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Abstract: The harmonic analysis (HA) of arterial radial pulses in humans has been widely investi-
gated in recent years for clinical applications of traditional Chinese medicine. This study aimed at
establishing the validity of carrying out HA on synchronous peripheral volume pulses for predicting
diabetes-induced subtle changes in heart energy. In this study, 141 subjects (Group 1: 63 healthy
elderly subjects; Group 2: 78 diabetic subjects) were enrolled at the same hospital. After routine blood
sampling, all synchronous electrocardiogram (ECG) and photoplethysmography (PPG) measure-
ments (i.e., at the six locations) were acquired in the morning. HA of synchronous peripheral volume
pulses and radial pulse waves was performed and analyzed after a short period of an ensemble
averaging process based on the R-wave peak location. This study utilized HA for the peripheral
volume pulses and found that the averaged total pulse energy (i.e., the C0 of the DTFS) was identical
in the same subject. A logistic regression model with C0 and a waist circumference variable showed a
graded association with the risk of developing type 2 diabetes. The adjusted odds ratio for C0 and the
waist circumference were 0.986 (95% confidence interval: 0.977, 0.994) and 1.130 (95% confidence in-
terval: 1.045, 1.222), respectively. C0 also showed significant negative correlations with risk factors for
type 2 diabetes mellitus, including glycosylated hemoglobin and fasting plasma glucose (r = −0.438,
p < 0.001; r = −0.358, p < 0.001, respectively). This study established a new application of harmonic
analysis in synchronous peripheral volume pulses for clinical applications. The findings showed that
the C0 could be used as a prognostic indicator of a protective factor for predicting type 2 diabetes.

Keywords: harmonic analysis; radial arterial waveform; peripheral volume pulse; digital volume
pulse; photoplethysmography (PPG); discrete-time Fourier series (DTFS); averaged total pulse energy

1. Introduction

There are several data decomposition methods in pulse wave analysis, of which
harmonic analysis (HA) for discrete-time Fourier series (DTFS) [1–3], wavelet transforma-
tion [4], and ensemble empirical mode decomposition [5], among others, are efficient ways
of viewing waveforms with regard to time/frequency or a nonlinear domain. The HA
of arterial pressure pulses has standard protocols and reliability assessments, as well as
being established in [6,7], for effective harmonic wave analyzers (TD01C, Mii-Ann Tech.
Twain). In addition, as described in Matos et al.’s review [8] and Peng et al.’s report [9],
the HA of radial arterial waveforms could make a significant contribution to traditional
Chinese medicine. Professors Tsai et al. indicated that the harmonic characteristics of the
radial artery in the wrist at different positions and different parameters were not identical,
and recommended that any measurement location in future studies on the HA of pressure
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pulse diagnosis needs a more finely adjusted analysis [10]. More importantly, there have
been further studies about the HA of radial arterial waveform (e.g., a kind of peripheral
pressure pulse) addressing hypertension [11] and monitoring applied to coronary artery
disease [12], type 2 diabetes mellitus [13–16], and the preservation of health [17]. On the
other hand, a noninvasive wearable MEMS pressure sensor array was proposed in [18]
for monitoring the arterial pulse waveform and heart rate, and the detection of atrial
fibrillation. A number of similar reports on HA with a single channel pressure pulse signal
have thus been addressed in the literature.

There is a vast range of photoplethysmography (PPG: one type of peripheral volume
pulse) applications in healthcare, and there is a strong research focus on using PPG in
wearable sensors [19]. An important previous study verified that the peripheral pressure
pulse is related to the digital volume pulse (being one type of peripheral volume pulse); it
can be obtained by measuring the infrared light transmission through finger PPG using a
non-linear transfer function [20]. In their book [21], Professors Kyriacou and Allen discuss
PPG with a focus on its applications in clinical physiological measurements, including
clinical physiological monitoring, vascular assessment, and autonomic function, which
are widely used in instrumentation, measurement protocols, and pulse wave analysis.
However, there remain several problems for PPG volume pulses to overcome [22]. These
include the instability of the volume pulses for PPG sensors. Therefore, a few studies
have focused on the harmonic analysis (HA) of peripheral volume pulse waveforms
(e.g., [23], which reported on only a single channel peripheral volume pulse but no clinical
applications). We believe that wearable PPG and its applications are an increasing trend [21].
Therefore, the HA of the peripheral volume pulse in PPG has a great potential for the
development of new solutions in the clinical application of traditional Chinese medicine.

Accordingly, our previous study [5] utilized radial arterial waveforms from the wrist
and identified the diastolic peak from the fifth decomposed component through the ensem-
ble empirical mode decomposition method, which was compared with the conventional
digital volume pulse waveform [24,25] from the finger as an indicator of diabetic control
in people who are older. To overcome the limitations of HA of the peripheral volume
pulse waveform, the current study adopted synchronous whole-body peripheral volume
pulse waveforms. We previously proposed a non-invasive six-channel electrocardiography
(ECG)–PWV system [24,25] that could complete the calculations of six PWV values ob-
tained from the bilateral earlobes, fingers, and toes within 30 min. Although the reliability
of the system used in type 2 diabetes subjects and normal subjects was validated for the
calculation of many human physiological parameters with PPG signals in our previous
study (e.g., pulse wave velocity [24], multiscale entropy [24], and percussion entropy [26]),
it had not been tested in subjects with HA computation. In another previous study [27],
an animal model (i.e., a pig animal model) was anesthetized and attached to a medical
monitoring device that records ECG, capnography, and PPG waveforms concurrently. The
ultimate result was acoustic waveforms and time-registered data streams for heart and lung
function. The recorded data came from sensors positioned in three different anatomical
body locations (ear, leg, and tail). The study reported initial proof-of-concept large animal
(porcine) experiments and a robust processing algorithm that demonstrates the feasibility
of this approach.

There are a number of similar reports in the literature regarding HA with a single
channel of pressure pulse signals; however, a novel application of the HA of synchronous
multiple channels of peripheral volume pulses has not been seen before. This study focuses
on creating a first step towards a comprehensive approach to the harmonic analysis of
synchronous peripheral volume pulses. Specifically, synchronous ECG and PPG, as well
as radial arterial waveforms, were measured at different locations in the body. Those
PPG signals all belong to the peripheral volume pulse. The aims of this study were
two-fold. First, we attempted to establish a feasibility assessment of the HA of synchronous
peripheral volume pulses. Second, we validated the application of the HA of C0 and other
incidence risk factors for type 2 diabetes mellitus prediction in older subjects. Subsequently,
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the current study needed to show that the averaged total pulse energies (i.e., C0 in discrete-
time Fourier series (DTFS)) [1] decomposed from six synchronous peripheral volume pulses
were identical or non-identical in the same subject.

A demonstration of the HA formula for the peripheral volume pulses and the statistical
methods (e.g., Bland–Altman and binary logistic regression analysis) for the study are
presented in Section 2. Subsequently, the values of the averaged total pulse energy are
compared (identical or non-identical) for the six synchronous peripheral volume pulse
signals in the same subject in Section 3. In addition, the agreement between the radial
arterial waveform from the left wrist and the digital volume pulse from the left index finger
on the averaged total pulse energy was assessed. Binary logistic regression analysis with a
backward stepwise approach in SPSS for the incidence of risk factors for type 2 diabetes
is also presented in Section 3. A summary of the research is presented, and the findings
of the study are discussed and interpreted in Section 4. Finally, Section 5 concludes
the manuscript.

2. Materials and Methods
2.1. Grouping of Middle-Aged Healthy and Diabetic Subjects

The study population consisted of 151 middle-aged subjects who underwent PPG and
ECG examinations in the hospital. Subjects with or without type 2 diabetes and who were
participating in the diabetes clinics were recruited (Table 1). A total of 10 participants were
excluded due to a history of atherosclerosis-associated complications, including permanent
pacemaker implantation, heart failure, coronary heart disease, and ischemic stroke, leaving
141 subjects remaining. In the study, diabetes mellitus was defined as a fasting glucose level
higher than 126 mg/dL and/or a glycated hemoglobin (HbA1c) level greater than 6.5%.

Table 1. Anthropometric and serum biochemical parameters from Group 1—healthy elderly subjects,
and Group 2—diabetic subjects.

Parameter
Group 1 Group 2

p-Values
Mean ± SD or N (%) Mean ± SD or N (%)

Gender (male/female) 63 (29/34) 78 (44/34) N/A
Age, year 54.59 ± 10.06 63.54 ± 8.33 ** <0.001

Body height, cm 162.58 ± 8.19 162.45 ± 8.54 0.927
Body weight, kg 64.32 ± 11.29 71.07 ± 11.11 * 0.001

WC, cm 83.25 ± 10.85 93.87 ± 9.78 ** <0.001
BMI, kg/m2 24.28 ± 3.68 26.88 ± 3.81 ** <0.001
SBP, mmHg 120.89 ± 14.58 123.99 ± 23.38 0.361
DBP, mmHg 74.86 ± 9.44 74.35 ± 13.77 0.802
PP, mmHg 46.03 ± 11.75 49.88 ± 15.51 0.105

LDL, mg/dL 124.95 ± 41.12 120.87 ± 38.22 0.543
Cholesterol, mg/dL 184.52 ± 66.30 185.28 ± 47.23 0.937

HbA1c, % 5.83 ± 0.35 8.35 ± 1.77 ** <0.001
FPG, mg/dL 99.48 ± 16.42 161.83 ± 35.71 ** <0.001

The total final number of test subjects was 141. Group 1, healthy elderly subjects; Group 2, diabetic subjects.
WC, waist circumference; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP,
pulse pressure; LDL, low-density lipoprotein cholesterol; HbA1c, glycosylated hemoglobin; FPG, fasting plasma
glucose. ** p < 0.001, * p < 0.05, Group 1 vs. Group 2. The p values of the parameter less than 0.05 and 0.001 are
regarded as statistically significant between the two groups.

2.2. Study Procedure
2.2.1. Clinic Visit for Type 2 Diabetes

Anthropometric, demographic, and laboratory data for the analysis as well as medical
history were obtained during the patients’ clinic visits for type 2 diabetes once over a period
of three months. After the clinic visit, the test subjects were asked to provide blood samples.
The total cholesterol, triglycerides, low-density and high-density lipoprotein cholesterol,
fasting blood glucose, and glycosylated hemoglobin concentrations were obtained from
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blood samples after a 12-h fast. Caffeine-containing beverages and theophylline-containing
drugs were forbidden for 12 h before each clinic visit.

2.2.2. Data Measurement

After routine blood sampling, all the ECG and PPG measurements were carried out in
the morning (08:30–10:30) in a test room. All the subjects completed a written informed
consent form before the measurements were taken. Subsequently, the resting blood pressure
was measured once from the left arm in a supine position using an oscillometric device
(BP3AG1, Microlife, New Taipei, Taiwan). In this study, we adopted synchronous ear
lobe, index finger, and second toe PPG signals, where noninvasive PPG sensors and ECG
electrodes were applied to different locations of each subject for 30 min for data acquisition
with a 500 Hz sampling rate. Moreover, to minimize latent erroneous readings from
the PPG sensors arising from involuntary body movements of the test subjects and low
environmental temperatures, possibly resulting in constriction of the peripheral vessels,
all the subjects underwent blood sampling before data acquisition. All test subjects were
allowed to relax in a supine position for 5 min in a quiet room with the temperature
controlled at 26 ± 1 ◦C [24].

2.3. Harmonic Analysis of Synchronous Peripheral Volume Pulses

The synchronous analog signals (i.e., ECG and PPG) were then digitized with an
analog-to-digital converter (i.e., USB-6009 DAQ, National Instruments, Austin, TX, USA)
with a sampling frequency of 500 Hz; the digitized signals were stored on a personal
computer for later data analysis.

2.3.1. Radial Arterial Waveform and Digital Volume Pulse for the Same Subject

The radial arterial waveform from the left wrist in [5] and digital volume pulse from
the left index finger [24] are both repetitive signals. However, one’s heart rate moderately
changes between the beats of the human heart; thus, the radial arterial waveform and
digital volume pulse beats show some similarity to the periodic waveform. Therefore, the
radial arterial waveform and digital volume pulse could be regarded as quasi-periodic
signals, which can be viewed as multiple interleaved stationary processes [28].

Like all continuous period signals, the radial arterial waveform and digital volume
pulse (as shown in Figure 1), both through a digitized representation (i.e., sampled sig-
nal) using the analog-to-digital (A/D) converter, could be represented by a fundamental
frequency sine wave and a collection of harmonics of that fundamental sine wave and
summed together linearly (i.e., discrete-time Fourier series, DTFS) [28]. However, as the
radial arterial waveform (a kind of pressure pulse signal) is suitable for HA as described
in [6,7], the application of HA in the digital volume pulse (a kind of volume pulse sig-
nal) needs to be proved using a Bland–Altman plot for the assessment of agreement in
the results.
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Figure 1. According to the quasi-periodic signal, (A) radial arterial waveform from the left wrist [5]
and (B) digital volume pulse from the left index finger [24] could be regarded as cyclo-stationary,
which is a signal having statistical properties that vary cyclically with time. Both waveforms consisted
of 3000 consecutive points of sampled data over 6 s at a 500 Hz sampling frequency.
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2.3.2. Data Acquisition and Harmonic Analysis in the Study

1. Data acquisition for peripheral volume pulses

A self-developed system (i.e., a noninvasive ECG-PWV-based system [24]) was pro-
vided to acquire successive data points sampled over 30 min for the ECG signals and
peripheral volume pulses at a 500 Hz sampling rate. In this study, we adopted synchronous
ear lobe, index finger, and second toe PPG signals (Figure 2), and a lead II ECG signal for
determining the precise periods of the peripheral volume pulse.
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Figure 2. A total of 20 consecutive peripheral volume pulses measured from a six-channel electrocardiogram-based pulse
wave velocity system (ECG-PWV) show different peripheral volume pulses from the (A) left ear lobe, (B) right ear lobe,
(C) left index finger, (D) right index finger, (E) left second toe, and (F) right second toe, from one representative subject in
Group 1.

2. Harmonic analysis for peripheral volume pulses

According to the concept of quasi-periodic signals in [29], the peripheral volume
pulse could be viewed as multiple interleaved stationary processes and represented with
discrete-time Fourier series (DTFS). Although PPG pulses sampled successively for 30 min
from the six locations were acquired, only Np period signals (Np+1 heart beats) from the
second minute were used for the DTFS computation in this study, because most of the
tested subjects were awake in that time interval and the PPG signals were more stable.
Subsequently, the PPG signals were adopted for DTFS computation.

For example, we retrieved 100 consecutive periods (e.g., Np = 100) of peripheral
volume pulses according to the location of the R peaks of the ECG, shown as {x[n]} = {x[1],
x[2], x[3], . . . , x[N]} (e.g., N sampled peripheral volume pulse data), with 100 different
periods, T1, T2, . . . , T100. If we assume that T1 = T2 = . . . = T100 = 1 s, then N = 50,000, with
a sampling rate of 500 Hz. In that case, {x[n]} is a complete period discrete signal, and thus,
{x[n]} = {x[n + k × 500]}, k = 0, 1, 2, . . . , 99, which can be decomposed as follows:

{x[n]} = 1
500∑500−1

k=0 X(k)ei 2π
500 kn, n = 1, 2, . . . , 50, 000, (1)

where {X(k), k = 0, 1, 2, . . . , 10} is the first 11 coefficients of the DTFS of x[n], which is as
suggested in [6,7]; it can also be represented as



J. Pers. Med. 2021, 11, 1263 6 of 15

{X(k)} = ∑500−1
n=0 x[n]e−i 2π

500 kn, k = 0, 1, 2, . . . , 10, (2)

whereas the peripheral volume pulse is regarded as the quasi-periodic signal; all the Ti (T1,
T2, . . . , TNp) are similar but not identical. All the peripheral volume pulse signals were
separated sequentially by the R peaks from the foot point of the peripheral volume pulse
to the next foot point. In addition, the DTFS process is explained as follows:

Step 1. A total of Np periods of the peripheral volume pulse was determined precisely,
using the ensemble averaging process based on the R-wave peak location.

Step 2. The Fourier series coefficients for each period of the peripheral volume pulse
were found:

{X(k, j)} = ∑500−1
n=0 xj[n]e−i 2π

500 kn, k = 0, 1, 2, . . . , 10, (3)

where xj[n] indicates the jth-period pulse, and k indicates the kth harmonic component of
the 100 periods of the peripheral volume pulse.

Step 3. The averaging amplitude value of each period of the peripheral volume pulse
was calculated:

|X(k, j)|= 1
500∑j

∣∣xj[n]
∣∣ , j = 1, 2, . . . , Np. (4)

The mean of j vectors of {X(k,j)} is a vector with j means.
Step 4. The Fourier series coefficients for each period were normalized: {X(k, j)}/|X(k, j)|,

j = 1, 2, 3, . . . , Np. The kth row of the period j of {X(k,j)} must be divided by the absolute
mean of {X(k,j)} of the period jth.

Step 5. The representative coefficients of the harmonic component was found:

Ck=
1

100 ∑j
{X(k, j)}
|X(k, j)| , k = 0, 1, 2, . . . , 10; j = 1, 2, . . . , Np. (5)

It is worth mentioning that C0 in (5), the driving force (energy) generated by the heart,
was defined as the averaged total pulse energy of the averaged pulse waveforms for the
arterial radial pulses in [1]. The other coefficients of the harmonic component (e.g., C1–C10)
could reflect the matching condition between the heart rate and the natural frequencies of
the arterial system [1]. Finally, in Step 5, the normalized Fourier coefficient was determined
as the mean of the normalized Fourier coefficients calculated over the included periods.

2.4. Statistical Methods for the Study

Regarding the statistical analysis and logistic regression, a statistical software package
(i.e., Statistical Package for the Social Sciences, Version 14.0, SPSS Inc., and Chicago, IL,
USA) was utilized for verification. The signal analysis package used was Matlab 2016a
(MathWorks Inc., Natick, MA, USA). The functions “dtfs” and “blandaltman” in Matlab
were developed for the computation of the coefficients of the harmonic component in
Equations (1)–(5) and Bland–Altman plot later, respectively.

2.4.1. Bland–Altman Analysis

The study tested 33 elderly non-diabetic subjects, who underwent radial pulse wave
measurements followed by 6 synchronous peripheral volume pulse measurements during
a health examination program for agreement assessment. The HA of the radial pulse wave
was shown to be a feasible and reliable method with which to assess the hemodynamic
characteristics in healthy humans in [6,7]. The reliability assessment for the application
of HA in the digital volume pulse was evaluated using the Bland–Altman analysis in this
study. Thus, it was necessary to check the agreement between the radial arterial waveform
(i.e., measured from an air-pressure-sensing system [5]) and digital volume pulse (i.e.,
measured using a noninvasive ECG-PWV-based system [24]) on C0 (i.e., averaged total
pulse energy) before the volume pulse was used for DTFS computations.
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2.4.2. Statistical Analysis and Logistic Regression

For the comparison between coefficients (C0–C10) of the DTFS for the digital volume
pulse signals from Group 1 (i.e., healthy elderly subjects) and Group 2 (i.e., diabetic
patients), an independent t-test was used, with p < 0.05 regarded as statistically significant.
The binary logistic regression model not only offers a statistical method for modeling a
binary outcome, which takes values of 1 or 0, but can also be predicted by the level of one
or more risk factors [30]. In this study, the fitted logistic regression model was used to
estimate the probability of the presence or absence of type 2 diabetes and to find all the
possible risk factors that influence the probability of the dichotomous outcome. The results
of the logistic regression were also presented in terms of the odds of the outcome. The fit of
the resulting model can be assessed using the Hosmer–Lemeshow test, R2 for the logistic
regression, and the overall percentage in classification. Without using the information
of the blood samples, we focused on the parameters that were easily obtained at home
(i.e., age, waist circumference, body mass index, systolic blood pressure, diastolic blood
pressure, pulse pressure, and human physiology parameters) for the prediction of risk
factors of type 2 diabetes.

3. Results

In this study, six synchronous peripheral volume pulse signals were obtained from
a six-channel ECG-PWV system, and the synchronous peripheral volume pulse signals
were then decomposed with DTFS and analyzed, with the first eleven coefficients of the
harmonic terms of the synchronous peripheral volume pulse signals (i.e., C0–C10 in DTFS).
We found that the values of C0 were the same for the six synchronous peripheral volume
pulse signals in the same subject, as described in Section 3.1. Subsequently, we assessed
the agreement between the radial arterial waveform (i.e., measured using an air-pressure-
sensing system [5]) and digital volume pulse for the same subjects on C0 (i.e., averaged total
pulse energy) using a Bland–Altman plot in Section 3.2. A sufficiently smaller ensembled
averaging number for the C0 computation, due to a shorter CPU time, was chosen, as
described in Section 3.3. The reliability of C0 for differentiating type 2 diabetic patients
from elderly subjects was then verified, as described in Section 3.4. Finally, a binary
logistic regression model was fitted to establish whether C0 was a protective factor for
type 2 diabetes mellitus in elderly subjects, as described in Section 3.5.

3.1. C0 from Synchronous Peripheral Volume Pulse Signals

Figure 3 illustrates the radial pulses and digital volume pulses of Subject A (a healthy
elderly subject), Subject B (a healthy elderly subject), and the type 2 diabetes patient, Subject
C, which appeared similar to the period signals. In qualitative research approaches, digital
volume pulses can adopt DTFS analysis followed by radial pulses. The right column in
Figure 3 shows the widest variation in waveforms in Subject C in 20 overlapping index
finger digital volume pulses. Moreover, the periods of the digital volume pulse for the
three subjects were determined precisely by using the ensemble averaging process based
on the R-wave peak location, even for the diabetic subject.

Table 2 shows the first three coefficients (C0, C1, and C2) of the DTFS of the syn-
chronous peripheral volume pulse, measured from six measured locations (i.e., the left
ear, right ear, left index finger, right index finger, left index toe, and right index toe), from
healthy elderly subjects A and B (i.e., in Group 1) and a diabetic subject C (i.e., in Group 2).
The ensemble averaging number was set as 100. It is interesting that the values of C0 (i.e.,
averaged total pulse energy) were all the same for the peripheral volume pulse signals mea-
sured from different locations for the same subject, whereas C1 and C2 were not identical
in the same subject.
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Table 2. Three coefficients (C0, C1, and C2) of discrete-time Fourier series from Subjects A and B in
Group 1—healthy elderly subjects, and Subject C in Group 2—diabetic elderly subjects.

Location for PVP
Measurement

Subject A Subject B Subject C

C0 C1 C2 C0 C1 C2 C0 C1 C2

Left ear 429.5 32.3 21.3 410.8 13.7 5.8 403.2 40.5 14.8
Right ear 429.5 10.6 5.8 410.8 3.2 1.4 403.2 6.7 2.3

Left index finger 429.5 14.8 10.4 410.8 8.2 4.6 403.2 2.2 1.0
Right index finger 429.5 13.1 10.0 410.8 10.0 5.8 403.2 2.3 1.2

Left index toe 429.5 4.8 2.9 410.8 13.6 8.1 403.2 12.6 7.8
Right index toe 429.5 8.6 4.8 410.8 18.9 10.1 403.2 5.4 3.4

Subjects A (age: 35 years) and B (age: 52 years) were two healthy subjects, whereas Subject C (age: 42 years) was a
diabetic patient. PVP, peripheral volume pulse recorded simply and noninvasively by photoplethysmography in
six locations [24] in this study. Ci: the ith Fourier series coefficient of 100-cycle ensembled averaging digital volume
pulse waveforms. C0 = the averaged total pulse energy [1] of the 100-cycle digital volume pulse waveforms with
ensemble averaging.

3.2. Assessment of Agreement between Radial Arterial Waveform and Digital Volume Pulse on C0

This agreement study tested 33 elderly non-diabetic subjects who accepted radial pulse
wave measurements followed by six synchronous peripheral volume pulse measurements
during a health examination program at the same hospital. Figure 4 shows the Bland–
Altman plot of the averaged total pulse energy (i.e., C0) of the DTFS using the two pulse
signals (e.g., C0 (RAW) vs. C0 (DVP)), with good agreement under both numbers of the
ensembled averaging set as 100.
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3.3. Choosing A Sufficient Number for Ensembled Averaging for C0 Computation
3.3.1. Coordination for CPU Time vs. Ensembled Averaging Number

According to the DTFS representation, the more the harmonic terms existed, the
more accurate the approach to the original digital volume pulse. It is well known that the
computation load increases when more harmonic terms exist. Therefore, 12-s radial arterial
waveforms were adopted for DTFS computation in [6,7]. In our study, Figure 5 shows that
20 cycles (i.e., more than 12 s) were a sufficient number for ensemble averaging for C0
computation in DTFS for Subject A (in Step 1 and Equations (3)–(5)). Figure 5 indicates (1)
the C0 curve as greatly increasing, far more than the CPU time, and (2) the larger period
number for the ensemble averaging for the C0 computation needed a longer CPU time
(e.g., 20-period ensemble averaging vs. 2.78 ms, and 100-period ensemble averaging vs.
18.06 ms, with C0 = 405.8 and C0 = 411.8, respectively).
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3.3.2. Reproducibility of C0 Using Digital Volume Pulse Measured from Left Index Finger

The intra-class coefficient of the correlation between the two separate measurements
of C0 was high (r = 0.947, p < 0.001). There were no significant differences between
the two measurements (392.71 ± 69.95 vs. 394.75 ± 71.98, p = 0.528; mean difference,
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2.03 ± 18.31). The reproducibility of the C0 study was tested in 33 elderly non-diabetic
subjects who were chosen randomly from Group 1. The number for ensembled averaging
was set as 20.

3.4. Reliability of C0 in Differentiating Type 2 Diabetic Patients
3.4.1. C0 Is associated with Type 2 Diabetics

Table 3 illustrates the results of the comparison of the DTFS coefficients (C0–C10) of
20-cycle ensembled averaging digital volume pulse waveforms between the two groups
of test subjects. There was a notably significant difference in C0 between the two groups
(p < 0.001). For the other coefficients (C1–C10), there were no notably significant differences
between the two groups (all p > 0.05).

Table 3. Coefficients (C0–C10) of discrete-time Fourier series for the digital volume pulse signals from
Group 1—healthy elderly subjects—and Group 2—diabetic patients.

Coefficient
Group 1 Group 2 p-Values

Mean ± SD Mean ± SD

C0 417.62 ± 44.80 363.05 ± 60.93 ** <0.001
C1 8.53 ± 5.47 8.15 ± 6.19 0.707
C2 3.55 ± 2.43 3.30 ± 2.41 0.545
C3 1.62 ± 1.12 1.46 ± 1.20 0.426
C4 0.86 ± 0.69 0.80 ± 0.64 0.568
C5 0.76 ± 0.56 0.68 ± 0.62 0.438
C6 0.45 ± 0.35 0.41 ± 0.44 0.532
C7 0.25 ± 0.23 0.25 ± 0.26 0.909
C8 0.18 ± 0.16 0.18 ± 0.21 0.987
C9 0.12 ± 0.10 0.13 ± 0.18 0.578
C10 0.07 ± 0.06 0.09 ± 0.12 0.138

The total number of test subjects was 141. Group 1—healthy elderly subjects; Group 2—diabetic subjects.
** p < 0.001, Group 1 vs. Group 2. Ci: the ith Fourier series coefficient of digital volume pulse waveforms with
20-cycle ensemble averaging; C0 = averaged total pulse energy of the digital volume pulse waveforms with
ensemble averaging. The ensemble averaging number was set as 20.

3.4.2. Correlation of Type 2 Diabetic Risk Factors with C0

The parameter C0 also showed significant negative correlations with other risk factors
for type 2 diabetes mellitus, including glycosylated hemoglobin and fasting plasma glucose
(r = −0.438, p < 0.001; r = −0.358, p < 0.001, respectively), waist circumference (r = −0.349,
p < 0.001), body weight (r = −0.295, p < 0.05), and body mass index (r = −0.246, p = 0.03).

The following section will address the associations between age, waist circumference,
body mass index, systolic blood pressure, diastolic blood pressure, and pulse pressure;
C0 (i.e., risk factors) was also examined regarding the probability of the occurrence of
type 2 diabetes mellitus using the binary logistic regression model.

3.5. Discrimination of Binary Logistic Regression Model Using SPSS

The binary logistic regression model is a type of predictive modeling that can be used
in a study when the response variable is binary, meaning that there are only two possible
outcomes, such as healthy or type 2 diabetes mellitus. The binary logistic regression
analysis with a backward stepwise approach in SPSS for incidence risk factors for diabetes
mellitus is shown in Table 4. As continuous variables, C0 and waist circumference were
statistically significantly associated with the risk of developing diabetes mellitus. The
relative risk of diabetes mellitus for the C0 was 0.986 (p = 0.001), whereas the relative risk
of diabetes mellitus for the elderly subjects according to waist circumference was 1.131
(p = 0.002). A p-value of <0.05 was noted as statistically significant for the test. The overall
goodness of fit of the model was then verified (Hosmer–Lemeshow test: χ2 = 11.19; degrees
of freedom = 8, p = 0.191; R2 for logistic regression: Cox–Snell R2 = 0.376 and Nagelkerke
R2 = 0.504; overall percentage in classification table = 80.4%). The values of R2 (i.e., 0.376
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and 0.504) and the overall percentage (i.e., 80.4% > 60%) showed the fitted model to be
useful for predicting diabetes mellitus in elderly subjects in this study.

Table 4. Incident risk analysis of type 2 diabetics with two parameters.

Parameter Coef. Sign. Exp(B) 95% CI for OR

C0 −0.015 0.001 0.986 0.977–0.994
WC 0.122 0.002 1.130 1.045–1.222

Constant −6.573 0.046 0.001 –
Coef. = regression coefficients of the fitted model; Sign. = p value, p < 0.05 represents a model where the
independent variable is statistically significant; Exp(B) = odds ratio (OR); CI: confidence interval; C0 = the
averaged total pulse energy of digital volume pulse waveforms with 20-cycle ensemble averaging. WC = waist
circumference. A backward stepwise approach for logistic regression analysis with a set likelihood ratio was
adopted in SPSS. A p-value < 0.05 was considered statistically significant for the test parameter.

As shown in Table 4, the fitted logistic model is

logit (P) = ln [P/(1 − P)] = −6.573 + 0.122 × waist circumference − 0.015 × C0. (6)

The P in Equation (6) shows the probability of type 2 diabetes mellitus (i.e., P ≥ 0.5
will be classified as type 2 diabetes mellitus; P < 0.5 will be classified as healthy elders). The
operator ln is defined as the natural logarithm operation. The crude odds ratio for C0 was
0.981. After controlling for age, body weight, body mass index, systolic blood pressure, and
diastolic blood pressure, the adjusted odds ratio for C0 was 0.986 (95% confidence interval:
(0.977, 0.994)). This indicates that, for the given values of C0, the odds of developing
diabetes mellitus are multiplied by 0.986 for every 1% increase in C0. A larger C0 value
means less chance of developing diabetes mellitus.

4. Discussion

In the current study, we proposed the first eleven coefficients (C0–C10) of the DTFS
of the synchronous peripheral volume pulse, which were measured from six measured
locations (i.e., the left ear, right ear, left index finger, right index finger, left index toe, and
right index toe) (Figure 3 and Table 2). Accordingly, we utilized HA for six synchronous
peripheral volume pulses, and found that the averaged total pulse energy (i.e., the C0 of
the DTFS) was the same for the same subject (Table 2). We thus recommend its clinical
application for type 2 diabetes (Table 3). In summary, HA could confirm that diabetic
patients had smaller C0 values for any one of the six synchronous peripheral volume
pulse waveforms measured from the ECG-PWV system [24,25]. After controlling for age,
body weight, body mass index, systolic blood pressure, and diastolic blood pressure, the
adjusted OR for C0 was 0.986 (95% CI: 0.977, 0.994) in Equation (6). This indicates that, for
the given values of C0, the odds of developing diabetes mellitus are multiplied by 0.986 for
every 1% increase in C0. A larger C0 value means less chance of developing type 2 diabetes
mellitus (Table 4). C0 also showed a significant negative correlation with two risk factors
for type 2 diabetes mellitus, including glycosylated hemoglobin and fasting plasma glucose
(r = −0.438, p < 0.001; r = −0.358, p < 0.001, respectively), as described in Section 3.4.2.
According to C0 (the driving force generated by the heart) in Equation (5), and defined
as the averaged total pulse energy of the averaged pulse waveforms for arterial radial
pulses in [1], the simultaneous peripheral volume pulses from ear PPG, finger PPG, and
toe PPG sensors could be decomposed for many harmonic components via DTFS and
lead to the same C0 (harmonic zero) for the same subject in the current study, which is
consistent with the hypothesis in [6,7] with a single channel of pressure pulse signals.
Our study serves as a proof of concept in traditional Chinese medicine (especially in the
classic of Chinese medicine named “Yellow Emperor’s Internal Classic”) that the heart, as
a monarch, governs the blood [1], controls the blood vessels [31], and governs the whole
body’s continuous activity [32]. On the other hand, unlike the hypothesis in [6,7], C1–C10
could not be identical for the six simultaneous peripheral volume pulse signals for the
same subject (Table 2), consistent with the findings in [10]. It is reasonable to infer that the
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natural frequencies of the arterial system would be different for the six peripheral volume
pulse signals, which were measured at six different locations [1]. The findings in this study
imply that the HA of the synchronous peripheral volume pulse for assessing C0 is feasible,
but C1–C10 must be further tested.

A previous study showed that the peripheral pressure pulse is related to the digital
volume pulse [21]. In this study, good agreement between the radial arterial waveform
from the wrist, the digital volume pulse from the finger, and the average total pulse
energy (i.e., C0) of DTFS can be observed in Figure 4. It is also proposed that 20 cycles
for a single channel of pressure pulse signals [6,7] is a sufficient number for the ensemble
averaging process for the C0 computation in DTFS (Figure 5). To achieve stable PPG
waveforms, the ensemble average number would be taken from 20 to 100 cycles of steady
waveform recordings. In addition, we established a five-step HA computation formula for
the peripheral volume pulse, described in Section 2.3.2. Hence, the current study obtained
results for type 2 diabetes mellitus [14–17]. It has been reported that the fourth harmonic
component of the radial pulse wave is important for the risk assessment of macrovascular
and microvascular events in patients with type 2 diabetes [14], cardiovascular risk [15], and
arterial blood pressure waveforms [16], with different radial pulse wave harmonic indices,
silent coronary artery disease, and adverse cardiac events [17]. Therefore, our findings for
synchronous peripheral volume pulses are consistent with the findings in [14–17], in which
the radial pulse wave was adopted with different harmonic coefficients.

Unlike the stable peripheral pressure pulse (e.g., the radial arterial waveform), the
peripheral volume pulse (e.g., the digital volume pulse), due to its advantages as a non-
invasive, inexpensive, and convenient diagnostic tool, is suitable for wearable applica-
tions [21,22,24]. For example, we may place PPG sensors in eardrops, finger cots, and
toe sleeves for peripheral volume pulse acquisition from the ear, index finger, and toe,
respectively. In addition, novel algorithms could extract information from the unstable PPG
waveforms in potential applications (e.g., AI techniques), which would provide assistance
in the HA of the synchronous peripheral volume pulse. For the issue regarding the removal
of PPG motion artifacts, some review studies [33,34] have presented several compensation
techniques, such as independent component analysis, adaptive noise cancellation, and
methods with/without learning-based algorithms for the design of wearable devices. Ac-
cording to a vast range of PPG applications in healthcare [21], with a strong focus on the
contribution of PPG in wearable sensors and PPG for cardiovascular-related disease assess-
ment, there are two key points: (1) optical components enabling the extreme miniaturization
of such sensors; and (2) the comprehensive coverage of PPG signal analysis techniques,
including machine learning and artificial intelligence. A recent study focused on the HA of
peripheral volume pulse waveforms [22], revealing a loss of high-frequency harmonic com-
ponents in the peripheral pulse for coronary artery disease subjects. However, this result
was not consistent with our study. There was a notably significant difference in C0 between
the two groups (p < 0.001), while for the other coefficients (C1–C10) (e.g., high-frequency
harmonic components), there were no notably significant differences (all p > 0.05) (Table 3)
in the current study. Following the inference of the difference compared with [22] in the
above results, the digital volume pulse in our study was determined precisely during the
period using the ensemble averaging process based on the R-wave peak location before
HA computation, which is the most likely reason for the difference. On the other hand,
20-cycle digital volume pulse waveforms with ensemble averaging were adopted in Table 3
for DTFS coefficient (C0–C10) computation. More importantly, HA [6,7], wavelet transfor-
mation [4,35] (both linear models), and ensemble empirical mode decomposition [5] (a
non-linear model) are three popular signal decomposition methods for biomedical signal
analysis, which result in orthogonal harmonic components, orthogonal wavelet details, and
orthogonal intrinsic mode function outputs, respectively. A reasonable inference would be
that more stable and shorter peripheral volume pulses suggest significant improvements
in HA computation for assessing the averaged total pulse energy in elderly and diabetic
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subjects, which is a potentially important issue when using an ensemble averaging process
based on the R-wave peak location (as in Step 1 in Section 2.3.2).

This study has some limitations. The subjects in the two groups (not a wide-ranging
clinical study; thus, the number of participants was limited) were not age-controlled for an
unbiased analysis. Therefore, there was a wide gap between the healthy group and the
diabetes group, which was beneficial for separating C0–C10. Second, as the pulse signal in
a short period of time can be treated as a periodic signal due to its small non-linearity, the
discrete-time Fourier series should be considered a powerful pulse analysis method. Third,
there are a number of similar reports in the literature regarding HA with a single channel of
pressure pulse signals. This study was a proof-of-concept study of the HA of synchronous
multiple channels of peripheral volume pulses. Finally, Stata and R packages were not
adopted in the study, and are other statistical software packages that could be explored.

5. Conclusions

The current study established a first step towards a comprehensive approach via a
proof-of-concept study of the harmonic analysis of synchronous peripheral volume pulses.
Our findings not only highlighted that the averaged total pulse energies (i.e., the C0 of the
DTFS) decomposed from six synchronous peripheral volume pulses were identical in all
six cases, but also recommend the energy’s possible clinical use as a prognostic indicator of
protective factors for predicting type 2 diabetes. One important future direction for these
results will be contributing to the prediction of other diseases using either coefficients (i.e.,
the Ci of the DTFS) and/or variation coefficients of the ith harmonic amplitude (i.e., the
CiCV of the DTFS) in a clinical setting.
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