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Abstract: Lager beer fermentations rely on specific polyploid hybrids between Saccharomyces
cerevisiae and Saccharomyces eubayanus falling into the two groups of S. carlsbergensis/Saaz-type and
S. pastorianus/Frohberg-type. These strains provide a terroir to lager beer as they have long traditional
associations and local selection histories with specific breweries. Lager yeasts share, based on their
common origin, several phenotypes. One of them is low transformability, hampering the gene function
analyses required for proof-of-concept strain improvements. PCR-based gene targeting is a standard
tool for manipulating S. cerevisiae and other ascomycetes. However, low transformability paired with
the low efficiency of homologous recombination practically disable targeted gene function analyses
in lager yeast strains. For genetic manipulations in lager yeasts, we employed a yeast transformation
protocol based on lithium-acetate/PEG incubation combined with electroporation. We first introduced
freely replicating CEN/ARS plasmids carrying ScRAD51 driven by a strong heterologous promoter
into lager yeast. RAD51 overexpression in the Weihenstephan 34/70 lager yeast was necessary and
sufficient in our hands for gene targeting using short-flanking homology regions of 50 bp added to
a selection marker by PCR. We successfully targeted two independent loci, ScADE2/YOR128C and
ScHSP104/YLL026W, and confirmed correct integration by diagnostic PCR. With these modifications,
genetic alterations of lager yeasts can be achieved efficiently and the RAD51-containing episomal
plasmid can be removed after successful strain construction.
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1. Introduction

Lager beer is the most popular alcoholic beverage worldwide. It is distinguished from
top-fermented ale beers by the use of dedicated bottom fermenting lager yeasts. Pure culture
lager yeasts were introduced in the late 19th century and the first lager yeast strain became known as
Saccharomyces carlsbergensis [1,2]. Lager yeasts are particularly suited for cold fermentations below
15 ◦C, providing a specific and clean taste [3]. Lager yeast strains are hybrids of two Saccharomyces
species, namely S. cerevisiae and S. eubayanus [4–8]. The S. cerevisiae parent is related to ale yeasts
while the S. eubayanus parent has recently been isolated from South America and Asia [9,10]. The low
temperature fermentation capabilities of lager yeast hybrids may have originated from the parental
S. eubayanus mitochondrial DNA that is invariably present in today’s lager yeasts [11].

Genetic manipulations in lager yeast are hampered by the allopolyploid nature of these hybrids
but also by their low transformation and homologous recombination (HR) efficiency [12]. This is
demonstrated by the very few reports on targeted gene alterations in lager yeast [13–15]. These
shortcomings of lager yeasts are in sharp contrast to the high efficiency and ease with which S. cerevisiae
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can be manipulated [16]. A large array of modules for PCR-based gene targeting have been developed
for S. cerevisiae and the gene deletion collection was one of its outputs that spurred large scale
functional and synthetic genetic array analyses [17–22]. PCR-based gene targeting tools were also
developed for other ascomycetous fungi with efficient homologous recombination machineries,
including Ashbya gossypii, Candida albicans and Schizosaccharomyces pombe [23–29].

Deletion of Ku70 or Ku80 of the non-homologous end joining (NHEJ) pathway has been shown to be
a very useful tool to improve gene targeting in a large variety of fungi, including e.g., Kluyveromyces lactis
and Yarrowia lipolytica [30–32]. The Ku70 deletion approach has been particularly successful in
filamentous ascomycetes in which non-homologous end joining is otherwise predominant, e.g.,
in Neurospora crassa or Zymoseptoria tritici [33,34]. However, in Cryptococcus neoformans it was found
that deletion of Ku70 also alters virulence, which then requires sexual crosses to reinstate wildtype
Ku70 in a mutant background [35].

An alternative to impairing NHEJ is improving HR efficiency. Overexpression of RAD51,
coding for a protein involved in the recombinational repair of DNA-double strand breaks, in S. cerevisiae
enhances gene repair, a feature conserved in human cells that can also be achieved by using RecA
from Escherichia coli [36–38]. We thought to employ the apparently highly conserved nature of
HR improvement upon RAD51 overexpression in lager yeast. Here we show that plasmid-based
overexpression of ScRAD51 under the control of a strong heterologous promoter, allows for simplified
targeted gene function analyses in lager yeast. This genetic improvement of lager yeast transformation
was combined with a lithium acetate/electroporation transformation protocol similar as has previously
been described for S. cerevisiae and S. pombe [39,40]. Together, these improvements should aid
proof-of-concept analyses in lager yeasts prior to embarking on laborious mutagenesis and selection
schemes for strains not genetically modified (non-GM) used in the production of fermented beverages.
Additionally, this provides a tool to investigate hybrid biology at the molecular level.

2. Material and Methods

2.1. Strains and Culture Conditions

Yeast strains, used and generated (see Table 1), were grown in YPD (1% yeast extract, 2% peptone,
2% glucose) at 30 ◦C. Solid media were prepared by adding 2% agar and YPD plates were supplemented
with either hygromycin or G418/geneticin. For lager yeasts the antibiotic concentrations used were
100 µg/mL, while S. cerevisiae lab strains were selected at 200 µg/mL final concentration. Minimal
media lacking leucine contained 6.7 g/L yeast nitrogen base with NH4SO4 and without amino acids
and 0.69 g/L completed synthetic medium leucine drop-out mixture. Plasmids were propagated
in Escherichia coli DH5alpha in 2xYT (1.6 % tryptone, 1 % yeast extract, 0.5 % NaCl) containing
100 µg/mL ampicillin.

Table 1. Strains used in this study.

Strain Number Feature/Genotype Source

B003 Saccharomyces cerevisiae BY4741 MATa
his3∆1; leu2∆0; met15∆0; ura3∆0 Euroscarf

B237 Weihenstephan WS34/70 lager yeast Lab collection
B256 WS34/70; pRAD51 (HYG3, CEN6/ARSH4) This study
B257 WS34/70; pHYG3 (CEN6/ARSH4) This study
G001 WS34/70; pRAD51; ade2::YES1 This study
G002 WS34/70; pRAD51; hsp104::YES1 This study

2.2. Plasmid Design and Constructions

The plasmids used in this study are listed in Table 2. The primers required for plasmid constructions
or for PCR-based gene targeting are listed in Table 3. Plasmid DNAs were amplified in E. coli and
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prepared using a Plasmid Midi DNA Purification Kit (Genaxxon, Ulm, Germany). PCR fragments
were cloned into pGEM (Promega, Madison, USA). The ScRAD51/YER095W open reading frame was
amplified from BY4741 genomic DNA using primers 260 and 261 and the Arthroascus (=Saccharomycopsis)
schoenii TEF1 promoter was amplified from A. schoenii genomic DNA using primers 106 and 107,
and both were cloned into pGEM. To place LacZ under the control of the AsTEF1-promoter, AsTEF1p
was amplified form pGEM-AsTEF1p (E026) with primers 108/109, which added 45 bp of flanking
homology region to E025-pRS417-AgTEFp-LacZ (here LacZ is under the control of the Ashbya gossypii
TEF-promoter). The AgTEF-promoter was removed from E025 by restriction digestion with KpnI/XhoI,
and the vector and AsTEF1p were cotransformed into yeast to combine them via in vivo recombination,
yielding plasmid E065. All restriction enzymes were obtained from Thermo Fisher (Asse, Belgium).
All primers were obtained from Sigma Aldrich (Overijse, Belgium).

Table 2. Plasmids used in this study.

Strain Number Feature/Genotype Source

E008 pRS415 [41]
E025 pRS417-AgTEF1p-LacZ-GEN3 [42]
E026 pGEM-AsTEF1p This study
E054 pUC57-HYG3 GenScript
E065 pRS417-AsTEF1p-LacZ This study
E066 pYES1 This study
E068 pYES2 This study
E088 pGEM-YES1 This study
E120 pGEM-ScRAD51 This study
E150 pRS-AsTEF1p-ScRAD51-HYG3-GEN3 This study
E160 pRS-AsoTEF1p-ScRAD51-HYG3-LEU2 This study

Table 3. Primers used in this study.

Primer Number Primer Name Sequence 5′→3′ *

106 5′-AsTEF1p GTCCAGAATAACATCAAATC
107 3′-AsTEF1p CTATAAAAAATGTTAGTATGGAG

108 5′-AsTEFp-pRS CGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTG
CTCGAGTCCAGAATAACATCAAATC

109 3′-AsTEFp-lacZ CAATCTTTGGATCGTTTAAATAAGTTTGAATTTTTTCAGTCATGTTC
TATAAAAAATGTTAGTATGGAG

226 P3-pRS415-AsTEF1p
TGTAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATA

GGAAGCTTCGTACGCTGCAGGTCGGATCCCCCGGGGGCGCGCCGT
CCAGAATAACATCAAATC

227 P4-AsTEF1p-kanR GTTGGAGTTCAAACGTGGTCTGGAAACGTGAGTCTTTTCCTTACCC
TATAAAAAATGTTAGTATGGAG

228 P5-kan-ORF GGTAAGGAAAAGACTCACGTTTCCA

229 P6-kanR-pRS415 GGAAACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACCCT
TCTGATATCATCGATGAATTCGAGCTCGTTTAAACATTGGTAATAG

230 P7-5′-HYG3 CTGACTTTTGTCTTGTTATGGACTCCATACTAACATTTTTTATAGAA
AAAACCAGAATTGACTGCTACTTC

231 P8-3′-HYG3 CTGATATCATCGATGAATTCGAGCTCGTTTAAACATTGGTAATAGG
ACCACCTTTGATTGTAAATAG

253 5-HYG3+AD GGCGCGCCAGATCTAGCCTCCTCAGAGAAAATTGCACAAAAAAA
AGGAAGCTTCGTACGCTGCAGGTC

254 3-HYG3+AD TTACGCCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGC
TGACCACCTTTGATTGTAAATAG

258 5-ScRAD51+AD CTGACTTTTGTCTTGTTATGGACTCCATACTAACATTTTTTATAGTC
TCAAGTTCAAGAACAACATATATCAG

259 3-ScRAD51+AD CTTTTTTTTGTGCAATTTTCTCTGAGGAGGCTAGATCTGGCGCGCCG
AAAAATACATATATTTCATGGGTGACAG

260 5-ScRAD51 TCTCAAGTTCAAGAACAACATATATCAG
261 3-ScRAD51 GAAAAATACATATATTTCATGGGTGACAG

344 S1-LEU2 GGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAG
TAAAGTGCAATTCTTTTTCC

345 S2-LEU2 CTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCG
GTCGAGGAGAACTTC
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Table 3. Cont.

Primer Number Primer Name Sequence 5′→3′ *

355 G2-YES1 GAATGAATCTACTGGTTTGG
356 G3-YES1 GTGTCGGTATCGCAGAC

369 S1-ADE2 CCTACTATAACATTCAAGAAAAACAAGAAAACCGGACAAAACAA
TCAAGTGTCCAGAATAACATCAAATC

371 S2-ADE2 TATATCATTTTATATTATTTGCTGTGCAAGTATATCAATAAACTTAT
ATATAATAAATTATTTTTATTGTTG

373 G1-ADE2 GACTCTTGTTGCAGGGCT
389 G4-ADE2 GTGATGCATTGAGCCGCC

390 S1-HSP104 TATATTACTGATTCTTGTTCGAAAGTTTTTAAAAATCACACTATATT
AAAGTCCAGAATAACATCAAATC

391 S2-HSP104 AACAAAGAAAAAAGAAATCAACTACACGTACCATAAAATATACA
GAATATTAATAAATTATTTTTATTGTTG

392 G1-HSP104 CCCGTATTCTAATAATGGACC
393 G4-HSP104 CAAACTTATGCAACCTGCCAG

* Underlined sequences correspond to restriction sites.

E150/pRAD51 (GEN3) was constructed by in vivo recombination of E065 vector backbone with
fragments carrying ScRAD51-ORF and HYG3 marker. To this end, E065 was linearized by digesting
with EcoRV/SacI, which removed most of the LacZ-ORF, and then the band was gel purified. Flanking
adaptor regions, to guide in vivo recombination, were added to ScRAD51-ORF and HYG3 marker
fragments using primers 258/259 and 253/254, respectively. Then BY4741 was transformed with the
two PCR products and the cut vector. In order to use a G418 resistance marker for PCR-based gene
targeting in lager yeast, the GEN3 marker in E150 was replaced by LEU2 in a PCR-based gene targeting
approach using BY4741 as a host. To this end, ScLEU2 was amplified from pRS415 with primer 344/345
by PCR and used for transformation, generating E160.

Novel synthetic marker genes YES1 and YES2 were also constructed using in vivo recombination in
S. cerevisiae using plasmid pRS415 as the vector backbone. YES1 and YES2 contain the AsTEF1-promoter
that controls kanamycin or hygromycin resistance gene-ORFs, respectively. For construction, pRS415
was linearized with SmaI, the AsTEF1p was amplified from E026 using primers 226/227, the kanR-ORF
was amplified with primers 228/229 and the hygR-ORF with primers 230/231 to add suitable adaptors
for homologous recombination. Vector, promoter and resistance gene ORFs were then cotransformed
in S. cerevisiae and the resulting transformants were selected on G418 or hygromycin, respectively.
All plasmids obtained by in vivo recombination in S. cerevisiae were verified and shuttled into E. coli for
propagation. A. schoenii promoters were used as heterologous promoters in lager yeast and S. cerevisiae.

HYG3 is a synthetic selectable marker that consists of the 694 bp A. schoenii PGK1 promoter,
the 1026 bp hygromycin resistance gene ORF and the Candida albicans URA3 terminator, which was
synthesized by GenScript (GenScript, Piscataway, NJ, USA). Promoter sequences were derived from
the A. schoenii CBS 7425 genome, which can be accessed via GenBank under accession JNFU00000000
CBS 7425 [43].

2.3. Yeast Transformation

For the transformation of S. cerevisiae, the lithium acetate/single strand DNA/polyethylene glycol
4000 protocol was used as described [44]. For lager yeast transformation, we adapted a protocol from
Thompson et al. [39]. WS34/70 was grown overnight to stationary phase in 50 mL YPD. Then the
culture was diluted to OD600 = 0.3 in 100 mL fresh YPD. Cells were harvested at mid-log growth with
OD600 = 0.7–0.8 (after approximately 3 h of incubation). The culture was centrifuged and washed
once with sterile water and resuspended in 25 mL of 0.1 M lithium acetate/10 mM dithiothreitol/10
mM TE solution (Tris HCl: EDTA = 10:1) and incubated for 1 h at room temperature. The cells were
washed in 25 mL ice-cold distilled sterile water twice and once with 10 ml of ice-cold 1 M sorbitol,
then resuspended in 100 µL ice-cold sorbitol. A 100 µL aliquot of the cell suspension was used for
transformation. Transforming DNA (15 µL) was mixed with the cells, incubated for 5 min on ice and
electroporated with 1.8 kV in 0.2 cm cuvettes. Then, cells were resuspended in 1 ml cold sorbitol and
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transferred to a tube with 300 µL YPD. This suspension was incubated for 3 h at 30 ◦C prior to plating
on selective plates that did not contain sorbitol.

2.4. Verification of Lager Yeast Transformants

The Weihenstephan strain WS34/70 was used for gene targeting experiments. Target genes were
derived from the S. cerevisiae parental subgenome. Sequences for verification primers (and also for the
S1 and S2 primers) were deduced from the genome sequence that is available at DDBJ/EMBL/GenBank
under the accession AZAA00000000. PCR-based gene targeting and diagnostic PCR were performed
as described [45].

3. Results

3.1. Design and Testing of Synthetic Marker and Reporter Genes

We were interested in developing novel synthetic marker and reporter genes for dual use in
non-conventional yeasts, including lager yeasts and S. cerevisiae. To this end, we tested heterologous
promoters derived from Arthroascus schoenii (Saccharomycopsis schoenii). Saccharomycopsis species are
non-conventional yeasts used in diverse brewing settings, e.g., to generate nuruk [46,47]. We recently
obtained several Saccharomycopsis genome sequences including that of A. schoenii [43]. Here we
fused the AsTEF1 promoter with the LacZ reporter gene derived from Streptococcus thermophilus [48].
Additionally, we generated a completely new synthetic marker gene based on the AsPGK1 promoter
controlling a hygromycin resistance gene ORF. Both genes were introduced into BY4741 on episomal
CEN6/ARSH4 plasmids (Figure 1). The functionality of both the synthetic marker and the reporter
were demonstrated in vivo in S. cerevisiae: HYG3 was functional as we obtained hygromycin-resistant
transformants that carried the plasmids, and the LacZ reporter was active as transformants were able
to convert colorless X-Gal into a blue dye (Figure 1B). This indicates that both A. schoenii promoters
derived from AsTEF1 and AsPGK1 were functional in the heterologous host S. cerevisiae and we thus
went on to employ these genes in lager yeast.

3.2. Transformation of Lager Yeast

Previous analyses already indicated that lager yeasts’ transformation efficiency is drastically lower
than that of S. cerevisiae. In S. cerevisiae lithium acetate/ss DNA/PEG protocols are commonly used [44].
We compared this standard protocol with modified versions, which were developed to deal with
yeast strains that are non-responsive to standard lithium acetate or electroporation protocols [39,40].
Our modified protocol included parts of both protocols: a lithium acetate treatment (without DMSO)
and an electroporation step (Li-Ac/Ep). To allow time for the expression of the antibiotic resistance
genes used in this study, we incubated the cell suspensions after electroporation in an osmotically
stabilized medium before plating on selective plates. To compare both protocols, we employed a freely
replicating plasmid (E160) with HYG3 as the selectable marker.

In our hands, the lithium acetate/ss DNA/PEG protocol (with DMSO) yielded only a few
transformants per µg of DNA, demonstrating the poor transformation efficiency of lager yeast with
this method, even after lowering the temperature of the heat shock step at 40 ◦C, which we tested as
lager yeasts are known to be temperature sensitive and do not grow at elevated temperatures above
34 ◦C. The Li-Ac/Ep protocol, however, resulted in much higher transformation efficiencies (1–2 orders
of magnitude, Figure 2).
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Figure 1. Generating heterologous synthetic marker and reporter genes. (A) Linear maps of
pRS-AsTEF1p-LacZ and pRS-AsTEF1p-ScRAD51-HYG3 plasmids. (B) The AsTEF1p-LacZ reporter gene
and the HYG3 resistance marker were tested in Saccharomyces cerevisiae BY4741. The presence of an
active β-galactosidase was detected by adding X-Gal to the centre of the transformation plate (left panel,
circle indicates the area of X-Gal application). The presence and function of the HYG3 marker was
tested by transforming S. cerevisiae with pRS-AsTEF1p-ScRAD51-HYG3 and selecting the transformants
in the presence of 100 µg/mL of hygromycin (right).
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Figure 2. Comparison of two transformation methods in the Weihenstephan lager yeast strain WS
34/70. (A,C) A lithium-acetate/single strand DNA/polyethylene glycol (Li-Ac/ssDNA/PEG) and
(B,D) a LiAc/PEG incubation combined with electroporation (Li-Ac/Ep) were used with two different
antibiotic concentrations for the selection of transformants. The transformation of WS 34/70 with a
freely replicative plasmid carrying a hygromycin resistance marker (pRS-AsTEF1p-ScRAD51-HYG3)
yielded few transformants when using the Li-ac/ssDNA/PEG method (A,C). By contrast, the Li-Ac/Ep
method together with antibiotic selection at 100 µg/mL final concentration (D), resulted in a higher
transformation efficiency compared to the other combinations (A–C).
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3.3. PCR-Based Gene Targeting is Enhanced by RAD51 Overexpression

Plasmid transformation is regularly far more efficient than integrative transformation. PCR-based
gene targeting approaches are convenient because in one PCR reaction short-flanking homology regions
can be added to a selection marker. We used standard S1 and S2 primers that added 50 bases of flanking
homology region. However, in our hands, we failed to obtain stable lager yeast transformants with these
PCR-based disruption cassettes, even when using the Li-Ac/Epo protocol (Figure 3A). After prolonged
incubation on selective plates (>2d) small colonies may appear. However, these colonies did not
continue to grow upon restreaking on new selective plates or in selective liquid media and represent
background growth (Figure 3B). In contrast, the transformation of a Weihenstephan lager yeast strain that
harbors a plasmid-encoded ScRAD51 expressed from a strong TEF promoter yielded a large number
of transformants on primary selective plates using disruption cassettes for ScHSP104 (Figure 3C).
A randomly selected set of colonies continued to grow upon restreaking and also grew well in liquid
YPD supplemented with hygromycin (Figure 3D and data not shown).
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Figure 3. PCR-based gene targeting in lager yeast. The Weihenstephan strain WS34/70 carrying either
an empty vector (pHYG3; A) or a RAD51 plasmid (pRAD51, C) was transformed with disruption
cassettes containing the YES1 marker harboring 50 bp of flanking homology regions for targeting to
the ScHSP104 locus. We used a Li-Ac/Ep transformation protocol and selected transformants on YPD
plates supplemented with hygromycin and G418 (100 µg/mL final concentration each). Restreaking
of putative transformant colonies on new selective plates indicated stable transformants were only
obtained in the lager yeast strain overexpressing pRAD51 (B,D).

Verification of these transformants that grew upon restreaking and growth in liquid culture was
done by standard diagnostic PCR, amplifying the novel joints at the borders of marker integration [45].
This confirmed targeted gene disruption (Figure 4). Overall, between 60–75% of primary transformants
could be cultivated further in a liquid culture, and all for all of those diagnostic PCRs indicated
correct integration of the marker cassette at the target locus (n > 20). However, we did not obtain any
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transformants in the same strain without the overexpression of ScRAD51, demonstrating the usefulness
of this approach. To verify that the marker integration and PCR-based gene targeting success was
not solely locus dependent, we targeted a second gene, ScADE2, in the same manner. Transformation
efficiencies were found to be similar for both loci and diagnostic PCR was successfully employed for
the verification of the deletion of an ADE2 allele (Figure 4C).

Microorganisms 2019, 7, x FOR PEER REVIEW 8 of 12 

 

plates supplemented with hygromycin and G418 (100 µg/mL final concentration each). Restreaking 211 
of putative transformant colonies on new selective plates indicated stable transformants were only 212 
obtained in the lager yeast strain overexpressing pRAD51 (B,D). 213 

Verification of these transformants that grew upon restreaking and growth in liquid culture was 214 
done by standard diagnostic PCR, amplifying the novel joints at the borders of marker integration 215 
[45]. This confirmed targeted gene disruption (Figure 4). Overall, between 60%–75% of primary 216 
transformants could be cultivated further in a liquid culture, and all for all of those diagnostic PCRs 217 
indicated correct integration of the marker cassette at the target locus (n > 20). However, we did not 218 
obtain any transformants in the same strain without the overexpression of ScRAD51, demonstrating 219 
the usefulness of this approach. To verify that the marker integration and PCR-based gene targeting 220 
success was not solely locus dependent, we targeted a second gene, ScADE2, in the same manner. 221 
Transformation efficiencies were found to be similar for both loci and diagnostic PCR was 222 
successfully employed for the verification of the deletion of an ADE2 allele (Figure 4C). 223 

 224 

Figure 4. Diagnostic PCR for verification of correct marker integration. (A) Schematic presentation of 225 
PCR-based gene targeting of YES1 amplified with gene specific S1/S2-primers adding 50 bp of target 226 
homology region (orange bars) to ScHSP104 or ScADE2, respectively. Diagnostic G1/G2 and G3/G4 227 
primers were used for verification of the correct insertion of YES1 and removal of the Sc HSP104 (B) 228 
and Sc ADE2 locus (C) ORFs. 229 

4. Discussion 230 
Lager yeasts are the workhorses of the beer industry. Detailed strain characterizations and 231 

molecular genetics-assisted yeast breeding, however, are hampered by the lack of proof-of-concept 232 
technologies. A major obstacle in lager yeast research is the surprisingly inefficient gene targeting in 233 
lager yeast. Thus, there are only a few reports of the successful molecular genetic manipulation of 234 
lager yeast relying on HR [13–15]. There are other issues beyond the mere technical difficulties. 235 
Primarily, these are complicated by the hybrid nature of lager yeast. Lager yeasts are allopolyploid 236 
hybrids between S. cerevisiae and S. eubayanus parents [9]. Group I/Saaz strains are triploid, while 237 
Group II/Frohberg strains, to which Weihenstephan 34/70 belongs, are tetraploid [2]. Additionally, 238 
aneuploidies could further change allele frequencies, complicating gene knockout experiments. 239 
Secondly, due to the hybrid nature, sporulation is severely crippled due to failure to proceed through 240 
meiotic divisions, resulting in hybrid sterility, which is more pronounced in triploid Group I strains 241 
than in tetraploid Group II strains [49,50]. Thirdly, even though lager yeasts are the workhorses of 242 

Figure 4. Diagnostic PCR for verification of correct marker integration. (A) Schematic presentation of
PCR-based gene targeting of YES1 amplified with gene specific S1/S2-primers adding 50 bp of target
homology region (orange bars) to ScHSP104 or ScADE2, respectively. Diagnostic G1/G2 and G3/G4
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4. Discussion

Lager yeasts are the workhorses of the beer industry. Detailed strain characterizations and
molecular genetics-assisted yeast breeding, however, are hampered by the lack of proof-of-concept
technologies. A major obstacle in lager yeast research is the surprisingly inefficient gene targeting in
lager yeast. Thus, there are only a few reports of the successful molecular genetic manipulation of lager
yeast relying on HR [13–15]. There are other issues beyond the mere technical difficulties. Primarily,
these are complicated by the hybrid nature of lager yeast. Lager yeasts are allopolyploid hybrids
between S. cerevisiae and S. eubayanus parents [9]. Group I/Saaz strains are triploid, while Group
II/Frohberg strains, to which Weihenstephan 34/70 belongs, are tetraploid [2]. Additionally, aneuploidies
could further change allele frequencies, complicating gene knockout experiments. Secondly, due to the
hybrid nature, sporulation is severely crippled due to failure to proceed through meiotic divisions,
resulting in hybrid sterility, which is more pronounced in triploid Group I strains than in tetraploid
Group II strains [49,50]. Thirdly, even though lager yeasts are the workhorses of the beer industry, there
is a reluctance to employ genetically modified yeast strains, a notion that has rather been strengthened
over recent years.

In addition to their industrial importance, lager yeast hybrids present excellent model systems to
study hybrid biology, including hybrid vigor, hybrid sterility, adaptive evolution and the analysis of
hybrid protein complexes [51,52]. Major advances in hybrid yeast breeding resolved the F1-sterility
problem represented in lager yeast [53].
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Our study indicates that RAD51 overexpression in lager yeast opens the tool-box for all genetic
manipulation previously only available in S. cerevisiae. Although transformation efficiencies in lager
yeasts are far lower than in S. cerevisiae, rational strain design based on targeted gene replacements has
become feasible. We have successfully employed this strategy already to other loci, suggesting that
potential locus dependent variations in gene targeting are not inhibitory to successful gene targeting.
Furthermore, by selecting specific homology regions, even closely related alleles of the S. cerevisiae
and S. eubayanus parental genomes can be distinguished. The overexpression of RAD51 has been
shown to improve HR in other systems, so it may also be advantageous in other non-conventional
yeasts in which molecular genetic studies are hampered by the preferential ectopic integration of gene
targeting cassettes.

Two additional advances to improve HR in resilient strains in recent years include the use of Ku70
mutant strains and the establishment of CRISPR/Cas9 methodologies [12]. Deletion of Ku70 inactivates
the NHEJ pathway, thus favouring HR and targeted gene alterations [33]. However, in S. cerevisiae,
the deletion of Ku70 has been shown to generate defects in telomere maintenance and cell cycle
regulation [54,55]. Thus, this may not be favorable in lager yeast as breeding efforts to restore a
wildtype Ku70 status after genetic engineering are also quite laborious.

Recent reports established CRISPR/Cas9 in lager yeast, making this a promising tool for strain
engineering [12,56]. CRISPR/Cas9 will be particularly useful for simultaneous alterations of multiple
alleles in a single step, even more so when the number of alleles may vary due to aneuploidies. In a
recent report, simultaneous single and double deletions of SeATF1 and SeATF2 were performed in lager
yeast, demonstrating the power of this tool [12]. It will be interesting to see if a combined approach,
overexpressing RAD51 and the use of CRISPR/Cas9, will further improve gene replacement efficiencies.
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