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Chromosome-scale genome assembly of brown-
spotted flathead Platycephalus sp.1 provides insights
into demersal adaptation in flathead fish

Flatheads are valuable commercial fish species endemic to
the Indo-West Pacific. Due to their economic value and unique
biological traits, such as metamorphosis and camouflage, they
serve as ideal marine organisms for studies on demersal
adaptation and evolution. The brown-spotted flathead
(Platycephalus sp.1) is the most widely distributed in the
northwestern Pacific. Despite the lack of a valid scientific
name, it has been long recognized and exploited in the marine
fisheries of China, Japan, and Korea. In the current study, we
applied lllumina, PacBio, and Hi-C sequencing to assemble a
chromosome-scale genome for this species. The assembled
genome was 660.63 Mb long with a scaffold N50 of 28.65 Mb
and 100% of the contigs were anchored onto 24
chromosomes. We predicted 22 743 protein-coding genes,
94.8% of which were functionally annotated. Comparative
genomic analyses suggested that Platycephalus sp.1 diverged
from its common ancestor with Gasterosteus aculeatus ~88.4
million years ago. The expanded gene families were
significantly enriched in immune, biosynthetic, and metabolic
pathways. Furthermore, three shared Gene Ontology (GO)
terms and 377 common positively selected genes were
identified between flathead and flatfish species, suggesting
that these genes may contribute to demersal adaptation in
flatheads. The assembled genomic data provide a valuable
molecular resource for further research on the biological and
adaptive evolution of flathead species.

Flathead fish (family Platycephalidae) are endemic
demersal carnivores distributed in the Indo-West Pacific. The
genus Platycephalus is the most speciose in the
Platycephalidae family (Imamura, 2015; Nakabo, 2002). Given
their high-quality flesh and large body size, flatheads are
commercially valuable and among the first fish to be targeted
by fisheries in Indo-Pacific regions, including Japan, China,
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and Australia (Puckridge et al., 2013). In addition, flatheads
are camouflage masters and ambush predators with
symmetrical body-axis metamorphosis (Hyndes et al., 1992),
similar to flatfish species (Shao et al., 2017). Flatheads are
hypothesized to exhibit protandrous hermaphroditism and sex-
reversal (i.e., sex change from male to female) (Shinomiya et
al., 2003). These biological characteristics make flatheads
valuable models for investigating the molecular mechanisms
underlying demersal adaptation and evolution, as well as
innovations in sex determination and growth in teleosts. High-
quality genome assemblies should benefit the above-
mentioned research fields as well as our understanding of the
adaptive evolution of flathead species.

The brown-spotted flathead, Platycephalus sp.1 (sensu
Nakabo, 2002), is a widely distributed species in the
northwestern Pacific (Nakabo, 2002). Despite the lack of a
valid scientific name, Platycephalus sp.1 has long been
recognized in Japan as “Yoshino-gochi” (Nakabo, 2002).
Recently, our research team reported Platycephalus sp.1 as a
new record species in the coastal waters of China, with
several distinct morphological characters, including dark
brown spots scattered on head and body, lateral line scales 83
to 99, and no yellow blotch on caudal fin (Qin et al., 2013).
Considering the contributions of Japanese ichthyologists, we
herein recommend “Platycephalus yoshinoi” as the scientific
name of this species, in reference to its Japanese name.
However, the lack of genomic resources and insufficient
exploitation of genetic information have limited study on the
evolutionary biology, fisheries management, and conservation
of this species. Thus, we performed a chromosome-scale
genome assembly of Platycephalus sp.1 using PacBio,
lllumina, and Hi-C sequencing technologies.

An adult male Platycephalus sp.1 (Figure 1A) captured from
the littoral waters of Qingdao, China (E120.275°, N36.109°) in
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November 2019, was used for genome sequencing. Muscle
tissue below the dorsal fin was collected for DNA extraction
using the cetyltrimethylammonium bromide (CTAB) method.
DNA quality and concentration were measured using agarose
gel electrophoresis (1%), pulse field gel electrophoresis (1%),
and Qubit 3.0 (Thermo Fisher Scientific, USA). To facilitate
prediction of protein-coding genes, we extracted total RNA
from seven flathead tissues, including muscle, gill, gonad,
brain, spleen, liver, and eye, using TRIzol reagent (Invitrogen,
USA) according to the manufacturer's instructions. RNA
integrity and quantity were evaluated using an Agilent 2100
Bioanalyzer (Agilent, USA). Seven RNA-seq libraries were
prepared using a NEBNext Ultra RNA Library Prep Kit for
llumina (New England BioLabs, USA) following the
manufacturer’s protocols, and were then sequenced on the
lllumina Novaseq6000 sequencing platform (lllumina, USA).
lllumina short-insert (350 bp) libraries were prepared and
sequenced on the lllumina Novaseq6000 platform (lllumina,
USA). In total, 83.91 Gb of lllumina short-read sequencing
data were generated (Supplementary Table S1). K-mer
analysis was conducted using Jellyfish v2.2.10 (Margais &
Kingsford, 2011). The k value was set to 17 and genome size
was estimated to be 674.96 Mb, with a heterozygosity ratio of
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0.77% and repeat sequence ratio of 29.23%. One 20 kb
single-molecule real-time (SMRT) sequencing bell library was
constructed, and long-read sequencing was performed using
the PacBio Sequel Il sequencer (Pacific Biosciences, USA).
The PacBio sequencing platform generated 138.12 Gb of
high-quality long-read sequencing data, with a mean subread
length of 20 099 bp and average read length of 31 100 bp
(Supplementary Table S1). The PacBio long reads were used
for de novo genome assembly with Wtdbg2 (Ruan & Li, 2020)
and draft contigs were corrected using Arrow v2.2.1 (Chin et
al., 2013) with the same PacBio dataset. Finally, the PacBio
sequencing data resulted in a 660.63 Mb assembly with 60
contigs and contig N50 of 23.07 Mb. By comparison, our result
is the most contiguous assembly of reported species in the
order Scorpaeniformes (Supplementary Table S2). lllumina
short reads from the same individual were further used to
evaluate the quality of the initial genome assembly using BWA
v0.7.10 (Li & Durbin, 2010) and assembly completeness was
also evaluated using Benchmarking Universal Single-Copy
Orthologs (BUSCO) v3.0.1 (Simao et al., 2015) and Core
Eukaryotic Gene Mapping Approach (CEGMA) (Parra et al.,
2007). Quality evaluation of the initial genome assembly
showed that 97.64% of the lllumina data were successfully
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Figure 1 Genomic analyses of brown-spotted flathead Platycephalus sp.1
A: Photograph of brown-spotted flathead. B: Hi-C contact map of Platycephalus sp.1 genome. LG 0-23 represent 24 pseudochromosomes. Color

bar indicates contact density from white (low) to black (high). C: Gene family comparison between Platycephalus sp.1 and investigated teleost

species. D: Phylogenetic topology of 14 teleost species investigated in this study.
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mapped to the assembled genome. BUSCO analysis against
the actinopterygii_odb9 database found that 96.4% of the
conserved single-copy orthologous genes, including 95.5%
complete and 0.9% fragmented genes, were found in the
genome assembly, while CEGMA identified 94.76% of the
core eukaryotic genes (Supplementary Table S3).

To obtain a chromosome-scale genome assembly, a Hi-C
library was prepared following Hi-C library protocols (Rao et
al., 2014) and sequenced using the lllumina Novaseq6000
sequencing platform (lllumina, USA). The Hi-C library
generated 245.62 Gb of raw data, representing 364-fold
coverage (Supplementary Table S1). Duplicate removal,
sorting, and quality control were performed using HiC-Pro
v2.8.0 (Servant et al., 2015). LAchesis (Burton et al., 2013)
was used to cluster, order, and orient the contigs into a
chromosome-scale assembly. Using LAchesis, 100% of the
initial assembled sequences were anchored to 24
pseudochromosomes with lengths ranging from 12.68 to 35.47
Mb (Figure 1B). To the best of our knowledge, this
Platycephalus sp.1 genome is the first marine fish genome
assembly with a 100% anchoring rate. Finally, the total length
of the genome assembly was 660.63 Mb, and contig N50 and
scaffold N50 were 23.07 Mb and 28.65 Mb, respectively
(Supplementary Table S2).

Combined homology alignment and de novo search were
applied using our repeat annotation pipeline. A de novo
repetitive elements database was built by LTR_FINDER (Xu &
Wang, 2007), RepeatScout (Price et al., 2005), and
RepeatModeler (Hubley & Smit, 2015) with default
parameters. Tandem repeats were also extracted ab initio
using TRF v4.09 (Benson, 1999). All repeat sequences with
length>100 bp and gap “N’<6% constituted the raw
transposable element (TE) library. The homology-based
predictions were searched against the Repbase database
(Bao et al., 2015) using RepeatMasker v3.3.0 (Chen, 2004)
and its in-house script RepeatProteinMask with default
parameters. Repbase and our de novo TE library were
processed using UCLUST (Edgar, 2010) to yield a non-
redundant library and RepeatMasker was used to identify
DNA-level repeats. In total, 167.49 Mb of repetitive sequences
were annotated, representing 25.35% of the genome
assembly (Supplementary Table S4). The repetitive
sequences were dominated by long terminal repeats (LTRs,
111.04 Mb, 16.81%), DNA transposons (20.58 Mb, 3.12%),
and long interspersed elements (LINEs, 9.05 Mb, 1.37%). In
comparison, the dominant repetitive elements in the Sebastes
schlegelii genome are DNA transposons rather than LTRs (He
etal., 2019; Liu et al., 2019).

We employed ab initio, homology-based, and RNA-seqg-
assisted prediction to detect protein-coding genes. For
homology-based prediction, the protein sequences of Danio
rerio, Larimichthys crocea, Gadus morhua, Oryzias latipes,
and Gasterosteus aculeatus were downloaded from the
GenBank and Ensembl databases (Cunningham et al., 2019).
The protein sequences were aligned against the
Platycephalus sp.1 genome using TBLASTN v2.2.26 (e-
value<1e-5), and matching proteins were then aligned to the
homologous genome sequences for accurate spliced
alignments with GeneWise v2.4.1 (Doerks et al., 2002). Ab

662 www.zoores.ac.cn

initio prediction was performed using Augustus v3.2.3 (Stanke
& Waack, 2003), GenelD v1.4 (Blanco et al.,, 2007),
GeneScan v1.0 (Burge & Karlin, 1997), GlimmerHMM v3.04
(Majoros et al., 2004), and SNAP v2013-11-29 (Korf, 2004)
based on the repeat masked genome sequences. Transcripts
of the seven tissues were assembled by Trinity and aligned to
the genome using PASA (Haas et al., 2003). To optimize
genome annotation, the transcriptome reads from the seven
tissues were also aligned to the genome directly using HISAT
v2.0.4 (Pertea et al., 2016) to identify exon regions and splice
positions. The alignment results were then used as inputs in
Stringtie v1.3.3 (Pertea et al., 2016) for genome-based
transcript assembly, and coding regions were then predicted
using TransDecoder v.2.0 (http://transdecoder.github.io).
Finally, genes predicted by the above three methods were
merged into a non-redundant reference gene set with
EvidenceModeler v1.1.1 (Haas et al., 2008) with identical
weights. Protein-coding genes were then annotated by
alignment against the SwissProt, NT, NR, GO, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases
using BLAST+ v2.2.28 (McGinnis & Madden, 2004) with an e-
value threshold of 1e-5. InterProScan v5.31 (Mulder &
Apweiler, 2007) was used to predict protein function based on
conserved domains and motifs by searching against ProDom,
PRINTS, Pfam, SMRT, PANTHER, and PROSITE. Finally, 22
743 protein-coding genes were predicted and 21 555 (94.8%)
were successfully annotated (Supplementary Tables S5, S6).
Compared to other teleost species, including D. rerio,
Larimichthys crocea, Gadus morhua, O. latipes, and
Gasterosteus aculeatus, the predicted gene models of
Platycephalus sp.1 showed similar distribution patterns in
coding sequence (CDS) length, exon length, exon number,
gene length, and intron length (Supplementary Figure S1).

For non-coding RNA (ncRNA) prediction, transfer RNAs
(tRNAs) were predicted using tRNAscan-SE v1.3.1 (Lowe &
Eddy, 1997); ribosomal RNAs (rRNAs) were identified by
alignment to closely related rRNA sequences using BLAST;
and microRNAs (miRNAs) and small nuclear RNAs (snRNAs)
were identified against the Rfam database (Daub et al., 2015)
using Infernal v1.1 (Nawrocki & Eddy, 2013). In total, 2 876
ncRNAs, including 1 118 miRNAs, 1 267 tRNAs, 92 rRNAs,
and 399 snRNAs, were identified in the assembled genome
(Supplementary Table S7).

Gene families were clustered for Platycephalus sp.1 and 13

other species (D. rerio, Gadus morhua, O. latipes,
Gasterosteus aculeatus, Hippocampus comes, Takifugu
rubripes, Labrus  bergylta, Cynoglossus semilaevis,

Scophthalmus maximus, Lepisosteus oculatus, Tetraodon
nigroviridis, Xiphophorus maculatus, and Gambusia affinis)
using OrthoMCL v2.0.9 (Li et al., 2003). In brief, the longest
transcript of each gene was retained and all-against-all
BLASTP analysis was conducted with a cutoff of 1e-5.
Orthologs and paralogs were grouped using OrthoMCL v2.0.9
with an inflation index of 1.5. Comparative genomic analysis
revealed that the predicted genes could be clustered into 20743
gene families (Figure 1C). A total of 6 385 gene families were
shared among all 14 species, including 1 539 orthologous
gene families. Based on the single-copy orthologous genes, a
species-level phylogenetic topology was generated using
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PhyML v3.0 (Guindon et al, 2010) to evaluate the
evolutionary  relationships. The MCMCTree program
implemented in the PAML package (Yang, 2007) was used to
estimate divergence times among species. The divergence
times of Takifugu rubripes and Tetraodon nigroviridis, Labrus
bergylta and Gasterosteus aculeatus, X. maculatus and
Gambusia affinis, Gasterosteus aculeatus and Gadus morhua,
D. rerio and O. latipes, and D. rerio and Lepisosteus oculatus
were used as calibration times and were downloaded from the
TimeTree database (http://www.timetree.org/). The topology
results indicated that Gasterosteus aculeatus was most
closely related to Platycephalus sp.1, with a divergence time
of 88.4 million years ago (Figure 1D). The divergence time
was relatively larger than that between Sebastes schlegelii
and Gasterosteus aculeatus (He et al., 2019; Liu et al., 2019),
suggesting that Platycephalus sp.1 is a more basal species
than Sebastes schlegelii in the order Scorpaeniformes. This
suggestion is consistent with previous studies based on
mitochondrial and nuclear gene sequences (Cui et al., 2019;
Smith et al., 2018).

Expansion and contraction of gene families between
ancestors and each selected species were determined using
CAFE (De Bie et al., 2006). The CODEML program in the
PAML package (Yang, 2007) was used to estimate the
nonsynonymous to synonymous ratio (dN/dS) and two
hierarchical branch-site likelihood ratio tests were applied to
identify positively selected genes (PSGs). Firstly, species-
specific PSGs were identified using flathead as the foreground
species and Scophthalmus maximus, C. semilaevis,
Gasterosteus aculeatus, Takifugu rubripes, Labrus bergylta,
Tetraodon nigroviridis, O. latipes, X. maculatus, and
Gambusia affinis as the background species. Secondly, three
metamorphosized species (i.e., flathead, Scophthalmus
maximus, and C. semilaevis) were selected as foreground
species, and the other above-mentioned species were used
as background species. For functional enrichment analyses,
GO and KEGG categories were assigned to the orthologous
groups according to the flathead genome reference. In
Platycephalus sp.1, a total of 438 expanded gene families
(including 1 173 genes) and 1 219 contracted gene families
(including 85 genes) were detected compared to its most
recent common ancestor (Supplementary Figure S2). There
were 207 GO terms identified for the expanded genes, 126 of
which were significantly enriched (P<0.05) (Supplementary
Table S8), including cell-cell adhesion (GO: 0098609, 28
genes, P=2.62E-20), ATPase activity (GO: 0016887, 32
genes, P=1.71E-14), homophilic cell adhesion (GO: 0007156,
27 genes, P=6.67E-13), and serine-type endopeptidase
activity (GO: 0004252, 22 genes, P=2.26E-09). Notably, three
shared GO terms, i.e., ion channel activity (GO: 0005216, 34
genes, P=0.01113), DNA replication (GO: 0006260, eight
genes, P=0.02557), and DNA metabolic process (GO:
0006259, 20 genes, P=0.1373), were detected between the
flathead and flatfish species (Paralichthys olivaceus and C.
semilaevis), and are known to play crucial roles in
morphological and functional modifications during flatfish
metamorphosis (Shao et al., 2017). These findings suggest
that the expanded genes may be associated with
metamorphosis and demersal adaptation in flatheads. The

expanded genes were assigned to 27 KEGG pathways, 13 of
which were significantly enriched (P<0.05) (Supplementary
Table S9). Enrichment analyses suggested that the expanded
genes were highly involved in the immune, biosynthetic, and
metabolic-related pathways. The contracted gene families
were significantly enriched in 26 KEGG pathways
(Supplementary Table S10), which were highly represented in
processes related to immunity and metabolism. The
annotation of expanded and contracted genes indicated that
Platycephalus sp.1 may have an improved capacity for
resilience and adaptation to the demersal environment.

For PSG identification, a total of 1 325 genes were identified
in the flathead genome. There were 129 GO terms identified
from the PSGs, 16 of which were significantly enriched
(P<0.05) (Supplementary Table S11). Additionally, 377 PSGs
were identified in the three metamorphosized species (i.e.,
flathead, Scophthalmus maximus and C. semilaevis) as
foreground species (Supplementary Table S12). These PSGs
were functionally enriched in RNA methylation (GO: 0001510,
seven genes, P=0.00376), methyltransferase activity (GO:
0008168, 18 genes, P=0.02356), and RNA processing (GO:
0006396, 26 genes, P=0.026 04) (Supplementary Table S13).
Similarly, these detected PSGs may also play crucial roles in
demersal adaptive evolution in flatheads. However, further
investigations are needed to determine the functions
associated with the genes in these expanded, contracted, and
positively selected gene families, such as their putative roles
in adaptive evolutionary processes.

In the present study, we assembled a high-quality
chromosome-scale genome of Platycephalus sp.1, the first
reference genome of flatheads in the family Platycephalidae.
This study provides valuable genomic data for further studies
on demersal adaptation in flathead species and the molecular
mechanisms underlying their biological characteristics, such
as camouflage, metamorphosis, and sex reversal.
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