La3* blocks native HERG cur-
rents in cardiac muscle, I, (at 10-100 pM; Sanguinetti
and Jurkiewicz, 19900), HERG-like currents in neuro-
blastoma cells (at 30 pM; Faravelli et al., 1996), and
HERG expressed in Xenopus oocytes (>90% inhibition
at 10 wM; Sanguinetti et al., 1995). At least part of this
inhibition has been attributed to a shift in surface po-
tential and, therefore, in the apparent voltage depen-
dence of the current (Sanguinetti and Jurkiewicz,
19905; Sanguinetti et al., 1995). The HERG-like current
in rat microglia was inhibited by La3* with a K; of ~40
wM. When expressed heterologously, the HERG chan-
nel (Trudeau et al., 1995; Snyders and Chaudhary,
1996), like cardiac [, current (Sanguinetti and Jur-
kiewicz, 1990q), is inhibited by the methanesulfonanil-
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ide drugs, E-4031 and dofetilide. K; values reported for
E-4031 range from 10 nM in GH3 cells (Weinsberg et
al., 1997) and ferret atrial myocytes (Liu et al., 1996) to
397 nM in guinea pig ventricular myocytes (Sanguinetti
and Jurkiewicz, 1990a) and 588 nM for HERG ex-
pressed heterologously in Xenopus oocytes (Trudeau
et al., 1995). Block by methanesulfonanilides exhibits
state dependence, interpreted as open-channel block
(Carmeliet, 1992; Snyders and Chaudhary, 1996; Spec-
tor et al., 19965), which most likely explains differences
in reported potency. In microglia, E-4031 blocked with
K; = 37 nM, well within the range reported for HERG.

Inactivation is more steeply voltage dependent than activa-
tion. The 7=V, Tiecovery—V; and steady state availability
relationships of the HERG-like currents described here
all were steeply voltage dependent. A similarly steep
voltage dependence has been reported in all prepara-
tions in which HERG and related currents have been
studied (Table II). However, the midpoint (V] ) is
rather variable. The persistent hysteresis that we ob-
served when measuring quasi-steady state availability
curves (Fig. 4 C) shows that quite different results can
be obtained if the measurement is made with different
voltage protocols. Depending on the history of the
measurement, V;,, was —39 or —14 mV when mea-
sured in the same cells using 20-s prepulses. With 2-s
prepulses, Vo averaged 13.5 mV. Thus, the coupling of
the two closing pathways through the open state and/
or the existence of additional slowly equilibrating states
can dramatically influence this parameter, with V;
varying by 55 mV, depending on how it is measured.

The activation process, characterized by 7,.~V, T~V
and peak gig—V relationships, exhibited moderate volt-
age dependence, comparable with that observed in
other preparations (Table II), both for HERG ex-
pressed heterologously and for endogenous HERG-like
currents. The overlap of activation and inactivation ap-
pears to be smaller in microglia than in other cells,
which would tend to limit the size of window current
and contribute to the absence of depolarization-acti-
vated outward currents.

Gating kinetics compared. Both fast and slow gating
processes in microglia appear to be similar kinetically
to their counterparts in neuroblastoma cells (Arcan-
geli et al.,, 1995). Both gating processes are slower
than those measured in low K* solutions for HERG
expressed in Xenopus oocytes (Trudeau et al., 1995;
Schonherr and Heinemann, 1996; Spector et al.,
19964; Wang et al., 1996) or in HEK cells (Snyders and
Chaudhary, 1996). However, the possible [K*], depen-
dence of gating complicates this comparison. The com-
ponent of cardiac myocyte current believed to reflect
native HERG channels (f,) appears to inactivate and
recover at least an order of magnitude faster in studies
at body temperature, 35-37°C (Shibasaki, 1987; San-



TABLE II
Voltage Dependence of Activation and Inactivation of HERG and Similar Channels

Activation Inactivation

Channel, preparation Vie k Vie k [K*], Reference

mV mV mV mV mM
Ik, cardiac myocyte —25.1 7.4 5.4-150 Shibasaki, 1987
Ix,, cardiac myocyte —21.5 7.5 4 Sanguinetti and Jurkiewicz, 1990a
Ig,, cardiac myocyte =30 22.7 —13 8.4 5.4 Liu et al., 1996
HERG, Xenopus 6 11.7 100 Trudeau et al., 1995
HERG, Xenopus —49 28 -15 7.9 10, 2 Sanguinetti et al., 1995
HERG, Xenopus —52 27 -39 8.8 4 Spector et al., 1996
HERG, Xenopus —25 26 —23.7 6.67 98 Wang etal., 1997
HERG, HEK293 —14 6.4 4 Snyders and Chaudhary, 1996
HERG, HEK293 —-90 25 10 Smith et al., 1996
L, neuroblastoma —49 18 —25.4 7.5 40 Arcangeli et al., 1995
L, F-11 neuroblastoma —57.4 24 —b2 4.8 40 Faravelli et al., 1996
L, Xenopus —50 118 Bauer et al., 1996
N, NG108-15 —25 100 Hu and Shi, 1997
L, rat microglia —-59 18.6 —14, -39 7.7,9.5 160 Present study

L, HERG-like; N, not identified as HERG-like by the authors of the study. Activation and inactivation parameters are midpoints, V; 5, and slope factors, k,

for simple Boltzmann fits (Figs. 3 and 4) and are defined according to the convention used here (as the faster and slower components of gating, respec-

tively). The nomenclature varies in the original references.

guinetti and Jurkiewicz, 1990a). The closest compari-
son is with HERG in Xenopus oocytes at 21-23°C with
[K*], = 98 mM (Wang et al., 1997), where T, Ty, and
T, appear similar to values reported here, but Tyecovery ap-
pears two to three times faster. Considering the differ-
ences in recording conditions, the currents described
here are kinetically similar to HERG and HERG-like
currents in other cells. The main difference seems to be
that HERG-like currents in microglia exhibit very slow
gating around —40 mV, which can lead to use-depen-
dent phenomena.

When expressed heterologously in Xenopus oocytes,
HERG currents have a distinct outward component in
standard saline, although the outward currents are at
least an order of magnitude smaller than inward cur-

rents (Spector et al., 1996a). We could detect only very
small outward currents under comparable conditions
in microglia. This result is predicted by our model
(Pennefather et al., 1998) and arises because recovery
from inactivation at positive potentials is slow, relative
to the closing rate. An additional (related) factor is that
activation is shifted to more negative potentials than in
HERG in oocytes (Wang et al., 1997).

In summary, the biophysical and pharmacological ev-
idence leads to the conclusion that the predominant
K* channel present in the rat microglial cell line stud-
ied here was not IR, but was a product of ergor a closely
related channel gene. Which isoform is present in mi-
croglia remains to be determined.
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