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Abstract

Background: Fatigue and emotional distress rank high among self-reported unmet

needs in life after stroke. Transcranial direct current stimulation (tDCS) may have the

potential to alleviate these symptoms for some patients, but the acceptability and

effects for chronic stroke survivors need tobeexplored in randomized controlled trials.

Methods: Using a randomized sham-controlled parallel design, we evaluated whether

six sessions of 1 mA tDCS (anodal over F3, cathodal over O2) combined with comput-

erized cognitive training reduced self-reported symptoms of fatigue and depression.

Among the 74 chronic stroke patients enrolled at baseline, 54 patients completed the

intervention. Measures of fatigue and depression were collected at five time points

spanning a 2months period.

Results:While symptoms of fatigue and depressionwere reduced during the course of

the intervention, Bayesian analyses provided evidence for no added beneficial effect

of tDCS. Less severe baseline symptoms were associated with higher performance

improvement in select cognitive tasks, and study withdrawal was higher in patients
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with more fatigue and younger age. Time-resolved symptom analyses by a network

approach suggested higher centrality of fatigue items (except item 1 and 2) than

depression items.

Conclusion: The results reveal no add-on effect of tDCS on fatigue or depression but

support the notion of fatigue as a relevant clinical symptomwith possible implications

for treatment adherence and response.
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1 INTRODUCTION

Although recent years have offered considerable improvements in

acute stroke care and survival (Walsh et al., 2015), many stroke sur-

vivors experience persistent sequelae (Hankey et al., 2002). Described

as a “sense of exhaustion, lack of perceived energy or tiredness, dis-

tinct from sadness or weakness” (Leegaard, 1983), poststroke fatigue

(PSF) is among the most frequently reported (Walsh et al., 2015)

and least understood long-term consequences of stroke (De Doncker

et al., 2018). Fatigue has been shown to increase with time since

stroke (Cumming et al., 2018), and a survey of stroke survivors up to

5 years post stroke identified fatigue, emotional problems, and cog-

nitive impairments as the most burdening symptoms (Walsh et al.,

2015), indicating a need to target these symptoms in the chronic stroke

population.

Generally considered to be a multifactorial condition, PSF is

assumed to result from complex interactions between biological, psy-

chological, cognitive, social, and behavioral factors (Aarnes et al., 2020;

Chen et al., 2015; Choi-Kwon & Kim, 2011; Ponchel et al., 2015; Wu

et al., 2015). Thepathogenesis ofPSFhasnotbeenestablished (Nguyen

et al., 2019), but it is conceivable that individual factors contribute

differently during the various stages of recovery. While early fatigue

may be associatedwith biological factors such as stroke severity (Chen

& Marsh, 2018), lesion characteristics (Tang et al., 2014; Tang et al.,

2010), and inflammation (Becker, 2016), fatigue in the chronic phase

may bemore attributable to behavioral and psychological factors (Wu,

Mead, et al., 2015). Cognitive impairments (Passier et al., 2011), includ-

ing attentional deficits (Radman et al., 2012) and reduced processing

speed and impaired working memory (Pihlaja et al., 2014), have been

reported among PSF patients up to 10 years after stroke (Maaijwee

et al., 2015).

The clinical overlap between PSF and poststroke depression (PSD)

is substantial (Cumming et al., 2018)—fatigue is both a symptom and

a predictor of depression (Douven et al., 2017; van de Port et al.,

2007), and depressive symptoms in the acute or subacute phase

have been associated with increased risk of PSF at 1–1.5 years post

stroke (Passier et al., 2011; Snaphaan et al., 2011). While beneficial

effects of cognitive behavioral therapy and antidepressants have been

reported for PSD (Starkstein & Hayhow, 2019; Wang et al., 2018), a

Cochranemeta-analysis concluded that effective interventions for PSF

are lacking (Wu, Kutlubaev, et al., 2015), and more information about

novel treatments is needed. A recent study on minimally impaired

stroke patients reported reduction in fatigue after a single session

of anodal transcranial direct current stimulation (tDCS) (De Doncker

et al., 2021), a noninvasive brain stimulation technique using low-

amplitude direct currents to modulate cortical excitability. tDCS has

also been applied to treat PSD (Valiengo et al., 2016; Valiengo et al.,

2017), and associations between PSD and left dorsolateral prefrontal

cortex (DLPFC) connectivity or damage (Egorova et al., 2017; Gra-

jny et al., 2016) suggest that neuromodulative methods targeting this

region may be particularly effective (Egorova et al., 2017). In line with

this, the left DLPFC is a frequent target area for studies using anodal

tDCS aiming to alleviate major depressive disorder (Bennabi & Haf-

fen, 2018; Boggio et al., 2008), and tDCS applied to this area may thus

have indirect positive effects on fatigue due to its assumed antide-

pressant effects. Additionally, an increasing number of studies have

identified the DLPFC among the key regions associated with cognitive

fatigue andmotivation (Chong et al., 2017;Müller &Apps, 2019;Wylie

et al., 2020), suggesting the possibility of direct positive fatigue effects

from tDCS applied to this region as well. Yet, the evidence support-

ing beneficial effects of tDCS on PSD has been controversial (Bucur

& Papagno, 2018), and the mechanisms of potential fatigue-reducing

effects remain elusive (De Doncker et al., 2021). Preliminary positive

findings should thus be confirmed in larger and controlled studies.

Due to the assumed link between PSF and cognitive impairments,

particularly within the domains of attention and processing speed

(Johansson & Ronnback, 2014; Ulrichsen et al., 2020), cognitive reha-

bilitation was recently suggested as a potentially efficient treatment

for alleviating fatigue (Aarnes et al., 2020). While significant improve-

ments in fatigue after cognitive training have been reported in patients

with multiple sclerosis (MS) (De Giglio et al., 2015), other studies

revealed no significant effect on MS fatigue (Pérez-Martín et al.,

2017), and the feasibility of cognitive training for PSF has not been

evaluated in chronic stroke patients. Further complicating matters,

PSF and PSD may in itself impose considerable barriers to rehabil-

itation attendance and reduce the probability of positive outcomes

(Chen et al., 2015; Llorca et al., 2015; Michael, 2002). Investiga-

tions of attendance and attrition rates and training gain in relation

to fatigue may therefore provide important information for treatment

choices.
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F IGURE 1 Flow diagram of recruitment (left) and study timeline (right). Number of patients with complete FSS scores is provided in blue
circles

In sum, effective treatment options for PSF are lacking, but prelimi-

nary evidence suggests that tDCSmay have a potential to alleviate PSF

and PSD. In a trial evaluating the clinical utility of combining cognitive

training and tDCS to improve cognitive function post stroke (Kolskår

et al., 2020; Richard et al., 2020), we quantified the effect of real

stimulation versus sham on self-reported fatigue and depression using

Bayesian mixed-effects models. Based on prior literature suggesting

beneficial effects of tDCS on fatigue and depression in other condi-

tions, we hypothesized that patients receiving real stimulation would

display a larger reduction in symptoms compared to patients receiving

sham stimulation. Due to the high comorbidity and symptom overlap

between fatigue and depression, we examined the constituents of this

relationship in further detail using an exploratory network approach to

map symptom-level centrality and associations at baseline and across

time.

2 METHODS

2.1 Sample and study timeline

Figure 1 shows a schematic outline of the parallel group study time-

line and a flow diagram of recruitment (see Kolskår et al. [2020] for

a detailed description of overall study protocol). Stroke survivors in

the chronic phase (>6 months from stroke onset) were invited to par-

ticipate. All patients were previously admitted with acute stroke to

the Stroke Unit, Oslo University Hospital, or the Geriatric Depart-

ment, Diakonhjemmet Hospital. Exclusion criteria included severe

neurological, neurodevelopmental, or psychiatric conditions prior to

the stroke, MRI contraindications, and transient ischemic attack. All

patients suffered mild to moderate strokes (National Institute of

Health Stroke Scale [NIHSS; Meyer & Lyden, 2009] ≤7 at hospital

discharge), and mean time from stroke onset was 26 months. We

included patients with both ischemic and hemorrhagic strokes, but

in the current sample, all but one patient suffered ischemic stroke.

None of the included patients reported severe linguistic or visual

impairments.

The studywas approvedby theRegional Committee forMedical and

Health Research Ethics South-East Norway (2014/694, 2015/1282).

Participants provided written and informed consent prior to enroll-

ment. All participants received a compensation of 500NOK.

The majority (n = 14) of the 19 patients who withdrew from the

study did so prior to the training, while five withdrew during the

course of the intervention. None withdrew consent, therefore base-

line data are reported on both completing and withdrawn patients.

Threepatientswereexcludeddue tomedical conditionsoccurring after

inclusion, andonepatientwasexcludeddue toproblemswith fitting the

MRI coil.

2.2 Cognitive training

Computerized working memory training was done using Cogmed QM

(Cogmed Systems AB, Stockholm, Sweden). While there is a vast body

of theoretical frameworks accounting for working memory, it is gen-

erally conceptualized as a system allowing the temporary storage and

processing of information (Hitchcock & Westwell, 2017). Moreover,

across different theoretical frameworks, working memory capacity is

explicitly linked to attentional control (see, e.g., Engle, 2002; Engle

et al., 1999; Kane et al., 2001), and Cogmed (2022) claims that working

memory training improves sustained attention and cognitive control,

increasing the ability to resist distraction.With consideration to recent

work on fatigue, suggesting that PSF is associated with a deficit in

filtering of distractors (Kuppuswamy et al., 2022, Preprint), Cogmed

working memory training may have positive effects on fatigue through

strengthening attentional control.
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Details of implementation are described elsewhere (Kolskår et al.,

2020; Richard et al., 2020). Patients completed 17 training sessions

over 3–4 weeks, corresponding to approximately five weekly train-

ing sessions. Seven sessions were carried out at Oslo University

Hospital, as patients simultaneously received tDCS or sham stimula-

tion (see below) during six of these sessions. The remaining sessions

were carried out at home. The Cogmed protocol included 12 differ-

ent auditory–verbal and visual–spatial exercises, where each session

consisted of eight exercises. Level of difficulty adjusts according to ini-

tial individual performance, and, to allow for calibration, we did not

include the two first sessions for each task in the statistical analyses

used to estimate performance gain. Tasks completed less than three

times were also discarded. Training gain was calculated for the follow-

ing eight exercises: Cube, Digits, Grid, Hidden Objects, Rotation, Sort,

Twist, and 3D-cube.

2.3 tDCS protocol

The tDCSprotocol is described in detail byKolskår et al. (2020). Briefly,

an in-house MATLAB script was used to randomize participants into

either sham or active condition at study inclusion. A total of six tDCS

sessions were administered, two times per week, and with a minimum

of 48 h between each session. Active tDCS stimulation was adminis-

tered at 1mA, to minimize the risk of adverse effects. Each stimulation

lasted for 20 min (ramp-up time 120 s and fade-out time 30 s). The

sham stimulation was done by the fade-in, short stimulation, fade-out

approach (Ambrus et al., 2012), with ramp-up followed by 40 s of active

stimulation before fade-out in accordance with factory settings. Stim-

ulation was delivered a by direct current stimulator (neuroConn DC

stimulator plus, Germany), through 5 × 7 cm rubber pads covered with

high-conducting gel (Abralyt HiCl, Falk Minow Services Herrsching,

Germany). The anodal electrode was placed over F3 (left DLPFC) and

cathodal at O2 (right occipital/cerebellum in the 10–20 system).

2.4 Outcome measures

The present study reports on prespecified exploratory endpoints

regarding fatigue and depression in a trial evaluating the clinical utility

of combining cognitive training and tDCS to improve cognitive function

post stroke (Kolskår et al., 2020; Richard et al., 2020).

2.4.1 Fatigue and depression self-report measures

Subjective fatigue was measured by the self-report scale Fatigue

Severity Scale (FSS) (Krupp et al., 1989), where impact of fatigue on

different areas of daily life is rated from 1 to 7. FSS has demon-

strated acceptable psychometric properties (Whitehead, 2009) and is

frequently used to assess fatigue in neurological patient populations

(Cumming et al., 2016). FSS scores are usually reported asmean values

(lowest mean 1, highest mean 7), where higher scores indicate higher

fatigue impact. The cutoff for clinically significant fatigue applied in the

literature is either ≥4 (Nadarajah & Goh, 2015; Schepers et al., 2006)

or ≥5 (Kjeverud et al., 2020; Lerdal et al., 2005; Morsund et al., 2019;

Naess et al., 2012). A cutoff of ≥5 has been recommended to prevent

overestimation of cases, as a cutoff of ≥4 resulted in 42% of healthy

controls being identified as fatigued in a large (N = 1800) Norwegian

sample (Lerdal et al., 2005). However, because both ≥4 and ≥5 are

used in the literature, we here conduct analyses by both values for

transparency.

Symptomsof depressionwere assessedby thedepressionmoduleof

the Patient Health Questionnaire (PHQ-9) (Kroenke et al., 2001). PHQ

is a nine-item self-report scale, where items correspond to the criteria

of depressionas stated in theDiagnostic andStatisticalManual ofMen-

tal Disorders (DSM-IV) (American Psychiatric Association, 1994). The

respondent indicates degree of symptom load on a scale ranging from0

(not at all) to 3 (nearly every day), yielding a minimum total score of zero

and a maximum score of 27, with ≥10 reflecting moderate depression

(Kroenke et al., 2001).

Both fatigue impact and depression were assessed at five time

points across an 8-week period (see Figure 1 for timeline). The first

assessment was collected approximately 4 weeks before the second

assessment, and the four consecutive assessments were collected on

aweekly basis.

2.4.2 Supplementary cognitive measures at
baseline

To test for associations between FSS, PHQ, and cognition at base-

line, the following neuropsychological tests were included: Montreal

Cognitive Assessment (MoCA; Nasreddine et al., 2005) and the sub-

tests “Vocabulary” and “MatrixReasoning” fromWechslerAbbreviated

Scale of Intelligence, SecondEdition (WASI-II;Wechsler, 2011). In addi-

tion, the four-trial version of the Stroop Color Word Interference test

(CWIT) was applied to obtain a measure of cognitive speed, inhibition,

and interference (Delis et al., 2001). The California Verbal Learning

Test (CVLT-II; Delis, 2000) was used as a measure of episodic ver-

bal learning and memory. Here, we included the first trial and the

total number of recalled words across five trials. The Cognitive Fail-

ures Questionnaire (CFQ) (Broadbent et al., 1982) was included as a

subjectivemeasure of memory, perception, andmotor failures.

2.5 Statistical analyses

Statistical analyseswereperformedusingRversion4.0.3 (RCoreTeam,

2020).

2.5.1 Effects of tDCS and time on fatigue and
depression

Toassess effects of tDCSon fatigueanddepression, and toquantify evi-

dence in favor of the null and alternative hypothesis, we used Bayesian
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hypothesis testing.Mixed-effect Bayesian regressionmodelswere cre-

ated using the brms package (Bürkner, 2017) in the Stan computational

framework (http://mc-stan.org/). We estimated mixed models sepa-

rately for FSS andPHQ, using FSSorPHQasdependent variables. Time

(1–5), tDCS group (sham, active), tDCS group× time, age, and sex were

entered as fixed factors, and participant as random factor. The models

were run using four chains with 8000 iterations each, in which the first

4000 iterations were discarded as burn-in. Predictors were assigned

normal priors with means of 0 and standard deviation of 1. All vari-

ables were standardized prior to analysis. As a means of ensuring that

the inclusion of baseline time point 1 did not bias the results, we esti-

mated follow-up linearmixed-effectsmodelswith andwithout baseline

1 included.

2.5.2 Fatigue and cognitive training: Study
withdrawal and training gain

Baseline group differences between patients who completed the inter-

vention (n = 50) and patients who withdrew from the study (n = 19)

were first examined by independent samples t-tests. In a follow-up

analysis testing for specific effects of PSF (defined as mean ≥5/ ≥4 on

FSS [Lerdal et al., 2005]) on study adherence, we estimated a logistic

regression model with completing/withdrawing as outcome variable,

and PSF status, PHQ scores, age, and sex as predictors.

To quantify individual Cogmed training gain, we followed the

approach by Kolskår et al. (2020). Here, the effect of repeated train-

ing was calculated for each subtest by running linear models with task

performance as dependent variable and session number as predic-

tor variable for each participant, where the resulting beta-estimates

(slopes) reflect the change in performance across time/sessions. Mul-

tivariate outlier detection in terms of mean task performance and

beta estimates was done by the mvoutliers package in R, using the

aq.plot function (Filzmoser & Gschwandtner, 2018). Two of the sub-

tests were discarded from further analyses due to a high number of

outliers compared to the remaining tests (subtest “hidden objects” had

eight identified bivariate outliers, subtest “digits” had seven, while the

remaining subtests had zero or one).

We then tested for associations between fatigue and training gain

by estimating linear models for each subtest, applying the beta esti-

mate as dependent variable, and FSS score at TP1, age, and sex as

independent variables. To assess whether potential effects were spe-

cific for fatigue, we re-ran the same models with PHQ as predictor

variable instead of FSS.

2.5.3 Associations between FSS and baseline
measures of cognitive performance

To test for associations between fatigue, depression, and cognitive

functionatbaseline,weestimated linearmodelswith taskperformance

on neuropsychological tests as dependent variables, and baseline FSS

score as independent variable, adding age, sex, and WASI scores as

covariates in all models. In addition, we tested for an association

between FSS and subjectively reported cognitive function, by estimat-

ing the samemodelwith theCognitive FailuresQuestionnaire (CFQ) as

dependent variable.

2.5.4 FSS and PHQ associations across time

Stability of specific symptoms

To get an estimate of stability and change in individual symptoms

across time, we estimated the coefficient of variation (CV) for each FSS

and PHQ item across time point 1–5, yielding one CV value per item

for each person. As FSS and PHQ have different scale properties, the

CV values between them cannot be compared directly, but CV esti-

mates provide relevant information about relative stability or change

in individual symptomswithin each scale.

2.5.5 Network estimations

We used the qgraph package in R (Epskamp et al., 2012) to estimate

networks based on Spearman’s rank order correlations matrices. We

estimated two baseline networks (n = 74), one with sum FSS scores

and individual PHQ items to investigate associations between overall

fatigue severity and specific depressive symptoms, and one with indi-

vidual FSS andPHQ items, to visualize item-level associations. The first

(sum FSS) network was estimated with regularized partial Spearman

correlations via EBICglasso (tuning parameter set to 0.15), while the

second (all-item network) was based on full correlations due to the

high numbers of parameters relative to sample size and associated sta-

bility issues caused by partial correlations. The latter procedure was

repeated to estimate five all-items temporal networkswith completing

patients only, and plotted according to principal component analysis

(PCA) dimension loadings, allowing for comparison of network struc-

ture across time. PHQ item number 9, suicidal ideation, was excluded

fromnetworkestimationsdue toanextremelypositively skeweddistri-

bution of scores (mean= 0.08).We then estimated one individual-item

network based on full correlations for each time point (time point 1–

5) to investigate item centrality across time. Here, only completing

patients (n= 50) were included.

2.5.6 Node centrality and stability

The relative importance of a node (item) in the network can be evalu-

ated by various centrality measures.We estimated strength centrality,

which is a stable (Fried et al., 2016) and commonly examined centrality

measure in psychological networks (Malgaroli et al., 2021), represent-

ing the sum of all absolute edge weights directly connected to a given

node (Bringmann et al., 2019). To evaluate the relative importance

of symptoms across time and networks, we followed the approach

by Malgaroli et al. (2021), estimating one network per time point

(1–5), and ranked node strength centrality for each time point, before

http://mc-stan.org/
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F IGURE 2 Estimated evidence ratio (left) and posterior distributions of predictors (right). Log(BF)> 0 represent evidence in favor of the null
hypothesis and log(BF)< 0 represent evidence in favor of the alternative hypothesis. Posterior distributions of predictors (right) for the fatigue
model (red) and depression (green) model

calculatingmean across-time centrality ranking for each item. To inves-

tigate whether item centrality was associated with symptom severity,

we calculated Spearman correlations between mean ranked item

centrality and mean item scores. Stability was assessed using case-

dropping bootstrap (nBoots= 1000) by the bootnet package (Epskamp

et al., 2018), where network models are estimated on subsets of the

data. The correlation stability coefficient (CS) represents themaximum

proportion of cases in the sample that can be dropped, maintaining a

95% probability that the correlation between the original centrality

scores and the subsets’ centrality scores is minimum0.70. A commonly

applied rule of thumb is that the CV coefficient should not be lower

than 0.25, while a coefficient above 0.50 indicates a relatively stable

network (Epskamp et al., 2018). Edge accuracy and robustness were

tested by bootstrapped estimations of edge confidence intervals and

difference test for edges (Epskamp et al., 2018).

3 RESULTS

3.1 Effect of tDCS and time on fatigue and
depression

Figure 2 (left) shows log-transformed Bayes Factor evidence plot-

ted for the null hypothesis (intervention has no effect on FSS and/or

PHQ) and alternative hypothesis (intervention has effect on FSS

and/or PHQ) for all included predictors in the fatigue and depres-

sion models. Figure 2 (right) shows the posterior distributions of the

coefficients of the standardized predictors for the fatigue model and

depression model. Both models provided strong evidence (BF01 > 10,

log-transformedBF01 >2) for thenull hypothesis of no tDCS treatment

effect (no time by group interaction effect on fatigue or depression)

relative to the alternative hypothesis. Results also provided strong evi-

dence for decreasing symptoms of depression over time (BF01 = 0.05,

log-transformed BF01 < −2), and anecdotal to moderate evidence for

reduced fatigue over time (BF01 = 0.36, log-transformed BF01 = −1).

Follow-up linear mixed-effects models estimated without baseline 1

included revealed similar results regarding both the effect of tDCS and

main effects of time.

Figure 3 shows individual FSS and PHQ scores plotted by group for

each time point (1–5). FSSmean score for completing patients (N= 50)

at baselinewas 3.5 (SD= 1.5), and 3.0 at TP5 (SD= 1.3). Corresponding

sum PHQ values were 4.3 at baseline (SD = 4.2) and 3.5 (SD = 3.3) at

TP5.

Follow-up analyses revealed no evidence for a correlation

between baseline FSS scores and individual slopes (BF01 = 1.33,

log-transformed BF01= 0.12), but provided strong evidence for a cor-

relation between baseline PHQ and individual slopes (BF01 = 0.001,

log-transformed BF01< −2), suggesting that higher baseline PHQ

scores were associated with a larger reduction in PHQ symptoms over

time

3.2 Fatigue and computerized cognitive training:
Study withdrawal and training gain

Descriptive information on patients who completed the study and

patients who withdrew during the study is reported in Table 1.

Group differences in continuous variables were tested by independent
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F IGURE 3 Individual FSS and PHQ scores across time. Scores are grouped by experimental condition (active vs. sham)

TABLE 1 Group differences betweenwithdrawn and completing patients

Withdrawn (n= 19) Completing (n= 54)

Differencewithdrawn and completing

patients

Mean (SD) Mean (SD) t(p) BF10

Age 60.9 (17.1) 69.1 (7.3) 2.05 (.051) 7.7

Sex (χ2) 10M/9 F 40M/14F 2.99 (.083)

Education 14.3 (3.9) 14 (3.7) 0.38 (.702) 0.30

NIHSS 1.3 (1.6) 1.3 (1.5) 0.04 (.96) 0.28

Months since stroke 29 (7.7) 25 (9.1) −1.70 (.093) 0.70

Lesion volumea 9239 (15,459) 5978 (9616) −0.79 (.435) 0.30

FSS (TP1) 4.6 (1.5) 3.5 (1.5) −2.41 (.022)* 5.86

PHQ (TP1) 5.9 (4.2) 4.3 (4.6) −1.25 (.190) 0.69

GAD 3.2 (2.7) 2.54 (3.5) −0.74 (.461) 0.35

MoCA 24.7 (4.0) 25.9 (2.7) 1.13 (.268) 0.59

IQ 110 (16.5) 110 (16.9) 0.05 (.954) 0.30

aOne (completing) patient constituted an extreme outlier in terms stroke volume (∼8 SDs above the mean) and was removed from the group difference test

of lesion volume.

*Signifies p-values< .05. Bold values signify moderate (BF10 > 3) evidence for group differences.

samples t-tests, and we reported both t(p) values and Bayes Factors10,

while group differences in sex were tested by Chi-square test of

independence.

Independent samples t-tests revealed significantly higher fatigue

and lower age inpatientswhowithdrew fromthe study, than inpatients

who completed the intervention. Follow-up logistic regression analy-

ses including fatigue status (mean score≥5 or≥4 on FSS), PHQ scores,

age, and sex as predictors for completing/withdrawing from the study

mirrored results from the t-tests. Patients with severe fatigue (mean

score ≥5 on FSS) were considerably more likely to withdraw from the

study compared to patients without fatigue (odds ratio [OR] = 1.83,

95%confidence interval [CI]: 0.27 to3.52, p= .024), butwhen including

patients with moderate fatigue (mean score ≥4 on FSS), only age was a

significant predictor for withdrawal (OR= 0.05, 95%CI:−0.00 to 0.11,

p= .034).

Linear regressionmodels revealeda significant, negative association

between FSS andCogmed beta slopes in three of the six included train-

ing tasks (3D Cube: b=−0.01, t(48)=−2.87, p= .006 [FDR-corrected

p = .021]; Grid: b = −0.01, t(48) = −2.81, p = .007 [FDR-corrected

p = .021]; and Sort: b = −0.01, t(48) = −2.09, p = .042 [FDR-

correctedp= .094]).However, the effectswere smallwith considerable

variation around the regression line, reflected in adjusted R2 values of

.07 and .09. Of note, the associations between FSS and Cogmed beta

slopes were negative in all models, but only reached significance for

three out of six training tasks. The analyses did not provide evidence

for any association between training gain and age, sex, or IQ. For illus-

tration purposes, Cogmed slopes are plotted against FSS and PHQ in

Figure S1. Results fromregressionmodels estimatedwithPHQas inde-

pendent variable instead of FSS mirrored the fatigue models, with a

significant negative association betweenPHQand training slopes iden-

tified in two of the same tasks (3D Cube: b = −0.004, t(48) = −3.92,

p < .001 [FDR-corrected p = .003]; Grid: b = –0.001, t(48) = −3.21,

p = .002 [FDR-corrected p = .014]). Depression models explained

slightly more variance, with R2 values of .18 and .12, respectively.
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F IGURE 4 Individual mean scores of FSS (x-axis) and PHQ sum
scores (y-axis) plotted for all patients (n= 74). Vertical lines (gray and
orange) mark commonly used cutoff values for clinical fatigue, while
horizontal red linemarks cutoff value for depression

There were no evidence supporting an association between

FSS scores and performance on baseline neuropsychological tests

(Table S2). However, FSS was significantly associated with subjectively

reported cognitive failures.

3.3 FSS and PHQ associations by baseline and
across-time networks

Figure 4 depicts individual mean FSS scores at baseline plotted against

sum PHQ. Bayes factor estimations for linear correlations provided

strong evidence for a positive association between the measures

(BF10 > 150, mean posterior= 0.68, 97.5%CI= [0.55–0.79]).

All patients scoring above clinical cutoff for moderate depression

on PHQ also experienced moderate or severe fatigue. The association

was not reciprocal, in that several patients reported high FSS scores,

without displaying clinical levels of depression. Table S1 shows the indi-

vidual items in FSS and PHQ, along with the mean aggregated scores

(TP1–TP5), standard deviations, and CV values, indicating degree of

variability across time points.

Figure 5 shows baseline networks estimated with FSS sum scores

and individual PHQ items (left) and all FSS and PHQ items (right). The

sum FSS graph indicated that PHQ items reflecting tiredness, lack of

energy, and trouble concentrating showed strongest associations with

overall fatigue. However, only one edge “sum FSS – PHQ 4 (tired-

ness/lack of energy)” was identified as significantly different from the

majority of other network edges by bootstrapped difference test for

edge-weights (Figure S2). Item strength centrality (CS-coefficient) for

network 1 (sum FSS and PHQ scores) at baseline was estimated to be

.28 by case-dropping bootstrap sampling, meaning that up to 28% of

the sample could be dropped while retaining a correlation of .70 with

the original sample strength centrality (95% CI). Corresponding CS-

coefficient for baseline network based on full correlations between all

items (right) was estimated to be .51. Bootstrapped difference test for

edge-weights revealed thatmost edgeswere not significantly different

from the majority of other edges (Figure S3), with the strongest edge

being FSS 8 (“Fatigue is among most disabling symptoms”) and FSS 9

(“Fatigue interferes with my work, family, or social life”). Bootstrapped

CIs (Figure S4) showed a substantial overlap between edge-weights,

indicating that order of edges should be interpreted with caution

(Epskamp et al., 2018).

Temporal networks basedon full correlations are shown inFigure S5

and corresponding plots for bootstrapped difference test for node

strength in Figure S6. Nodes are placed according to loadings on

unrotated PCA dimensions. While this approach should be consid-

ered exploratory due to the high number of items compared to sample

size, the temporal network graphs show that associations between

symptoms/network structure vary across times of measurement, and

suggest that fatigue and depression items tend to cluster according to

their respective scales.

Figure 6 shows estimated standardized strength centrality (left)

and ranked centrality (right) for individual items at each time of

measurement, suggesting reasonable consistency in strength central-

ity across time for most items, except PHQ item 7 (concentration

problems), 5 (appetite), 4 (tired/little energy), and 6 (feeling bad about

yourself). Evidence for an association between overall symptom sever-

ity (calculated as mean item score across time 1–5) and overall item

centrality (estimated as mean ranked centrality across time) was mod-

erate (BF10 = 3.1, mean posterior=−0.40, 97.5%CI= [−0.71 to 0.03])

withwide credible intervals, indicating that higher symptom severity is

associated with increased symptom centrality, but that the strength of

the relationship is uncertain.

4 DISCUSSION

In a sample of chronic stroke patients, we tested the add-on effect

of tDCS combined with computerized cognitive training on fatigue

and depressive symptoms. While symptoms of fatigue and depression

decreased over the course of the intervention, Bayesian analyses pro-

vided strong evidence supporting no added beneficial effect of tDCS

on fatigue or depression severity. To our knowledge, no prior studies

have examined longitudinal effects of tDCS on PSF in a randomized

controlled trial, although a recent study reported reduced FSS scores

in stroke patients after a single session of anodal tDCS applied bilat-

erally to the primary motor cortex (De Doncker et al., 2021). Direct

comparison between studies is complicated due to differences in pro-

tocols, regarding both electrode montage and location (both in terms

of the cathode and anode), stimulation frequency, number of sessions,

and current amperage. There might be greater treatment benefit with

higher number of sessions and increased stimulation intensity (Charvet

et al., 2018). Although comprehensive evidence for a linear rela-

tionship between intensity and response is still lacking (Esmaeilpour

et al., 2018), we cannot rule out the possibility that we would have

observed stronger effects of treatments using a higher stimulation

intensity. Moreover, tDCS treatment response may interact with
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F IGURE 5 Associations between baseline FSS and PHQ. Network visualization of Spearman partial correlations with EBICglasso
regularization (tuning parameter= 0.15), between FSS sum score and PHQ items for all patients (n= 74) at baseline (left). Network visualization of
full Spearman correlations between all FSS and PHQ items at baseline (right). Green edges signify positive correlations, while red edges (none
present) represent negative correlations (Epskamp et al., 2012). The thickness of the lines indicates the strength of the association

individual characteristics such as time since stroke onset, lesion loca-

tion, or lesion size. For example, while Saiote et al. (2014) found no

group effects of tDCS on subjective fatigue in patients with MS, a cor-

relation was reported between lesion load in left frontal cortex and

treatment response. Future well-powered studies including patients

sampled from a wide severity spectrum may be able to discern asso-

ciations between treatment response and clinical stroke and lesion

characteristics.

The absence of tDCS effects may also be related to the cogni-

tive training itself. fMRI studies have reported that fatigued patients

display increased activation (Kohl et al., 2009) or impaired deactiva-

tion (Berginström et al., 2018) while performing cognitive tasks. Such

aberrant network activation has been suggested to reflect subopti-

mal processing efficiency or increased cerebral “effort,” which in turn

might manifest as subjective fatigue. Following this line of interpreta-

tion, the cognitive trainingmay itself have evoked sensations of fatigue,

and thus counteracted the effects of tDCS. On a related note, tDCS-

induced plasticity is dependent on the state (passive vs. performing

cognitive/motor tasks) of the subject (Antal et al., 2007), implying that

we cannot establishwhether tDCS administeredwithout simultaneous

cognitive training could generate different results.

Nonrandom attrition is a frequent challenge in clinical intervention

studies. Our attrition rate of approximately 26% insinuates that the

demands of study participation were unacceptable to a fair proportion

of the included patients. On average, the patients who completed the

intervention were older and reported lower fatigue scores at baseline

compared to the patients who withdrew. We found no group differ-

ences in baseline performance on neuropsychological tests, possibly

indicating that fatigue constitutes a larger barrier to treatment adher-

ence than cognitive impairments in mildly impaired stroke patients.

Importantly, most patients withdrew prior to, and not during the cog-

nitive training, implying that there is no strong basis to infer that the

intervention regime was intolerable to patients with fatigue. Rather,

one may speculate that patients with high fatigue considered the

scope of the intervention in terms of both testing and training to be

too demanding, and thus chose to withdraw at an early stage. More-

over, the lower age in patients who withdrew from the study may be

explained in part by presumably higher family and work obligations

among the younger population, conflicting with the time and labor

intensity of the intervention.

While the current results provided no evidence of an association

between symptoms of fatigue or depression and baseline neuropsy-

chological test performance, both FSS and PHQ were negatively

associated with training gain in two and three of six included sub-

tests, respectively. Although effects were small, this mirrors results

from our previous findings of no baseline cognitive associations with

PSF, but evidence of declining performance during a task requiring

sustained mental effort (Ulrichsen et al., 2020). While Ulrichsen et al.

(2020) examined fatigue effects during a 20-min attentional response

time task, we here extend this finding to the beneficial effects of an

intervention spanning several weeks. In contrast to our previous study,

the current negative association with training gain was not specific to

fatigue, as similar, slightly stronger, association was found for depres-

sion. This discrepancy may be due to the difference in performance

measures, where the current study targeted change in performance

in a range of complex tests over several weeks, reflecting learning

rate/gain from repeated practice, while Ulrichsen et al. (2020) mea-

sured change in response times in a simple, attentional task at a single

session, thus correspondingmore closely to the concept of fatiguability

(Kluger et al., 2013).

The time-resolved network analyses suggested overall higher

strength centrality of fatigue items (except item 1 and 2) than

depression items. The central role of fatigue echoes a recent net-

work meta-analysis on depressive symptoms, identifying fatigue as

the symptom displaying highest strength centrality across studies

(Malgaroli et al., 2021). While the design of the current study
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F IGURE 6 Item strength centrality across time points. Standardized strength node centrality of the 17 FSS/PHQ items across five time points
(left), and heatmap table (right) showing the ranked node strength centrality of the five networks, estimated at time point 1–5. Each node is ranked
in decreasing order, from 1 (highest centrality) to 17 (lowest centrality). FSS item number 9 (“Fatigue interferes withmywork, family, or social life”)
demonstrated the highest mean ranked strength centrality across time, followed by FSS item 3 (“I am easily fatigued”)

does not allow for causal inference, it has been speculated that

fatigue exacerbates depression after stroke (Ormstad & Eilertsen,

2015), suggesting that the risk of depression can be reduced with

adequate management of fatigue. Following this line of interpretation,

the finding that FSS item number 9 (“fatigue interferes with my work,

family, or social life”) displayed the highest strength centrality while

simultaneously being among the most stable FSS items across time

may indicate that fatigue inhibiting social and professional obligations

is particularly stressful and predisposes for worsening of respective

symptoms. Yet, this hypothesis is based on cross-sectional analy-

ses, and its relevance should be tested in future longitudinal studies

disentangling the causal relationship between individual symptoms.

Of note, the two FSS items displaying lowest ranked node strength

centrality at baseline and across time were item 1 (“my motivation is

lowerwhen I am fatigued”) and item2 (“exercise brings onmy fatigue”).

These specific items further demonstrated the lowest (item 1) and

highest (item 2) CV values across time, compared to other FSS items.

This accords with a previous report of poor psychometric properties

for item 1 and 2 (Lerdal et al., 2005) and improved potential to detect

fatigue changes across time after removal of these items (Lerdal &

Kottorp, 2011).

The results should be interpreted considering several limitations.

First, the patients suffered from relatively mild strokes, as reflected

in the low NIHSS scores, possibly compromising generalizability of

results to more severe patient samples. Also, although both fatigue

and depressive complaints were comparable to previous chronic phase

stroke studies (Cumming et al., 2018; Dajpratham et al., 2020; Valko

et al., 2008), and a substantial proportion reported symptoms above

clinical thresholds, we cannot rule out that we would have observed

stronger effects of treatment in a sample with higher symptom load.

Second, fatigue was measured by FSS, which provides a rather coarse

measure of a multifaceted phenomenon. While FSS is a widely applied

and validated measure, it is less sensitive to specific aspects of

fatigue, for example, mental fatigue. It is thus conceivable that a more
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detailed measure enabling differentiation between fatigue subtypes

could reveal effects or associations not detected by FSS. Third, as the

final assessment of fatigue and depression was collected shortly after

the last tDCS stimulation, the current study does not capture poten-

tial long-term effects of stimulation, as identified in previous studies

(Ayache et al., 2017; Li et al., 2019). Future studies should aim to

evaluate long-term effects in addition to immediate response.

Lastly, due to the lack of control group for the cognitive training,

we cannot establish whether the observed reduction in fatigue and

depressive symptoms was caused by the training or by other unknown

factors such as anticipation, positive effects of interacting with the

research staff, or statistical phenomena such as regression to themean.

In conclusion, the current study investigated whether tDCS com-

bined with computerized cognitive training alleviated symptoms of

fatigue and depression in a sample of chronic phase stroke patients.

Compared to sham stimulation, Bayesian analyses provided strong evi-

dence of no additional effect of tDCS. Follow-up analyses of attrition

rate, individual differences in training gain, and item-level network

analyses of fatigue and depression scales support the notion of fatigue

as a central clinical symptom, with possible implications for treatment

adherence and response.
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