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Abstract: For multicenter clinical studies, characterizing the robustness of image-derived radiomics
features is essential. Features calculated on PET images have been shown to be very sensitive
to image noise. The purpose of this work was to investigate the efficacy of a relatively simple
harmonization strategy on feature robustness and agreement. A purpose-built texture pattern
phantom was scanned on 10 different PET scanners in 7 institutions with various different image
acquisition and reconstruction protocols. An image harmonization technique based on equalizing a
contrast-to-noise ratio was employed to generate a “harmonized” alongside a “standard” dataset
for a reproducibility study. In addition, a repeatability study was performed with images from a
single PET scanner of variable image noise, varying the binning time of the reconstruction. Feature
agreement was measured using the intraclass correlation coefficient (ICC). In the repeatability study,
81/93 features had a lower ICC on the images with the highest image noise as compared to the
images with the lowest image noise. Using the harmonized dataset significantly improved the
feature agreement for five of the six investigated feature classes over the standard dataset. For three
feature classes, high feature agreement corresponded with higher sensitivity to the different patterns,
suggesting a way to select suitable features for predictive models.

Keywords: PET radiomics features; feature agreement; image harmonization; repeatability;
reproducibility
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1. Introduction

Positron emission tomography (PET), unlike other clinical imaging techniques that
focus on structural content, reflects the physiological activity of in vivo systems. Extracting
imaging biomarkers from PET images through radiomics has become a very active field
of research. The motivation behind radiomics is to find “signatures” in an image that
could serve as prognostic or predictive biomarkers and therefore augment computer-
aided diagnosis, cancer staging, treatment response assessment, and clinical outcomes’
prediction [1].

However, many of the surveyed studies were conducted in a single institution setting,
not least because of numerous legal and ethical hurdles to sharing data. Multicenter studies
are essential to demonstrate the clinical potential of radiomics, in particular as a predictive
tool, as they allow the use of a dataset from another institution to externally validate a
prediction model [2,3].

Straightforward pooling of images from different institutions is difficult due to varia-
tion in scanner characteristics, differences in acquisition and reconstruction parameters,
as well as injected tracer activity between different centers and even within the same
centers [2]. This contributes to the fact that, to date, no clear PET radiomic signature has
emerged that could predict a clinical outcome in a way that results in a change in clinical
decision making.

For multicenter clinical studies, characterizing the robustness (“agreement”) of ra-
diomics features is essential. The variability of a feature for a given imaging subject or
phantom is influenced by all steps in the radiomics workflow from image acquisition and
image reconstruction to region of interest segmentation and feature calculation (including
various pre-processing steps) [3]. Feature agreement can be quantified using reproducibility
and repeatability studies [4]. In PET imaging, most of the literature describes reproducibility
as the robustness of a feature in images acquired on different PET scanner hardware (often
also using different patient populations), different image reconstruction and/or acquisi-
tion settings, and potentially different image post-processing methods. In a repeatability
study (test–retest study), the robustness of features is quantified using repeat images of
the same subject (phantom) under identical measurement conditions (same PET scanner,
same reconstruction algorithm), but sometimes using different post-processing techniques
(including tumor segmentation) before feature calculation.

To date, at least four review papers have surveyed the literature for reproducibility
and repeatability studies. Reference [5] surveyed 41 studies, 18 of which involved PET
imaging. Only one PET phantom study was included in the review [6], reference [3]
surveyed 42 PET imaging studies and used 21 for a meta-analysis, and reference [7]
reviewed 13 studies, 2 of which were clinical PET imaging studies. More recently, PET
phantoms with inhomogeneous uptake compartments were used to study radiomics feature
agreement across various parameter settings [8–11]. Most of these studies are combinations
of reproducibility and repeatability studies involving some or all of the sources of feature
variability associated with the radiomics workflow.

One important source of feature variability can be attributed to PET image noise,
which is inversely proportional to the square root of the scan duration [11]. Variation
in scan time had a non-negligible influence on feature agreement, although the level of
evidence was considered weak [3]. The reason was the fact that the surveyed literature
reached somewhat contradicting conclusions. Reference [9] reported that feature variability
increased significantly in low uptake images (high noise) compared to high-uptake (low
noise) images; however, filtering the images with a Gaussian in order to reduce image
noise does not always result in increased reproducibility of radiomics features, in particular
for smaller regions of interest. In addition, in a series of simulations on both CT and PET
images of lung cancer patients, reference [12] showed that gray level size zone matrix
(GLSZM) features were the most sensitive to uncorrelated noise and that feature variability
generally increased with noise level for shape, intensity, and gray level co-occurrence
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matrix (GLCM) features in both the CT and PET images. On the other hand, for other
features, this seemed not always to be the case, at least in images from a single scanner [13].

It is generally accepted that harmonization is the key to increasing feature agreement
across the data, which in turn is crucially important for the validation of predictive ra-
diomics models. Two main approaches to data harmonization have been described in the
literature: harmonization in the image domain (prior to feature extraction) or in the features’
domain, which are described in detail in the review articles [14,15]. The hypothesis is that
image harmonization increases repeatability and reproducibility of radiomics features. The
first comprehensive harmonization guidelines for PET scanners [16] aimed at standardizing
the entire chain of patient preparation, image acquisition, and image reconstruction and
were very successful in ensuring good reproducibility of classical imaging biomarkers such
as SUVmin and SUVmax [3]. Another method of harmonization is post-processing after
image reconstruction, not least because raw list-mode or projection data may no longer
be available for reconstruction. Point spread function and time of flight reconstructions
are typically used to increase tumor detection, but this can alter SUV values, necessitating
a post-processing image filtering technique [17]. However, the authors of [9] found that
for the smaller spheres of the NEMA phantom with low uptake (high image noise), many
features remained unrepeatable even after post-reconstruction smoothing with a Gaussian
filter, hinting at the fact that this approach may be insufficient to fully harmonize radiomics
features. Therefore, they concluded that efforts should focus on noise reduction, sometimes
even at the cost of spatial resolution, to increase repeatability of radiomics features.

In this work, we hypothesize that mitigating the differences in PET image noise from
different scanners is a very efficient harmonization strategy to increase feature agreement.
The purpose of this work was therefore three-fold: (1) To generate a rich dataset of PET im-
ages of a sophisticated texture phantom, acquired with various image acquisitions protocols,
that serves as the basis for image quantification and harmonization studies. (2) To derive
radiomics features from the PET phantom images and study their repeatability (across a sin-
gle scanner) and reproducibility (across different scanners). (3) To explore the effectiveness
of a simple image noise harmonization methodology on radiomics feature agreement.

2. Materials and Methods

This work was initiated by the PET/CT Subgroup within the Quantitative Imaging
Network (QIN). It is devoted to studying bias and variance in quantitative PET imaging
through development of imaging phantoms, as well as investigating robust algorithms to
extract measurable information from these images [18].

2.1. Texture Pattern Phantom

Inspired by the uptake of a hypoxia tracer in a tumor, which is generally dependent on
perfusion, a phantom was developed to simulate various levels and patterns of uptake. This
was achieved by constructing several compartments with various levels of tracer “blockage”
in a defined pattern. The compartments were made by threading a large number of 2 mm
diameter acrylic rods through a bottom and a top plastic plate. The F-18 tracer would
then only occupy the space around the acrylic rods, in effect creating different uptake
patterns (“textures”). Four different compartments (“Pattern1”, “Pattern2”, “Pattern3”,
and “Pattern4”) were manufactured with approximate fill densities of 28%, 25%, 29%, and
40%, respectively. This approach seemed simpler, although somewhat less flexible, than
the approach detailed in [19].

The compartments were inserted into a standard torso NEMA image quality phantom,
see Figure 1. Each region resulted in a patterned ROI (region of interest) for radiomic
analysis. An identically-shaped region of background was used as an additional fifth ROI.
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Figure 1. Texture phantom used for this study. (A) Photographs of the manufactured cylindrical 
texture compartments inserted into a standard NEMA phantom shell. (B) Each compartment mim-
ics a different distribution of radiotracer uptake due to a different structural pattern of blocked 
space. (C) Axial and coronal CT and PET images of the phantom. 

2.2. PET/CT Scans 
The phantom was scanned on 10 different PET scanners (9 PET/CT, 1 PET/MRI) in 7 

centers across Canada (3) and the United States (4). The scanner models are detailed in 
Table 1. Each centre contributed to this imaging challenge as part of the QIN (Quantitative 
Imaging Network) PET/CT Working Group.  

The phantom was transported by mail to the different sites, assembled, and scanned 
with the guidance of a written manual and PET worksheet. Each participating site scanned 
the phantom according to several protocols: (a) a “standard” protocol using the institu-
tion’s clinical whole body PET imaging protocol with a standard single reconstruction, 
and (b) several additional PET imaging protocols (using various recommended scanning 
parameters) resulting in 3 to 4 additional reconstructions per center. A total of 68 PET/CT 
datasets were submitted to QIPCM at UHN for further analysis. Table 1 shows the scanner 
make and models of the participating institutions. 

Table 1. GE = GE Medical Systems (Waukesha, Wisconsin, USA). Siemens = Siemens Medical Solu-
tions USA, Inc. Malvern, PA. 

Scanner Manufacturer Manufacturer Model Name TOF Capability 
1 GE Discovery 600 No 
2 GE Discovery 690 Yes 
3 GE Discovery MI Yes 
4 GE Discovery STE No 
5 GE Discovery 710 Yes 
6 GE Discovery MI DR Yes 
7 GE Discovery 610 No 
8 Siemens Biograph40_mCT Yes 
9 Siemens Biograph_mMR No 

10 Siemens Biograph64_mCT Yes 

2.3. Contouring 

Figure 1. Texture phantom used for this study. (A) Photographs of the manufactured cylindrical
texture compartments inserted into a standard NEMA phantom shell. (B) Each compartment mimics
a different distribution of radiotracer uptake due to a different structural pattern of blocked space.
(C) Axial and coronal CT and PET images of the phantom.

2.2. PET/CT Scans

The phantom was scanned on 10 different PET scanners (9 PET/CT, 1 PET/MRI) in
7 centers across Canada (3) and the United States (4). The scanner models are detailed in
Table 1. Each centre contributed to this imaging challenge as part of the QIN (Quantitative
Imaging Network) PET/CT Working Group.

Table 1. GE = GE Medical Systems (Waukesha, WI, USA). Siemens = Siemens Medical Solutions USA,
Inc. Malvern, PA, USA.

Scanner Manufacturer Manufacturer Model Name TOF Capability

1 GE Discovery 600 No

2 GE Discovery 690 Yes

3 GE Discovery MI Yes

4 GE Discovery STE No

5 GE Discovery 710 Yes

6 GE Discovery MI DR Yes

7 GE Discovery 610 No

8 Siemens Biograph40_mCT Yes

9 Siemens Biograph_mMR No

10 Siemens Biograph64_mCT Yes

The phantom was transported by mail to the different sites, assembled, and scanned
with the guidance of a written manual and PET worksheet. Each participating site scanned
the phantom according to several protocols: (a) a “standard” protocol using the institu-
tion’s clinical whole body PET imaging protocol with a standard single reconstruction,
and (b) several additional PET imaging protocols (using various recommended scanning
parameters) resulting in 3 to 4 additional reconstructions per center. A total of 68 PET/CT
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datasets were submitted to QIPCM at UHN for further analysis. Table 1 shows the scanner
make and models of the participating institutions.

2.3. Contouring

The four pattern compartments (Patterns 1 to 4) were contoured as cylindrical volumes
on one single CT dataset (from a single institution). A background compartment similar
in shape was also contoured. These contours were contracted by 5 mm to minimize the
partial volume effect. This CT image was rigidly co-registered to the CT of each PET/CT
dataset individually, and the contours propagated onto each PET image dataset using MIM
Maestro 6.8 (Akron, OH, USA) (Figure 1, panel C). A similar procedure was performed for
the PET/MR dataset of institution 9, where the contoured CT was manually registered to
the MRI image dataset before contour propagation.

2.4. Standard and Harmonized Datasets (for Reproducibility)

The images of each institution’s clinical whole body protocol were used as the standard
dataset for the radiomics analysis, a total of 10 PET images. The contrast-to-noise ratio
(CNR) was calculated across all 68 reconstructions (standard and additional) using the
difference in mean activity of the 40% filled region (Pattern-ROI-4; the reference) and the
background compartment (Pattern-ROI-5), divided by the standard deviation of the voxel
values in the background compartment

CNR =

∣∣∣∣µ(ROI-4)− µ(ROI-5)
σ(ROI-5)

∣∣∣∣ (1)

where µ and σ are the mean and the standard deviation of the PET image values, re-
spectively. An overall mean CNR was also calculated as the average CNR across all
68 reconstructed PET images of all institutions. From each scanner, the reconstruction that
deviated the least from the overall CNR mean was selected for the harmonized dataset for
the radiomics analysis (see Tables 1 and 2, and Tables S1 and S2 in the Supplementary
Materials for more details on the reconstruction algorithms). In order to study feature
agreement for two different degrees of harmonization, a subset of the harmonized dataset
from 6/10 scanners with smaller CNR variation was selected.

Table 2. Reconstruction parameters and contrast-to-noise ratios for the standard dataset (10 PET
images). ScNo = scanner number from Table 1. TOF = time of flight acquisition, ZFilter = post-
reconstruction filter, NIt = number of iterations, NSubS = number of subsets, FOV = field of view,
M = matrix size, P = pixel spacing (pixel size), S = slice thickness, Time = acquisition time (per bed
position), CNR = contrast-to-noise ratio according to Equation (1).

ScNo TOF ZFilter
(mm) NIt NSubS FOV (cm) M P (mm) S (mm) Time

(min) CNR

1 No 6.4 2 32 70 192 3.65 3.27 2.5 4.62

2 No 6.4 2 32 70 192 3.65 3.27 2.5 4.50

3 Yes 5 3 16 50 256 1.95 2.79 3 4.38

4 No 4 2 20 50 128 3.91 3.27 5 3.47

5 Yes 6.4 2 16 70 128 5.47 3.27 3 10.11

6 Yes 6.4 2 32 70 192 3.65 3.27 3 7.02

7 No 6.4 2 32 50 256 1.95 3.27 5 6.39

8 Yes 5 3 21 81.5 256 3.18 5 2 4.37

9 No 6 3 21 71.8 256 2.80 2.03 10 8.39

10 Yes 5 2 21 81.5 200 4.07 5 5 9.26

CNR Mean 6.25

CNR Standard Deviation 2.23
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2.5. Repeatability Dataset

On one PET/CT scanner (scanner 7), the phantom was scanned four times at near
identical activity concentration levels through periodic top-ups to replenish decayed activity.
The scans were then reconstructed from the list-mode data with 2 iterations, 32 subsets,
and a Zfilter of 6.4 mm width. Slice thickness was 3.27 mm, the FOV 50 cm, and the matrix
size 256, resulting in a pixel size of 1.95 mm. Three different binning times of 10 min, 5 min,
and 2 min were used, resulting in three different values for CNR (and therefore mimicking
three different noise levels). This resulted in a repeatability dataset of total 3 × 4 = 12 PET
images (See Table 3 and Table S3 in the Supplementary Materials for more details on the
reconstruction algorithms).

Table 3. Contrast-to-noise ratios for the repeatability dataset (12 PET images). Time = acquisition
time (per bed position), R = reconstruction, CNR = contrast-to-noise ratio according to Equation (1).

Time (min) CNR

R1 R2 R3 R4 Mean Std Dev

10 7.74 8.09 8.41 8.01 8.06 0.28

5 5.61 5.83 5.80 5.45 5.67 0.18

2 3.86 3.71 3.70 3.53 3.70 0.13

2.6. Radiomics Analysis

For this work, the radiomics features were only computed on the PET images. A total
of 107 PET radiomics features were computed using open-source PyRadiomics (2.2.0) [20]
from each reconstructed PET image in SUV units using identical PyRadiomics settings. The
SUV values were obtained by converting voxel values (Bq/mL) using decay-correction
and uptake normalization by a nominal body weight of 50 kg and the injected tracer
dose. This resulted in an SUV range across all the images of 0.85–10.15 SUV (min–max)
mimicking that in clinical PET images. The 107 features included 14 shape, 18 first order,
24 Gray Level Co-occurrence Matrix (GLCM), 14 Gray Level Dependence Matrix (GLDM),
16 Gray Level Run Length Matrix (GLRLM), 16 Gray Level Size Zone Matrix (GLSZM), and
5 Neighboring Gray Tone Difference Matrix (NGTDM) features. The applied PyRadiomics
settings were encapsulated in a parameter YAML file and contained the following: feature
extraction from only the original image type, no image normalization before resampling,
fixed bin widths of 0.3125 SUV for gray level discretization and histograms, image and
mask resampling using default interpolators “sitkBSpline” and “sitkNearestNeighbor”,
respectively, and resampled isotropic pixel spacings of 3.5 × 3.5 × 3.5 mm3. As per
PyRadiomics documentation, most features are in compliance with the definitions outlined
by the Imaging Biomarker Standardization Initiative (IBSI) unless otherwise stated [21,22].
The calculated radiomics features were converted to JSON files (compressed in ZIP format)
and MATLAB 2020a (Natick, MA, USA) was then used for quantitative and statistical
analysis. Shape features were omitted from the analysis as the compartment shapes were
invariant across all PET images. All results are therefore reported for 107 − 14 = 93 features.

2.7. Reproducibility and Repeatability Metrics

Inter-scanner feature agreement in the standard and harmonized datasets was assessed
using the two-way random, single measures, absolute agreement intraclass correlation
coefficient (Shrout and Fleiss ICC(2,1), [23]). The role of the ”judges” in [23] is assumed by
the different PET/CT scanners, and the role of the “targets” is assumed by the 5 different
pattern-ROIs. ICC(2,1) is a measure of feature value agreement among different ROIs and
scanners and expresses essentially a correlation between measurements on the different
scanners. In addition, the paired, two-sided Wilcoxon signed-rank test was conducted to
test for the null hypothesis that the difference between the ICC(2,1) values between the
standard and the harmonized datasets comes from a distribution with zero median.
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In contrast, intra-scanner feature agreement in the repeatability dataset was assessed
using the one-way random intraclass correlation coefficient (Shrout and Fleiss ICC(1,1) with
k = 4 repeated scan “judges” for the 5 pattern-ROI “targets”). The intraclass correlation
coefficient ICC(1,1) is often used to assess feature value absolute agreement between
different repeated measurements by the same scanner. Similar to the reproducibility study,
the Wilcoxon signed-rank test was also applied for the repeatability assessment to test for
statistically significant differences in ICC(1,1) between the 10 min and 2 min PET images.

2.8. Pattern Sensitivity

Feature sensitivity to different texture patterns (and independence of volume over
which they are calculated) is an essential property of a feature. It was assessed by first
calculating the standard deviation σ of the values of a radiomics feature i, f j

i (R), over the
5 pattern-ROIs R in a PET image j as follows

σi
j = σR

[
f j
i (R)

]
(2)

The mean value of σ
j
i over the 10 images of the standard dataset (S10) and the harmo-

nized dataset (H10) was used as the pattern sensitivity metric σS
i and σH

i , respectively

σi
S = µj{S10}

(
σi

j
)

(3)

σi
H = µj{H10}

(
σi

j
)

(4)

According to the definition of the intraclass correlation coefficients, higher values of
the ICC should correspond to higher values of this pattern sensitivity metric. The Spearman
rank correlation coefficient provides a measure of the strength of a monotonic association
between ICC(2,1) and the inter-ROI standard deviations σi

S and σi
H .

3. Results
3.1. Qualitative Comparison

A visual qualitative comparison of the 10 PET images in the standard and the 10 PET
images in the harmonized datasets are depicted in Figure 2. Scanners 1, 4, 7, and 9 are
non-TOF scanners. The CNR, according to Equation (1), of the 10 PET images in panel B
are much more similar to each other (7.29 +/− 0.52) than for the 10 PET images in panel
A (6.25 +/− 2.23). Image 4 in panel A had the lowest CNR of the set (see Table 2), clearly
visible by the conspicuous speckled background. The harmonized version of this image
shows a somewhat less noisy background. Image 5 shows the largest CNR of the standard
set (CNR = 10.11). Image 9 looks very smooth in both the standard and harmonized sets as
it had the longest acquisition time of all scans (10 min). All TOF acquisitions (scanners 2, 3,
5, 6, 8, 10) show the cold center inside Pattern-ROI 3 clearer than the non-TOF scanners.

3.2. Repeatability Analysis

Figure 3 shows the intraclass coefficient ICC(1,1) for all features derived from the
12 PET images listed in Table 3 as a ranked plot. For each feature, three ICC values are
shown, one for each bin-time. The features are ranked according to the ICC value derived
from the 2 min binning time images.

The mean ICC(1,1) values, averaged over the 107 − 14 = 93 features, were 0.88 ± 0.18,
0.84± 0.24, and 0.73± 0.30, for the 10 min, 5 min, and the 2 min binning times, respectively.
Features derived from the 2 min PET images (noisiest) generally resulted in the smallest
ICC among the three different noise levels. This was the case for 81/93 features. In total,
70/93 features of the 10 min images exhibited an ICC(1,1) greater than 0.85, which is
usually considered “excellent” feature repeatability. For the 10 min PET images, 80% or
more of examined features in the first order, GLCM, GLDM, and GLRLM feature classes
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demonstrated ICC(1,1) > 0.85, while only 60% and 20% of the NGTDM and GLSZM features
were above 0.85, respectively. In contrast, a total of only 48 features of the 2 min binning
time showed excellent feature repeatability ICC(1,1) > 0.85. Percentages of features with
ICC > 0.85 within the feature classes of first order, GLCM, and GLRLM were 83%, 71%, and
63%, respectively, for 2 min binning time.
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Figure 2. Single slices of the standard (A) and harmonized (B) datasets. The order of the images 
follows the order in Table 1 (scanner 1 to 10 from top left to bottom right). The images were normal-
ized by the mean activity of their respective background (Pattern-ROI 5). The displayed color scale 
is identical for all images and ranges from 0 (black) to 1.22 (red). 
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Figure 2. Single slices of the standard (A) and harmonized (B) datasets. The order of the images
follows the order in Table 1 (scanner 1 to 10 from top left to bottom right). The images were normalized
by the mean activity of their respective background (Pattern-ROI-5). The displayed color scale is
identical for all images and ranges from 0 (black) to 1.22 (red).

Overall, some feature classes were more affected by PET noise than others. The
GLSZM (orange), the NGTDM (brown), and the GLDM features (cyan) are generally found
in the bottom half, whereas the first order features and the GLCM features show up in the
top half of the ranked plot. For 2 min binning time, not more than 20% of the features in
each of the feature classes GLDM, GLSZM, and NGTDM were > 0.85.

The paired Wilcoxon signed-rank test suggested a statistically significant improvement
in feature ICC(1,1) value from the 2 min to the 10 min scan. The average ICC(1,1) value
improved by 0.15 ± 0.22 (p < 10−10), see also Table S4 in the Supplementary Materials. The
improvement from the 2 min to the 10 min scan is significant for the first order, GLCM,
GLDM, and the GLRLM, but not for the GLSZM, and NGTDM feature classes, see Table S5
in the Supplementary Materials. Table S6 in the Supplementary Materials lists the values
for ICC(1,1) for all 93 features and all three binning times.

3.3. Reproducibility Analysis

The reproducibility analysis was conducted for a total of four different datasets: for
the standard dataset (S10), the harmonized dataset (H10), and then a subset of six scanners
each (S6 and H6, see Table 4 for the overview). For H6, a subset of six PET images (and
their scanners) was selected from H10 such that the mean CNR of the subset was closest to
the mean CNR of the full dataset F. For S6, the six PET images from the same scanners as
for H6 were selected from the standard dataset S10.
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Figure 3. Intraclass coefficient ICC(1,1) for all radiomics features from the PET images in the repeat-
ability dataset. For each feature, three values of ICC(1,1) are plotted: binning time 10 min (green), 5 
min (red), and 2 min (black). Error bars indicate the 95% confidence intervals of the ICC values. The 
results are sorted in descending value of ICC(1,1) for the 2 min binning time (black circles). The 
feature class of each feature is indicated by the color of the tiles (dark blue: first order, light blue: 
GLCM, cyan: GLDM, yellow: GLRLM, orange: GLSZM, brown: NGTDM). 
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ICC among the three different noise levels. This was the case for 81/93 features. In total, 
70/93 features of the 10 min images exhibited an ICC(1,1) greater than 0.85, which is usu-
ally considered “excellent” feature repeatability. For the 10 min PET images, 80% or more 
of examined features in the first order, GLCM, GLDM, and GLRLM feature classes 
demonstrated ICC(1,1) > 0.85, while only 60% and 20% of the NGTDM and GLSZM fea-
tures were above 0.85, respectively. In contrast, a total of only 48 features of the 2 min 
binning time showed excellent feature repeatability ICC(1,1) > 0.85. Percentages of fea-
tures with ICC > 0.85 within the feature classes of first order, GLCM, and GLRLM were 
83%, 71%, and 63%, respectively, for 2 min binning time.  

Overall, some feature classes were more affected by PET noise than others. The 
GLSZM (orange), the NGTDM (brown), and the GLDM features (cyan) are generally 
found in the bottom half, whereas the first order features and the GLCM features show 
up in the top half of the ranked plot. For 2 min binning time, not more than 20% of the 
features in each of the feature classes GLDM, GLSZM, and NGTDM were > 0.85.  

Figure 3. Intraclass coefficient ICC(1,1) for all radiomics features from the PET images in the repeata-
bility dataset. For each feature, three values of ICC(1,1) are plotted: binning time 10 min (green),
5 min (red), and 2 min (black). Error bars indicate the 95% confidence intervals of the ICC values.
The results are sorted in descending value of ICC(1,1) for the 2 min binning time (black circles). The
feature class of each feature is indicated by the color of the tiles (dark blue: first order, light blue:
GLCM, cyan: GLDM, yellow: GLRLM, orange: GLSZM, brown: NGTDM).

Table 4. Summary of datasets for the reproducibility analysis.

Label Dataset Scanners Number PET Images Average CNR +/− 1 SD

F Full dataset 1–10 68 7.53 ± 2.38

S10 Standard dataset 1–10 10 6.25 +/− 2.23

H10 Harmonized Dataset 1–10 10 (*) 7.29 +/− 0.52

S6 Subset of S10 1,2,3,5,8,10 6 6.21 ± 2.71

H6 Subset of H10 1,2,3,5,8,10 6 (*) 7.38 ± 0.25

(*) closest to average CNR of F.

Figure 4 shows the reproducibility for each computed feature for each of the four
datasets. All numerical results are also listed in Table S7 in the Supplementary Materials.
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The mean ICC(2,1) values, averaged over the 93 features, were 0.30 ± 0.24, 0.58 ± 0.21,
0.34 ± 0.27, and 0.67 ± 0.21 for the S10, H10, S6, and H6 datasets, respectively. Only 2/93
features for the S10 and 9/93 features for the H10 dataset had ICC values larger than 0.85.
For the S6 and H6 datasets, these values were 8/93 and 19/93 features, respectively.

The paired Wilcoxon signed-rank test suggested a statistically significant improve-
ment in ICC(2,1) value from the standard (S10) to the harmonized (H10) dataset, see also
Table S8 in the Supplement. The average feature ICC(2,1) value improved by 0.28 ± 0.16
(p = 5.57 × 10−17). Figure 5 shows that reproducibility improves for all feature classes
except GLSZM on a statistically significant level, the detailed results are in Table S9 in the
Supplement. Figure 4 also demonstrates that tightening the range of CNR in the datasets
(S6 and H6) further improves feature agreement. ICC(2,1) is larger for 85/93 features when
using the H6 versus the H10 dataset, and for 64/93 features when using the S6 versus the
S10 dataset.
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3.4. Feature Pattern Sensitivity

Figure 6 shows each feature’s ICC(2,1) as a function of the pattern sensitivity in terms
of the mean inter-ROI standard deviation according to Equations (3) and (4). All numerical
results are also listed in Table S7 in the Supplementary Materials.

The results of the Spearman rank correlation test showed that the features of the
first order (rho = 0.79 and 0.74) and GLCM (rho = 0.67 and 0.84) feature classes show a
significant association between ICC(2,1) and pattern sensitivity for both the standard and
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harmonized datasets. The features of the GLDM class are not correlated for the S10 dataset
(Spearman’s rho = 0.25), but are just slightly above the significance level of 0.05 for the
harmonized dataset (Spearman’s rho = 0.53). The full list of Spearman’s rank correlation
test results can be found in Table S10 in the Supplementary Materials.
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4. Discussion

We have studied the feature agreement of radiomics features calculated on PET images
by conducting a repeatability and a reproducibility study using a purpose-built pattern
phantom. The main purpose of the work was to investigate the feature agreement across
non-harmonized (standard) and harmonized datasets.

4.1. Feature Calculation

As shown by [24] in their NEMA phantom study, bin width and pixel/voxel size can
significantly influence the variability of a feature across PET images from different scanners,
even for a relatively simple phantom with spherical inhomogeneities.

Radiomics feature calculation in this work was performed for fixed bin widths (in units
of an SUV range). Fixed bin widths, as opposed to fixed number of bins, are reported to be
more suitable for images from clinical settings due to variable SUV ranges that can occur
for variable administered activity concentration and scan time after injection [25,26] but
also for images from a standardized phantom [9]. The chosen fixed bin width of 0.3125 SUV
for our analysis enabled us to cover the clinically relevant SUV range of 0–20 in 64 bins.

Pixel spacing across all PET images in the standard dataset varied between 1.95–5.49 mm
and slice thickness between 2.03–5.00 mm. In the harmonized datasets, the pixel spacing
range was 1.95–3.91 mm. Following [27], resampling pixel spacing to isotropic voxels
further reduces effects arising from using a different number of voxels within the ROIs.

4.2. Harmonization Method

The results of the simple method in Figures 3 and 4 demonstrated clearly that PET im-
age noise and its variation between PET images directly influences the reproducibility and
repeatability of a feature. A very simple harmonization method based on minimizing the
differences in CNR in the PET images was applied. The statistically significant differences
between the standard (clinically preferred) and the harmonized datasets clearly echoes the
conclusions in reference [9] for the homogeneous NEMA phantom. In addition, tighter
harmonization criteria in terms of CNR range further improve feature agreement.

Our study design allowed for a different selections of images from each institution
who provided images with a wide range of CNRs. Therefore, no further post-processing
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method was necessary to generate the harmonized dataset. Table 5 provides the image
acquisition and reconstruction settings for this particular group of PET scanners that result
in a “harmonized” CNR in the resulting PET images. These settings could be used if a multi-
institutional clinical trial was to be conducted with these institutions. The usual standard
reconstruction at each centre can still be used for interpretation by the local physician and
the harmonized reconstruction sent to the imaging core lab for analysis. Such a process,
therefore, does not have to compromise between clinical and trial requirements. However,
using original PET images might not always be practical. Harmonization of the dataset by
post-processing images would not require the institutions to acquire multiple images with
different settings. Our results show that a particular class of post-processing algorithms,
i.e., one that harmonizes noise in PET images, might have the potential to increase feature
agreement. It remains to be seen if post-processing techniques such as a convolution with a
Gaussian blurring filter can achieve a similar result. This will be pursued in future work,
ultimately validating image post-processing methods for harmonization.

Table 5. Reconstruction parameters and contrast-to-noise ratios for the harmonized dataset (10 PET
images). ScNo = scanner number according to Table 1. TOF = time of flight scanner, ZFilter = post-
reconstruction Zfilter, NIt = number of iterations, NSubS = number of subsets, FOV = field of view,
M = matrix size, P = pixel spacing (pixel size), S = slice thickness, Time = acquisition time (per bed
position), CNR = contrast-to-noise ratio according to Equation (1).

ScNo TOF ZFilter
(mm) NIt NSubS FoV

(cm) M P (mm) S (mm) Time
(min) CNR

1 No 6.4 3 16 50 256 1.95 3.27 5 7.29

2 Yes 4.6 3 16 50 256 1.95 3.27 5 7.09

3 Yes 6.4 3 16 50 256 1.95 2.79 5 7.29

4 No 6 3 14 50 128 3.91 3.27 10 6.3

5 Yes 6.4 3 16 50 256 1.95 3.27 3 7.64

6 Yes 6.4 2 32 70 192 3.65 3.27 3 7.02

7 No 6.4 2 32 50 128 3.91 3.27 5 6.95

8 Yes 6 3 21 81.5 256 3.18 5 5 7.25

9 No 6 3 21 71.8 256 2.80 2.03 10 8.39

10 Yes 6 3 21 50.9 256 1.99 3 5 7.72

CNR Mean 7.29

CNR Standard Deviation 0.52

A ComBat-type harmonization method [28] would not be applicable for our datasets
and study design. Our work is a phantom study and the number of unique regions of
interest per scanner is only one. Hence, the variation in feature values for a particular
ROI was caused by the different acquisition and reconstruction techniques and not due to
any underlying variability of the ROI itself, as would be the case for clinical images from
different patients.

4.3. Pattern Sensitivity

Ideally, the pixel values in a PET image reflect the nature of an underlying spatial
arrangement of a physiological process, and radiomics features should provide a genuine
characterization of this pattern. However, in addition to confounding image noise, it has
been demonstrated that by their inherent definition, the values of many radiomics features
are a surrogate of the volume over which they are calculated [29,30]. Orlhac et al. [30]
demonstrated that several texture features are highly correlated to metabolic volume
independent of tumor type; although for larger tumor volumes, metabolic volume and
texture become independent factors [31]. A similar conclusion was also reached in [6]
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where the volume dependency could even demonstrate very different behavior depending
on the feature. This suggests that the absolute values of the ICC are subject to the variability
arising from different volume sizes, as also shown in [9]. In our study, volume was not a
confounding factor, as the different pattern-ROIs over which the features were calculated
were identical in volume and shape. This allowed us to investigate the behavior of a feature
and feature agreement for different underlying physical patterns alone.

The results from Figure 6 demonstrate that higher feature agreement across different
PET scanners as measured by the ICC is associated with higher pattern sensitivity as
measured by the mean inter-ROI standard deviation of the feature values. This is, in
particular, the case for the harmonized dataset and for the three feature classes First Order,
GLCM, and GLDM. Hence, for these features the variability of its values that is introduced
by the different texture pattern is much larger than the variability that is introduced by the
different reconstruction algorithms and image noise. This is very desirable and provides a
selection of features that might be suitable for use in a predictive model. As an example,
entropy has sometimes been deemed a good candidate for predicting a clinical event, for
example, in reference [32]. The three entropy features “Entropy” (first order), “SumEntropy”
(GLCM) and “JointEntropy”, (GLCM), show excellent repeatability with ICC(1,1) larger
than 0.93 in our study. The ICC(2,1) improved significantly after harmonization for all three
features, as did the pattern sensitivity.

In general, however, it is very difficult to compare results between studies, even be-
tween phantom studies, as feature extraction algorithms and statistical analysis methods
are usually different. For example, Gallivanone et al. [8] used an in-house developed MAT-
LAB code and a coefficient-of-variation (COV) analysis to characterize feature agreement
between different reconstructions. The GLCM features Entropy and GLCM Homogeneity
(Inverse Difference) rank high, whereas in our study (Figure 4) GLCM SumEntropy ranks
high among GLCM features but GLCM Inverse Difference ranks low. In addition, the best
of the GLRLM features in [8], in terms of COV, were ShortRunEmphasis and LongRunEm-
phasis. Both of these features scored very low for us in Figure 4 even after harmonization.
One possible reason for these discrepancies is that all reconstructions in [8] were generated
on the same PET scanner, whereas the PET images in our study were reconstructed on
different PET scanners.

5. Conclusions

PET image noise and its variation between PET images directly influences the repro-
ducibility and repeatability of radiomics features. A simple harmonization method of the
(clinical) standard datasets based on minimizing the differences in CNR in the PET images
significantly increases feature agreement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography8020091/s1. Table S1: PET acquisition and recon-
struction settings for the standard dataset S10; Table S2: PET acquisition and reconstruction settings
for the harmonized dataset H10; Table S3: PET acquisition and reconstruction settings for the re-
peatability dataset; Table S4: Summary of Wilcoxon signed-rank test statistics; Table S5: Summary of
Wilcoxon signed-rank test statistics grouped by feature class; Table S6: ICC(1,1) values for all features;
Table S7: ICC(2,1) values for all features; Table S8: Summary of Wilcoxon signed-rank test statistics;
Table S9: Summary of Wilcoxon signed-rank test statistics grouped by feature class; Table S10: Results
of the Spearman rank correlation test.
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