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Multicellularity and cellular cooperation confer novel functions on organs

following a structure–function relationship. How regulated cell migration,

division and differentiation events generate cellular arrangements has

been investigated, providing insight into the regulation of genetically

encoded patterning processes. Much less is known about the higher-order

properties of cellular organization within organs, and how their functional

coordination through global spatial relations shape and constrain organ

function. Key questions to be addressed include: why are cells organized

in the way they are? What is the significance of the patterns of cellular

organization selected for by evolution? What other configurations are

possible? These may be addressed through a combination of global cellular

interaction mapping and network science to uncover the relationship

between organ structure and function. Using this approach, global cellular

organization can be discretized and analysed, providing a quantitative

framework to explore developmental processes. Each of the local and

global properties of integrated multicellular systems can be analysed

and compared across different tissues and models in discrete terms.

Advances in high-resolution microscopy and image analysis continue to

make cellular interaction mapping possible in an increasing variety of

biological systems and tissues, broadening the further potential application

of this approach. Understanding the higher-order properties of complex

cellular assemblies provides the opportunity to explore the evolution and

constraints of cell organization, establishing structure–function relationships

that can guide future organ design.
1. Introduction
The advent of multicellularity represents one of the major evolutionary tran-

sitions [1], arising independently and persisting at least 25 times during the

evolution of life in our biosphere [2]. Multicellular systems are characterized

by functional division of labour across members of a consortia, making use

of diversification as a means of overcoming environmental constraints

[1,3–5]. However, the benefits of cellular cooperation must also be balanced

with the increased costs and risks associated with conflicts and cheats, leading

to a need for optimization [4], self-policing strategies and the emergence of

identity [6,7].

Structure–function relationships have been described previously at an

organ level [8], and these principles are proposed to scale down to a cellular

level [9]. Novel cellular arrangements can confer novel functions to organs,

enabling organisms to fill ecological niches previously left vacant. The lack of

a quantitative framework to capture, analyse and compare the organization

of organs at a cellular level limits the ability to uncover the functional role of

observed structures.

While research into individual components of complex biological systems is

fundamental to our understanding of life, understanding how these com-

ponents come together to form a coherent and functional system is a distinct
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Figure 1. Discretization and abstraction of cellular organization into networks.
(a) Cellular interaction mapping leads to the generation of networks where the
nodes represent cells and edges their physical interactions. (b) A diagram of a
cell interaction network typical of epithelial tissues in plants and animals. (c) A
diagram of a part of a directed network of neuronal interactions. Information
flows from the axon of a neuron to the dendrites of connected neurons
giving the edges directions.
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concept. Assemblies of cells represent templates upon which

genetic developmental programmes can act, giving rise to

complexity for free [10] upon which further complexity

might be built. Genetically encoded mechanisms lead to the

creation and regulated organization of these cellular assem-

blies; they therefore create, and in turn operate, within

cellular networks. This represents an integrated dynamical

system across the cellular and molecular levels of description.

Efforts to understand the genetic basis of patterning

have typically been directed to the study of signalling and

differentiation processes, physical mechanisms related to

the movement of cells [11,12], the regulation of local cell div-

isions [13,14] and programmed cell death [15]. While

fundamental and informative, the contextualization of these

confined events into the global context of multicellular

organs, and the emergent properties of complex multicellular

assemblies, remains limited due to the qualitative and local

nature of these descriptions. Numerous outstanding ques-

tions surrounding higher-order principles of organ design

and cohesion in diverse systems persist.

To address these fundamental questions of complex

organ design, there remains a need to be able to capture,

quantify and characterize global cellular organization and

its properties. Here, we discuss a framework that strives to

achieve this.
2. Organs and tissues as networks of cells
Understanding the structural basis of cellular organiza-

tion can be achieved by mapping cellular interactions.

Cells within multicellular organs interact physically and

chemically to create coherent systems. In light of these

relationships, similarly to how road and rail transport net-

works connect places of interest, organs may be viewed as

complex systems of interacting cells. Here, cells are rep-

resented by nodes, and their physical associations by edges

(figure 1a,b). The ability to capture and abstract cellular con-

nectivity into networks allows their analysis using network

science [16,17].
3. The origins of cellular interaction mapping
The mapping of cellular associations in complex organs was

first explored in the field of neuroscience. Ramon y Cajal

made seminal observations relating to the connectivity of

neurons [18]. Nervous tissue was stained and examined

using light microscopy to establish the proximal cell associ-

ations, which were carefully hand drawn to create ‘wiring

diagrams’. This work set a key precedent for the future

analysis of cellular associations in neuroscience.

The subsequent work of the laboratory of Sydney Brenner

used serial transmission electron microscopy (TEM) sections

to map all the neuronal interactions, or the ‘connectome’,

within the worm Caenorhabditis elegans [19]. The relationships

between cells were represented as a directed network of ner-

vous connectivity (figure 1c). This represented the first

comprehensive description of interactions within a given

cell type, and has gone on to serve as a powerful template

that has guided hypothesis generation and analysis of this

complex system of cells [20]. Neuronal connectivity mapping

has persisted and become increasingly more ambitious with
time, with ongoing projects seeking to map more complex

nervous systems, and are discussed further below [21,22].

We propose that mapping cellular associations may also

be applied to understanding cellular complexity and organ

function in diverse biological systems outside of the nervous

system, and that this approach can address questions of cen-

tral significance to developmental biology and the origins of

multicellularity [23].
4. Structural and functional networks
In the analysis of multicellular structures, an important dis-

tinction is drawn between how cells are physically

connected and how information in fact moves between

these cells. These have been termed structural and functional

networks, respectively [21].

Structural networks describe the physical associations

between cells, and the possible routes of information move-

ment through an organ [21] (figure 2a). This is analogous to

a road or train map which shows all the possible paths a

traveller could take.

Functional networks describe where information is

observed to move. This is equivalent to a train schedule

which describes the frequency (figure 2b) and speed

(figure 2c) of travel across the rail network, describing a

behaviour of the system. Structural networks serve as tem-

plates upon which functional events occur. These two

dimensions of the system are intricately linked and shape

and constrain one another. Following the establishment of

structural templates of organs, their annotation with further

functional data enables the creation of multidimensional

views of the molecular dynamics and their topological

relationships within organs. Approaches to achieve this are

discussed below.

The nature of functional mobile information remains open

to interpretation. We propose this to include any non-cell

autonomous signal that plays an instructive functional role

across a multicellular system. In the case of neuronal associ-

ations, neurotransmitters eliciting responses in adjacent cells

represent a clear example. In other organs, information can

take different forms, including small molecules, proteins or
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Figure 2. Structural and functional networks of the Birmingham, UK, rail system. (a) The structural network of the Birmingham rail system, showing possible routes
(edges) that can be taken between stations (nodes). (b) Functional annotation of the rail network, where edges are false coloured by the frequency of trains running
between stations between 08.00 and 10.00 on weekdays. (c) Functional annotation of the rail network, where edges are false coloured by the average speed of
trains between 08.00 and 10.00 during a weekday.
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extracellular interactions between proteins in adjacent cells

[24,25]. This transfer of information can occur either through

extracellular spaces or through cytosolic connections between

adjacent cells [26,27]. In plants, whole proteins, mRNAs and
miRNAs have all been observed to move from one cell to the

next [28,29]. Mechanical interactions between adjacent cells

may also be considered a form of non-cell autonomous infor-

mation in light of the instructive nature of these signals [30].
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Figure 3. Topological features of virtually generated planar cellular connectivity network. (a) Degree false coloured on the virtual tissue and the corresponding
networks according to the scale provided. (b) Same as (a) with betweenness centrality. (c) Same as (a) with random walk centrality.
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In each case, this information is received by the cells (nodes)

of the network, and transmitted through intercellular

interactions (edges).
5. Analysis of cellular interaction networks
The abstraction and discretization of cellular associations

within organs into networks provides a means to quantitat-

ively analyse their properties. Towards this, an appropriate

analytical framework is required. Network science and the

tools developed by this scientific community are capable of

fulfilling this analytical task [16,17,21].

Two different scales may be topologically examined in

cellular connectivity networks: local and global, depending

on the centrality calculation performed.

The simplest local property of a cell in an organ is the

number of immediate neighbours a cell has. This is called

node degree, and has been successfully used in previous

studies examining the organization of epithelial tissues

using planar cell connectivity networks [31,32] (figure 3a).

Degree is an informative feature describing the local context

of a cell; however, it does not provide information relating

to the higher-order properties of the organ and how an

individual fits into a broader context.

In light of the geometric constraints of cells in physical

space and their packing within organs, cellular connectivity

networks can be considered to be spatially embedded [33].

These may be planar in the case of cellular monolayers such

as the Drosophila wing disc, or a three-dimensional (3D) lattice

as in more complex organs such as the brain. This geometri-

cally constraining property means the ability for information

to optimally traverse the multicellular network will be defined

by the topological features of cell configurations. The identifi-

cation of optimized (and counter-optimized) routes through

organs can be achieved through the analysis of path length

[16,17]. The requirement for cohesion between cells in confer-

ring organ function makes this a biologically relevant feature
of these spatially embedded multicellular systems. To use the

analogy of a city, degree describes who one lives beside,

while path length analyses would let one know where they

are located within a city, and the fastest routes to follow to

get to any other location. Both represent distinct and important

pieces of information depending on the biological question

being addressed.

A range of network centrality measures have been devel-

oped to explore path length [16,17] (figure 3b,c). Betweenness

centrality uses prior knowledge of a network to calculate the

number of times a node lies on the shortest path between

other nodes (figure 3b) [34]. This identifies cells which are

‘brokers’ having the ability to control the movement of infor-

mation. This may provide insight into the optimization of

established long-distance transport processes in organs.

Random walk betweenness centrality does not use prior

knowledge of the network, and identifies shortest paths by

measuring the number of times a random walker follows a

given route between two chosen nodes (figure 3c) [35].

When nodes are found to be traversed more frequently

than others, they are deemed to lie upon shorter paths. This

is analogous to not having a map and iteratively choosing

random trains until you reach a final destination. Done

enough times, the best travel options are eventually ident-

ified. Cells which have a high random walk betweenness

centrality are therefore topologically poised to experience a

larger amount of information flux than other cells. This cen-

trality is analogous to measuring diffusive processes across

networks, which play an important role in diverse aspects

in organ biology.

Each of these centralities can provide insight into the

underlying behaviour of multicellular systems. To summar-

ize these differences in simple terms, one could interpret

the capture of a process by betweenness centrality as a

system having prior knowledge of the global layout of cellu-

lar organization when regulating information flow. Feedback

from destination to source could also achieve such optimiz-

ation [36]. Random walk centrality captures the diffusion of
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a non-saturated mobile signal between randomly selected

producer and receiver cells, analogous to the movement of

a morphogen across a system.

These network science centralities exploring local connec-

tivity through degree and global path length properties

provide ways of revealing biologically relevant properties of

multicellular organization in organs. There, however, remains

scope for the development of additional centralities which cap-

ture the properties and constraints of the spatial embedding of

cells in organs [37,38]. These, among other metrics, represent

potential measures to explore the higher-order organization of

cells in organs, and optimization of transport within complex

cellular assemblies.

Additional network metrics beyond centrality may also be

used to analyse cellular connectivity networks. For instance,

the detection of communities or modules within networks has

received quite some focus by the network science community

[39]. This approach could enable the identification of functional

modules and structures within organs. Several metrics and

algorithms are available in this case, including hierarchical

clustering and modularity maximization methods [40].

On the other hand, functional annotated networks may be

analysed using these new layers of data, for instance exploring

the properties of signal distributions or the movement of infor-

mation across structural templates. This approach has been

widely embraced by the field of neuroscience [21]. A recent,

although contentious, example of this can be found in the

integrated information metric used by Tononi [41].

There is no one-size-fits-all topological measurement for

cellular interaction networks. Depending on the question

being asked and the nature of the biological system, different

combinations of topological analyses may be applied. It is

worth noting that network size should be used to normalize

data [42].

Another interesting aspect to consider when analysing

many types of networks is how efficient they are in terms

of facilitating or impeding movement across them. This

might relate to the flow of information (like in the brain or

the Internet), the flow of smart entities that can route them-

selves through optimal paths (like humans in the transport

network) or the random walk of diffusible molecules through

compartments (perhaps not unlike the movement of small

molecules in a cellular connectome). To characterize effi-

ciency in transport networks, several measurements are

available, some of which are discussed below.

Global efficiency [43] concerns itself with the average dis-

tance between each pair of nodes within a network, a

concept closely related to that of small worlds in social network

science [44]. Networks might display much shorter average

shortest path lengths if there are shortcuts which can greatly

reduce average distances by connecting regions that otherwise

would be far apart. This measure can be used to compare

different networks [37,43], although special care needs to

be taken when contrasting networks have different sizes

or connectivity.

The counterpart of transport efficiency is transport

robustness, also called local efficiency in some studies [43].

This metric relates to the ability of a network to continue to

function with faulty components, and is computed by locally

comparing the changes in average path lengths before and

after the removal of edges. Displaying high transport robust-

ness is also related to a high global clustering coefficient [45]

or the frequency of triangle motifs.
Interestingly, under the constraint of preserving the

number of nodes and edges, a trade-off between local and

global efficiency has been demonstrated to be present [43].

On the one hand, spatially embedded and homogeneous

systems (such as regular lattices) are known to be highly

resistant to the loss of edges while displaying low global

efficiencies. At the other side of the spectrum, random

graphs contain shortcuts that reduce average path lengths

and increase global efficiencies, but are not structured

and thus suffer heavily under random faulty components.

Such a trade-off relation can be coalesced into a pareto

front [46,47]. Under this view, different systems can be

compared and ranked according to their optimality in

this trade-off. Such a value can be regarded as a proxy for

fitness, creating a direct connection between the topologi-

cal analysis of cellular configurations across genetic and

evolutionary contexts.
6. Models of multicellularity
A variety of models describing multicellular systems have

been generated and analysed to varying extents previously

[48]. These models have generally sought to understand

how generative genetic and mechanical rules give rise to

pattern formation in diverse contexts and scales. These

approaches have provided limited regard to the underlying

organization or self-organization of cellular neighbourhoods

and topologies, commonly making use of regular lattices

instead. The comparison of the outputs of these models

and observed biological tissues has been largely limited to

qualitative comparisons.

The application of a network-based approach to under-

standing complex cellular organization in each biological

and simulated system provides a framework in which to

make quantitative comparisons, enabling more concrete state-

ments to be made about the similarity of the models to living

systems. This may also provide an avenue for undiscovered

mechanisms of pattern formation to be uncovered.

To illustrate the ability of this analytical framework to

identify biologically relevant features in complex cellular

assemblies, we performed a meta-analysis of the data gener-

ated in [49]. In this work, the authors demonstrated that

cellular assemblies with multicellular traits could be obtained

by means of artificially selecting faster gravitational sedimen-

tation of clusters of yeast cells (figure 4a), leading to the

creation of precisely connected collections of cells called the

‘snowflake’ phenotype (figure 4b). This system in turn main-

tained a characteristic cell cluster size through the selective

induction of apoptosis in individual cells. Understanding

the dynamics of such evolving systems has drawn efforts

from physics-based models [50]; however, an alternative

approach lies in using a network approach. The calculation

of node betweenness centrality in these yeast structural net-

works reveals the system to be integrating different layers

of physical information into the topology of the ‘snowflake’

by trying to optimize the average path length, as shown by

the correlation between apoptotic cells (nodes that are

going to disappear and thus break the network) and high

node betweenness centrality (figure 4c). This approach may

be of further value when trying to understand the dynamics

and optimization of naturally occurring branching systems

like some algae and hyphae in fungi [51].
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7. Static and dynamic cellular topologies
The type of network analysis used is contingent upon the

physical properties of the developmental system being exam-

ined. In plants and fungi, adjacent cells are immobilized with

respect to one another through shared cell walls [52]. Typical

network science measures described above are directly

applicable to these systems as intercellular interactions

are irreversible.

The physical embedding of cells in space relative to

one another in these systems renders the control of the cell

cycle and the orientation of cell division planes the central

determinants in the construction of multicellular topologies

[13,53,54]. In plant systems, the emergence of anisotropic vas-

culature cells [55] provides a means by which path length

may be transcended. Understanding the relationship between

space and topology represents a future challenge to uncover

how the properties of cell organization are controlled

within immotile cellular systems.

In animal systems, cells are capable of moving and grow-

ing past one another. The transient nature of these cell

interactions makes edges in these networks dynamic, chan-

ging the topology of the network. For these systems,

alternative approaches to understanding cell organization

are required. Temporal network analysis provides one sol-

ution, incorporating dynamics into topological analyses

[56]. The extent to which cells are motile within organs

would have a profound impact on the topological properties

of the system. Introducing temporal aspects into spatial net-

works, such as cell motility, provides the opportunity for

individual cells to interact with other cells, regardless of
their starting position. In terms of information transport,

this would allow specific cells to potentially exert greater

influence across the organ. Examples of such behaviour can

be found in another class of systems, those displaying collec-

tive intelligence, sometimes referred to as ‘fluid neural

networks’. Here, each individual unit (an ant, bee or fish)

contributes to the final computation of the system, some

having a higher impact on the whole by virtue of

their enhanced mobility, with interesting implications for

engineering [57].

This approach may also be used to study the spatial

dynamics within microbial communities where cells are

motile. The structural features of these societies may play

an important functional role in light of the global communi-

cation taking place across colonies [58], and the relationships

between different species in cross-feeding contexts [59,60].
8. Extraction and annotation of cell interaction
networks

Central to cellular interaction mapping is the need to perform

imaging, and the computational analysis of these data.

Advances in sample preparation [61–63], image acquisi-

tion [64] and image analysis [65,66] have facilitated the

construction of cellular resolution connectomes.

The use of fixed tissue combined with optical clearing

techniques and fluorescence has provided a step change in

rapid and accurate acquisition. These approaches enable the

deep and high-resolution imaging of optically heterogeneous



Table 1. List of existing cellular structural networks in diverse biological systems.

species organ advantages disadvantages references

C. elegans nervous system complete connectome no spatial information

only one cell type

[19]

Drosophila wing disc contains spatial information

live image/dynamic

incomplete/not whole

organ

[31,75,76]

Cucumis (cucumber) shoot apical meristem contains spatial information

live image/dynamic

incomplete/not whole

organ

epithelium only

[32]

Arabidopsis developing embryo complete connectome

contains spatial

information

fixed tissue/static images [77]

Arabidopsis, foxglove,

poppy

hypocotyl (embryonic plant

stem)

complete connectome

contains spatial

information

fixed tissue/static images [78]
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organs at depths not possible previously [62,67,68]. This is

particularly important, as both accurate and complete con-

nectomes are required for their meaningful analysis at

cellular resolution. The application of expansion microscopy

provides further improvement in accuracy, providing super-

resolution imaging of fixed samples at low laser intensities

[61]. The preservation of fluorescent proteins and the ability

to repeatedly probe fixed and clarified samples with anti-

bodies and nucleotide probes provides the opportunity to

add multidimensional functional annotation to structural net-

works generated using these methods. The ability to annotate

structural networks with multiple rounds of functional infor-

mation within the same sample represents an advantage over

live imaging systems which are constrained by the number of

fluorescent reporters which can be resolved, typically three.

However, the disadvantage of imaging using fixed tissue is

the loss of topological dynamics.

Live fluorescent imaging has also been used to track topo-

logical dynamics in organs [66,69]. The key advantage of this

approach is the ability to retain a living sample and follow

the organizational changes in cells within the tissue. Local

interactions between cells mediate the formation of patterns

through self-organizing principles in diverse organisms.

The rules underlying these processes remain largely

unknown due to a lack of data at the appropriate resolution

and models capable of quantitatively recapitulating them.

Live imaging of organs and quantification of their cellular

topological dynamics using network science provide a

means to quantify the outputs of self-organizing processes

and accurately assess models which aim to recreate these

processes. This is a central advantage of live imaging;

however, the inability to penetrate deep within optically

heterogeneous tissues and the limited number of fluores-

cent reporters that can be visualized at once [70] remain as

persistent limitations.

In both fixed and live cell imaging of organs, the compu-

tational analysis of cell associations depends upon the ability

to accurately segment cells and capture their contacts in

space. To achieve this, cell boundary markers are used to de-

limit the extent of cell segmentation. This can be achieved

through the use of genetically encoded membrane or cell
wall markers, or with vital fluorescent stains in the case of

live imaging. Nuclear markers are therefore not sufficient

for generating accurate connectomes as these fail to capture

cell shape.

High-resolution connectomes using serial TEM or serial

block face imaging and reconstruction have been extracted

in the neuroscience field [71], and algorithms to track neur-

onal trajectories and associations have been developed [72].

This is particularly useful for the resolution of fine cells

such as in nervous systems. Similarly, with other tissues,

3D imaging will provide the necessary data to resolve cellular

interfaces, which in turn can be algorithmically used to

recover the cellular connectomes. Furthermore, improving

imaging will increase opportunities for functional annota-

tion of these networks, providing further dimensions to

characterize using network science.

Annotation of cell types is also necessary to discriminate

topological classes and understand relationships between

components of the system. This has been developed pre-

viously in C. elegans and for radially symmetric organs in

plants, through a combination of positional and topological

information of cell arrangements [73,74].
9. Structural network analyses
The topological analysis of cellular structural networks

has been performed in a limited number of instances,

and each have provided unique insight into the biological

systems examined. These are discussed below and summari-

zed in table 1, along with the strengths and weaknesses of

these datasets.

Neuroscience has been leading the way with cellular

interaction network analyses, starting with the complete con-

nectome of C. elegans [19]. This seminal dataset has provided

the first example of the utility of mapping global cellular

interactions in a complex organism. The examination of the

higher-order properties across the C. elegans nervous system

has helped uncover neuronal circuits controlling worm

movement [20], temperature sensing [79] and egg-laying

behaviour [80]. This directed network is indeed complete,
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though it only represents a fraction of the cells present in this

organism, limiting its utility to the study of nervous system

function. It also does not capture the spatial positioning of

cells within 3D space.

Following from this work, more ambitious projects seek-

ing to bridge the structure–function relationship in more

complex brains, including mouse and humans, are underway

[81–83]. These studies hold tremendous scientific and medi-

cal potential leading to enhanced understanding of nervous

system function and disease.

Developmental studies of structural network properties

have also begun to be undertaken. Cell organization has

also been microscopically examined in planar systems includ-

ing the developing Drosophila wing disc. Using live cell

imaging, local connectivity or degree (number of immediate

neighbours) revealed an ability to discriminate cell organiz-

ation between organs, species, stages of development and

genetic backgrounds [75].

Other studies examining the polygonal shape of epithelial

cells, a proxy for cell degree in these tessellated tissues, found

the number of neighbours a cell has to be tightly regulated in

animal and plant epithelia [31]. This work implicated the

presence of a mechanism regulating local cell organization

across kingdoms. Further work suggested this to be due to

a cleavage plane bias during cell division which promotes

cells having a regulated number of local neighbours in both

plants and animals [32]. More recently, this view has been

challenged through the reporting of diverse degree frequen-

cies in tissues, which is related to the balance of cell size

and distribution of forces within tissues [76].

In plants, the role of cellular connectivity during embryo-

genesis has also been explored previously [77,78]. Imaging

using confocal microscopy and segmentation of individual

cells has enabled the properties of global cellular connectivity

to be explored in whole organs. This was first performed in

developing Arabidopsis embryos at the 16-cell stage [77]. By

comparing each the wild-type and transgenic embryo, the

role of the transcriptional responses mediated by the hormone

auxin was found to impact local cellular connectivity.

The exploration of the higher-order properties of global

cellular organization in whole organs has been performed

by topologically analysing complete cellular resolution con-

nectomes of the plant hypocotyl (of the embryonic stem)

[78]. Path length analysis using betweenness centrality

revealed the presence of previously undescribed optimized

conduits in the non-hair-forming (atrichoblast) cells of the

epidermis of this organ. The preferential movement of

exogenously applied fluorescent molecules along the length

of the epidermis specifically within this cell type was

predicted at single-cell resolution following a high between-

ness principle [78]. The passive bulk flow of molecules

through complex cellular arrangements in plants may there-

fore be predicted at single-cell resolution by understanding

the higher-order properties of global cellular organization.

This work potentially bridges a structure–function

relationship in the patterning of epidermal cells in plants

[8]. Two cell types are present including the hair-forming

cells (trichoblasts), which acquire nutrients from the environ-

ment, and the non-hair-forming (atrichoblast) cells, which are

adjacent to these [84]. The functional relevance of having two

cell types in the epidermis remains unclear, and this struc-

tural analysis of epidermal cell patterning may provide an

explanation for this. Hair cells acquire solutes from the soil,
and pass these onto the neighbouring non-hair cells for

transport up the stem following observation with applied flu-

orescent molecules [78]. In this way, hair cells can maintain

low intracellular solute concentrations, facilitating further

nutrient uptake, while molecules are moved along trans-

port-optimized non-hair cell files. This implicates a division

of labour between these cell types for nutrient uptake

and movement.

In each of these instances, novel insights into the biologi-

cal system in question were derived by investigating the

structural connectivity between cells in organs. The explora-

tion of these structural properties combined with their

functional annotation in diverse biological contexts provides a

promising and quantitative approach towards understanding

developmental processes.
10. Functional networks
Structural networks provide the templates upon which gen-

etic networks operate, and where functional information

can flow across multicellular assemblies. Functional annota-

tion of structural templates can be achieved through the

localization of genes, proteins, transporters and metabolites

within single cells of imaged organs. This may be established

microscopically through the use of reporter constructs or

genetically encoded biosensors.

For two cells to communicate, they must be in physical

contact with one another. Whether or not information is

indeed being passed from one to the next requires additional

functional annotation by experimentation. In a functional

context, if two cells are physically associated but not exchan-

ging information, then an edge may be considered to not

be present.

The mechanism(s) underlying information exchange

between cells differs across kingdoms. Animals cells have

gap junctions, plants plasmodesmata and fungi septum

pores. Each of these enable the movement of instructive mol-

ecules between cells in multicellular assemblies. The size of

the physical interactions between adjacent cells plays a role

in the capacity for information to be exchanged in light of

this being a physical process. Shared intercellular interface

size may therefore be considered as one possible edge

weighting in the context of a structural network [78].

Establishing functional interactions between cells has

been approached previously in diverse contexts. The field of

neuroscience has developed coarse-grained models of human

brains and measured the flow of information using fMRI

data, which are mapped onto a structural region-based

template [85,86]. Higher-resolution imaging approaches

enable the firing of individual neurons to be visualized using

microscopy [87].

In plant science, the mobile hormone auxin, which is cen-

tral to pattern formation and organ homeostasis, has been

studied extensively [88]. Membrane-localized efflux pumps

(PIN proteins) and uptake transporters (AUX/LAX proteins)

mediate the cell-to-cell movement of auxin across plant

organs. The development of fluorescently tagged PIN auxin

transporters [89] has enabled the polar localization of these

proteins to be identified and the inference of intercellular hor-

mone movement across organs. Mathematical approaches

have been applied to understand and predict how auxin gra-

dients are established using this combination of auxin
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transporter localizations and multicellular templates upon

which these act [90,91].

The development of novel imaging techniques involving

tissue clarification and multiple rounds of 3D immunolocali-

zation of proteins promises to transform the capacity for the

functional annotation of multicellular structural templates

with the ability to integrate multiple dimensions of functional

annotation within the same sample in the future [62,92,93].

While informative, the abundance of transporter proteins

does not strictly correlate with molecular movement between

cells. In this regard, a more direct approach to examining

actual transport capacity and rates is required. An example

of how this may be achieved is activating photoactivatable

molecules (caged molecules or photoactivatable fluorescent

proteins) in individual cells, and quantifying their movement

across the system. The development of additional approaches

to functionally annotate edge weights (measured transport)

in multicellular networks represents a key obstacle to over-

come before a comprehensive systems-level understanding

of organ function can be achieved.

11. Further potential for developmental
connectomics

The capture of complete organism-wide connectomes and their

functional annotation provides a means to address funda-

mental questions that cannot be examined otherwise, namely

the exploration of the higher-order properties of complex

multicellular assemblies. Uncovering these structures and

their properties can reveal selective pressure on particular

architectures and features over the course of evolution.

Non-optimized arrangements may also be explored. In

many organisms, genes which mediate the correct arrangement
of cells have been identified, and viable individuals carrying

mutations in these genes can be grown in the laboratory. The

topological analysis of these alternative cell arrangements can

establish how features of cell topology are genetically encoded,

and potentially how these have been optimized. In many

instances, conflicts between cells manifest at a mechanical

level [94], and a role for cell organization in the control of

organ morphogenesis has been established previously [95].

The analysis of cell organization and the ability for this to ident-

ify cancerous tissue have been reported previously [96],

suggesting this analysis may also have diagnostic value.

By discretizing, analysing and understanding the proper-

ties of complex cellular arrangements within the network

science framework, it becomes possible to understand what

cellular architectures have been selected for and persisted in

the natural world. Understanding these extant topologies,

and revealing the principles underlying the drive to complexity

may also pave the way for the prediction of future organ

designs through morphospace analyses [9]. Such approaches

combined with synthetic biology [97,98] can provide a discrete

framework for the rational re-engineering of complex multicel-

lular systems [99]. In this way, organisms with novel functions

may be generated following known structure–function

principles, through morphogenetic engineering [100].
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multicellularity in a model of cell growth, death
and aggregation under size-dependent selection.
J. R Soc. Interface 12, 20140982. (doi:10.1098/rsif.
2014.0982)

51. Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD.
2007 Biological solutions to transport network
design. Proc. R. Soc. B 274, 2307 – 2315. (doi:10.
1098/rspb.2007.0459)

52. Coen E, Rolland-Lagan AG, Matthews M, Bangham
JA, Prusinkiewicz P. 2004 The genetics of geometry.
Proc. Natl Acad. Sci. USA 101, 4728 – 4735. (doi:10.
1073/pnas.0306308101)

53. Shapiro BE, Tobin C, Mjolsness E, Meyerowitz EM.
2015 Analysis of cell division patterns in the
Arabidopsis shoot apical meristem. Proc. Natl Acad.
Sci. USA 112, 4815 – 4820. (doi:10.1073/pnas.
1502588112)

54. Thomson DD, Berman J, Brand AC. 2016 High
frame-rate resolution of cell division during Candida
albicans filamentation. Fungal Genet. Biol. 88,
54 – 58. (doi:10.1016/j.fgb.2016.02.001)

55. Etchells JP, Turner SR. 2017 Realizing pipe dreams—
a detailed picture of vascular development. J. Exp.
Bot. 68, 1 – 4. (doi:10.1093/jxb/erw482)
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