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Abstract11

The size of a neuron’s receptive field increases along the visual hierarchy. Neurons in higher-12

order visual areas integrate information through a canonical computation called normalization,13

where neurons respond sublinearly to multiple stimuli in the receptive field. Neurons in the vi-14

sual cortex exhibit highly heterogeneous degrees of normalization. Recent population recordings15

from visual cortex find that the interactions between neurons, measured by spike count correla-16

tions, depend on their normalization strengths. However, the circuit mechanism underlying the17

heterogeneity of normalization is unclear. In this work, we study normalization in a spiking neu-18

ron network model of visual cortex. The model produces a range of neuronal heterogeneity of19

normalization strength and the heterogeneity is highly correlated with the inhibitory current each20

neuron receives. Our model reproduces the dependence of spike count correlations on normal-21

ization as observed in experimental data, which is explained by the covariance with the inhibitory22

current. We find that neurons with stronger normalization are more sensitive to contrast differences23

in images and encode information more efficiently. In addition, networks with more heterogeneity24

in normalization encode more information about visual stimuli. Together, our model provides a25

mechanistic explanation of heterogeneous normalization strengths in the visual cortex, and sheds26

new light on the computational benefits of neuronal heterogeneity.27

Introduction28

Understanding how the brain integrates and extracts information from multiple stimuli has long been a central29

focus in neuroscience. In visual cortex, neurons in the primary visual area respond to local features of stimuli,30

such as orientation and moving direction, while neurons in the higher-order visual areas have broader recep-31

tive fields and extract global features of visual stimuli. The responses of visual neurons to multiple stimuli32

have been well characterized by a phenomenon known as normalization, where neurons respond sublinearly.33
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Normalization has been observed across brain regions (Heeger, 1992; Louie et al., 2011; Ohshiro et al., 2011),34

sensory modalities (Olsen et al., 2010; Rabinowitz et al., 2011) and species (Barbera et al., 2022; MacEvoy35

et al., 2009; Ni et al., 2012), and has been regarded as a canonical computation in nervous system (Carandini36

and Heeger, 2012). Normalization has also been thought to be the fundamental mechanism through which37

selective attention acts to enhance neuronal responses to attended stimulus (Reynolds and Heeger, 2009).38

It has long been demonstrated that the strength of normalization is variable across neurons (Lee and Maunsell,39

2009; Ni et al., 2012; Ruff et al., 2016). Some neurons are suppressed by the addition of a non-preferred40

stimulus, while some neurons show additive responses to multiple stimuli. Recent population recordings from41

multiple visual cortical areas of macaque monkeys reveal that the interactions between neurons, measured by42

spike count correlations, depend on their normalization strengths (Ruff et al., 2016; Verhoef and Maunsell,43

2017). Spike count correlations are shaped by network connectivity and dynamical state, and impose strong44

constraints on circuit models (Hennequin et al., 2018; Huang et al., 2019; Huang, 2021; Ocker et al., 2017). In45

addition, spike count correlations constrain the amount of information encoded by a neuronal population (Kohn46

et al., 2016) and can reflect perceptual inference (Bányai and Orbán, 2019). Therefore, an understanding of the47

network mechanisms underlying the relationship between normalization strength and neuronal correlations is48

likely to provide insights into the neural population code of the integration of multiple stimuli.49

Despite the success of the phenomenological models of divisive normalization at reproducing the firing rates50

of neurons under different stimulus conditions, the neurophysiological basis of normalization remains unclear.51

Recently, mechanistic circuit models have been developed to account for the sublinear response properties or52

reproduce the divisive scaling of responses (Heeger and Mackey, 2019; Heeger and Zemlianova, 2020; Lindsay53

et al., 2019; Rubin et al., 2015). However, they focus on modeling the trial-averaged neuronal responses in54

homogeneous neural populations and do not consider the trial-to-trial correlations between neurons and the55

heterogeneity of normalization strength. Recent statistical models of normalization suggest that the strength of56

normalization impacts the spiking variability of individual neurons and the correlations between neurons, how-57

ever, they do not take into account network interactions that shape both normalization and neural correlations58

(Coen-Cagli and Solomon, 2019; Weiss et al., 2023).59

In this work, we study normalization in a two-layer network of spiking neurons, modeling the primary visual60

cortex (V1) and a higher-order visual area (V4 or MT). The network produces internally generated spiking vari-61

ability due to a balance of strong excitation and inhibition (Huang et al., 2019; Van Vreeswijk and Sompolinsky,62

1996). The neurons in our model exhibit a range of normalization strengths in response to multiple stimuli. Our63

model reproduces the dependence of spike count correlations on normalization strength as observed in experi-64

mental data (Ruff et al., 2016). Interestingly, we identify the inhibitory current to be the major determinant of65

normalization strength and its relationship with spike count correlations. Further, we demonstrate that neurons66

with stronger normalization are more sensitive to contrast differences of visual stimuli and encode information67

more efficiently. Networks with more heterogeneity in normalization encode higher information about visual68

stimuli, demonstrating the computational benefits of neuronal heterogeneity.69

Results70

We use a two-layer spiking neuron network model, with the feedforward layer modeling V1 neurons and the re-71

current layer modeling V4 or MT area (Figure 1A). Two Gabor images of orthogonal orientations are presented72

to the network. The V1 neurons are modeled as linear-nonlinear-Poisson neurons with Gabor receptive fields73
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oriented at their preferred orientation, determined from a superimposed pinwheel orientation map (Kaschube74

et al., 2010). There are two populations of V1 neurons, V11 and V12, each of which has a non-overlapping75

receptive field centering on each Gabor image, respectively.76

The V4/MT layer is a recurrent network of excitatory and inhibitory neurons, each modeled as an exponential77

integrate-and-fire neuron. Neurons from the V4/MT layer receive inputs from both V1 populations and respond78

to both images (Figure 1B). There are two types of connections in both feedforward projections from V1 to79

V4/MT and and recurrent projections within the V4/MT layer (Figure 1A), following anatomical findings from80

visual cortex (Angelucci et al., 2002; Bosking et al., 1997; Malach et al., 1993; Mariño et al., 2005). The81

majority of connections are local, of which the connection probability decays with distance. We choose the82

spatial scales of excitatory and inhibitory projections to be the same, consistent with anatomy (Mariño et al.,83

2005). A small portion of connections are long-range, meaning that their connection probability does not84

depend on distance, but they connect between similarly tuned excitatory neurons. The spatially dependent85

connections allow the V4/MT neurons to retain location information of the two images, while the tuning specific86

long-range connections increase the tuning selectivity and the size of receptive fields of V4/MT neurons.87

The V4/MT network admits a stable and asynchronous solution with homogeneous V1 inputs, similar to the88

classic balanced network model (Renart et al., 2010; Van Vreeswijk and Sompolinsky, 1996) (Supp Fig S1).89

The balance between strong excitation and inhibition generates Poisson-like spiking variability in individual90

neurons. The distribution of firing rates is lognormal due to the expansive transfer function of neurons with91

large input fluctuations (Roxin et al., 2011). With orientation-tuned inputs from V1, the V4/MT model neurons92

capture several features of neuronal responses in visual cortex, as shown in our previous work (Huang et al.,93

2022). The tuning curves are heterogeneous with various widths and magnitudes (Ringach et al., 2002). The94

spike count correlations are higher between similarly tuned neurons (Cohen and Maunsell, 2009; Gu et al.,95

2011), and depend on stimulus orientation (Hennequin et al., 2018; Lin et al., 2015; Ponce-Alvarez et al.,96

2013).97

Broad distribution of normalization strengths in the model and data98

We analyze the network responses to two Gabor images with orthogonal orientations, which are known to evoke99

the normalization mechanism in the visual cortex (Busse et al., 2009; Ni et al., 2012; Ruff et al., 2016; Verhoef100

and Maunsell, 2017). Neurons’ responses to two stimuli presented together tend to be much less than the linear101

sum of the responses to each stimulus when presented individually. This phenomenon has been observed across102

the visual hierarchy in macaque monkeys (Ruff et al., 2016) as well as in the primary visual cortex in cat (Busse103

et al., 2009) and tree shrew (MacEvoy et al., 2009).104

When presented with one image, neurons that prefer the orientation of the image are activated across the V4/MT105

network, resulting in local patches of active regions following the pinwheel map of orientation preference106

(Figure 1B1, B2). Neurons in the same spatial location of the presented image respond with higher rates since107

they receive more local feedforward inputs. When both images are presented together, there is no clear spatial108

structure of population activation pattern of firing rates (Figure 1 B3).109

We define normalization index of each neuron as the sum of the neuron’s firing rates in response to each image110

presented individually, divided by its firing rate when both images are presented together (Eq. 14), following111

the definition from our previous experimental work (Ruff et al., 2016). A normalization index of one means112

that the neuron’s response to multiple stimuli is a linear summation and a normalization index larger than one113
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Figure 1: Model schematic, activation patterns, and distributions of normalization indices.
(A) Model schematic. V4/MT area is modeled as a spatially ordered spiking neuron network of excitatory and
inhibitory neurons. V1 neurons are modeled as linear-nonlinear-Poisson neurons with Gabor receptive fields.
The two sub-populations of V1 neurons, V11 and V12, have non-overlapping receptive fields, each centering
on one Gabor image. The preferred orientations of both V4/MT and V1 neurons are assigned according to
pinwheel orientation maps (bottom panel). Bottom: Locations of postsynaptic excitatory neurons (black dots)
of one example presynaptic excitatory neuron (white dot) in the V4/MT layer. The majority of the connections
are local in space and a small portion of the connections are between similarly tuned excitatory neurons across
the whole network (see Methods). (B) Firing rate patterns of the model V4/MT neurons when one Gabor image
is presented at location 1 (B1) or location 2 (B2), or when both images of orthogonal orientations are presented
together (B3). (C) The model V4/MT neurons exhibit a wide range of normalization indices. The normalization
index is defined as the sum of the neuron’s firing rates in response to each image presented individually (B1,
B2), divided by its firing rate when both images are presented together (B3). (D) The normalization indices of
neurons recorded from macaque V4 and MT areas (data from Ruff et al. (2016)).
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means a sublinear summation. A larger normalization index means stronger normalization.114

Our model V4/MT neurons exhibit a wide range of normalization indices with the majority being between one115

and two (Figure 1C). The normalization indices of our model neurons span a similar range as those of neurons116

recorded from macaque V4 and MT areas (Figure 1D; Ruff et al. (2016)). The normalization index of a neuron117

is independent from its tuning preference in both our model and data (Figure S2). The wide distribution of118

normalization indices is a robust phenomenon in networks with strong recurrent connections (Figure S3). Even119

in random networks with no spatial or tuning dependent connections, there is a spread of normalization indices120

due to random connections when two input populations project to the whole network (Figure S3A,B magenta).121

The distribution widens when the two input populations project to distinct sets of target neurons (Figure S3B122

cyan). In our model, the two images of orthogonal orientations activate different sets of V4/MT neurons, which123

is similar to the case with small overlap of input projections in the random networks (Figure S3B). In contrast,124

networks with weak recurrent connections produce narrow distributions of normalization strengths (Figure S4).125

Being able to reproduce the range of neuronal heterogeneity of normalization in our model, we next examine126

how neurons with different normalization strengths interact with each other.127

Spike count correlations between neurons depend on their similarity of normalization strength128

The neuronal heterogeneity of normalization strength in our model is shaped by network connectivity and129

neuronal transfer functions. Both factors are known to determine the interactions between neurons (Huang130

et al., 2019; Ocker et al., 2017). Next we examine how correlations between neurons depend on neurons’131

normalization indices. We use spike count correlations to measure the interactions between neurons, which is132

commonly used to measure the trial-to-trial co-fluctuations of neuronal responses in experiments (Cohen and133

Kohn (2011); see Methods).134

We find that spike count correlations between neurons depend on their normalization indices in the model in a135

way that is qualitatively consistent with the neuronal correlations measured in visual cortex (Figure 2). First,136

neurons with similar normalization indices have higher spike count correlations than those with different nor-137

malization indices (diagonal vs. off-diagonal elements in Figure 2A1, B1 and C1). For neuron pairs of the same138

average normalization indices, their spike count correlations decrease as the difference between their normal-139

ization indices becomes larger (Figure 2A2, B2 and C2). Second, for neuron pairs with similar normalization140

indices (diagonal elements in Figure 2A1, B1 and C1), their spike count correlations first decrease with their141

average normalization indices and can increase at large normalization indices in the model and the V4 data142

(Figure 2A3, B3 and C3). The same pattern of spike count correlations is also observed in neurons recorded143

from Macaque V1 area (Supp Fig S5). The model also produces the same relationship between spike count cor-144

relation and normalization strengths using superimposed Gabor images in addition to two separately presented145

images (Supp Fig S6). The close match of the dependence of correlations on normalization indices in our146

model with that in data suggests common circuit mechanisms that determine the heterogeneity of normaliza-147

tion. In contrast, the dependence of neuronal correlations on normalization index is very weak in networks with148

weak recurrent connections, emphasizing the importance of recurrent connections in determining the strength149

of normalization (Figure S4).150

A potential explanation for the observed dependence of correlations on the similarity of normalization indices151

is that neurons with similar normalization indices may have more similar tuning preferences than those with152

different normalization indices. Several previous experimental studies have consistently demonstrated that153
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Figure 2: Neurons with similar normalization indices have higher spike count correlations than those
with different normalization indices.
(A) Spike count correlations between a pair of model MT/V4 neurons depend on their normalization indices.
(A1) Spike count correlations between a pair of neurons as a function of the normalization indices of the pair.
(A2) For neuron pairs of the same average normalization indices (equal to 1.5), their spike count correlations
decrease with the difference in their normalization indices. (A3) For neuron pairs of similar normalization
indices (difference < 0.5), their spike count correlations decrease with their average normalization indices. (A4)
Across all levels of tuning similarity, the spike count correlations between neurons with similar normalization
indices are consistently larger than those of neurons with distinct normalization indices. (B) Same as (A) for
neuronal data recorded from the MT area (28 sessions). (C) Same as (A) for neuronal data recorded from the
V4 area (21 sessions). Error bars represent the SEM. Data in panels B and C are from Ruff et al. (2016).
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neurons with similar tuning preferences tend to have higher spike count correlations (Cohen and Maunsell,154

2009; Gu et al., 2011; Hennequin et al., 2018; Lin et al., 2015). Therefore, tuning similarity between neurons155

is a potential confound that underlies the dependence of correlations on normalization indices. However, this is156

not the case in our model and in data. First, we find no significant correlation between the tuning preference and157

the normalization index of a neuron in both model and data (Supp Fig S2). Second, we compare the spike count158

correlations of neuron pairs with either similar or different normalization indices across different magnitudes of159

tuning similarity, measured as the correlation between the tuning curves of two neurons (Eq. 16). We observe160

that across all levels of tuning similarity, the spike count correlations between model neurons with similar161

normalization indices are consistently larger than those of model neurons with distinct normalization indices162

(Figure 2, A4). We re-analyzed our experimental data and found consistent patterns in neural recordings from163

all three visual areas, MT (Figure 2 B4), V4 (Figure 2 C4) and V1 (Supp Fig S5).164

Recurrent inhibition best explains the heterogeneity of normalization165

Having demonstrated that our model successfully reproduces the distribution of normalization strength and the166

dependence of spike count correlations on normalization indices observed in visual cortex, we next examine167

the circuit mechanisms in our model that underlie the neuronal heterogeneity of normalization. We decompose168

the total current each V4/MT neuron receives into three components: feedforward excitation from V1 neurons,169

recurrent excitation from other V4/MT excitatory neurons and recurrent inhibition from other V4/MT inhibitory170

neurons. We find that the normalization index of each V4/MT neuron is strongly and negatively correlated171

with the normalization index of the inhibitory current, defined in the same way as the normalization index of172

firing rate (Eq. 15; Figure 3C). This means that neurons with stronger normalization receives relatively more173

inhibition when both images are presented compared to neurons with weaker normalization. In contrast, the174

correlations between the normalization indices of the firing rates and those of the feedforward and recurrent175

excitatory currents, respectively, are much weaker (Figure 3A,B). In particular, the weak correlation between176

normalization and feedforward excitation indicates that the normalization strength of each neuron in the model177

is mainly determined by recurrent connections. In addition, there is also strong correlation between the firing178

rate normalization indices and the average inhibitory current a neuron receives when two images are presented,179

and only weak correlations with the excitatory currents (Supp Fig S7A). The correlation between normalization180

and the number of excitatory or inhibitory input connections is also weak (Supp Fig S7B).181

To investigate if the inhibitory currents also contribute to the dependence of spike count correlations on normal-182

ization indices (Figure 2A), we compute the covariance between the excitatory and inhibitory currents a pair183

of neurons receive. Let Totali be the total current neuron i receives (i = 1, 2), then Totali = Ei + Ii, where184

Ei and Ii are the excitatory and inhibitory current, respectively, that neuron i receives. Here we combine both185

feedforward and recurrent excitation in the excitatory current, E, since the following covariance analysis yields186

similar patterns for both current types. The covariance between the total currents of neuron 1 and neuron 2 can187

then be decomposed into four components188

Cov(Total1,Total2) = Cov(E1,E2) + Cov(E1, I2) + Cov(I1,E2) + Cov(I1, I2). (1)

Previous theoretical analysis has shown that in balanced network models both the excitatory and inhibitory189

inputs to a pair of neurons (Cov(E1, E2) and Cov(I1, I2), respectively) are correlated which are cancelled190

by the large negative correlation between the excitatory and inhibitory inputs (Cov(E1, I2) and Cov(I1, E2))191

(Renart et al., 2010). In this way, the total current covariance remains small and neurons in the balanced192

networks are asynchronous.193
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Figure 3: Recurrent inhibition best explains the heterogeneity of normalization.
(A) The relationship between the normalization indices of neurons’ firing rates and those of the feedforward
excitatory currents neurons receive in the model. (B-C) Similar to (A), but for recurrent excitatory current
(B) and recurrent inhibitory current (C). The normalization index of recurrent inhibitory current is strongly
correlated with the firing rate normalization index. (D) When restricting the normalization index of neuron 1 in a
pair to be between 1 and 1.5, while allowing the normalization index of the neuron 2 to vary, only the covariance
components with the inhibitory currents depend on the normalization index of neuron 2 (Cov(I1,I2) in D1
and Cov(E1,I2) in D2). Here the excitatory current includes both feedforward and recurrent excitation. The
covariance between total currents to the pair of neurons, Cov(Total1,Total2), decreases with the normalization
index of neuron 2 (D3), consistent with the changes in spike count correlations (D1 inset). Inset in D1: Spike
count correlations between a pair of neurons as a function of their normalization indices, same as in Figure 2A1.
Black box indicates the range of normalization indices of neuron pairs analyzed in panels D1-3. (E) Similar to
(D), but for neuron pairs with similar normalization indices (difference < 0.6), indicated by the black box in E1
inset. Note that Cov(I1, E2) is the same as Cov(E1, I2) in panel E2, as both normalization indices of neuron 1
and neuron 2 vary together.
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We find that only the covariance components with the inhibitory currents depend on normalization indices194

in our model. We focus our analysis on two cases. First, we restrict the normalization index of neuron 1195

in a pair to be between 1 and 1.5, while allowing the normalization index of the neuron 2 to vary (Figure196

3D1 inset, black box region). As the normalization index of neuron 2 becomes larger and thus more distinct197

from neuron 1, the inhibitory current of neuron 2 becomes more correlated with the inhibitory current of198

neuron 1 (Cov(I1, I2) in Figure 3D1) and more negatively correlated with the excitatory current of neuron 1199

(Cov(E1, I2) in Figure 3D2). In contrast, the covariance components with the excitatory current of neuron 2200

is independent of its normalization index (Cov(E1, E2) in Figure 3D1 and Cov(I1, E2) in Figure 3D2). The201

covariance, Cov(E1, I2), becomes more negative than the increase in Cov(I1, I2), resulting in a reduction in202

the total current covariance, Cov(Total1,Total2), as the normalization index of neuron 2 increases (Figure203

3D3). This is consistent with the changes in spike count correlations (Figure 2A and replicated as the inset of204

Figure 3D1).205

Second, we conduct the same analysis of current covariance components for neuron pairs with similar normal-206

ization indices (Figure 3E1, inset, black box region). We observe a similar pattern: the covariance components207

with the inhibitory currents, Cov(I1, I2), Cov(E1, I2) and Cov(I1, E2), increase in magnitude with normal-208

ization index, while the covariance between excitatory currents, Cov(E1, E2), is independent of normalization209

index (Figure 3E1, E2). Note that Cov(I1, E2) is the same as Cov(E1, I2) in this case as both normalization210

indices of neuron 1 and neuron 2 vary together. The total current covariance decreases initially as the normal-211

ization indices of both neurons increase, and turns to increase when normalization is strong due to the large212

increase in the covariance between inhibitory currents, Cov(I1, I2) (Figure 3E3), consistent with the changes213

in spike count correlations (Figure 2A1,A3).214

In sum, we find that neurons with stronger normalization receives more recurrent inhibition from the network.215

Their inhibitory currents tend be more correlated with the input currents of other neurons, which allows for216

better cancellation of current correlations and leads to lower spike count correlations with other neurons.217

Neurons with stronger normalization are more sensitive to contrast differences of images218

Our results so far have focused on the population response properties of V4/MT neurons to two images of219

equal contrast. We next examine the dependence of V4/MT neuron responses on the contrast of each image.220

We observe that neurons exhibit diverse response tuning to different contrast combinations of the two images221

(Figure 4, A1-A4). We group neurons by their normalization indices (Eq. 14) and their response selectivity to222

the two images (Eq. 17). Because of symmetry, here we only present results of neurons that prefer stimulus223

1. Therefore, neurons with strong selectivity respond more strongly to stimulus 1, while neurons with weak224

selectivity respond similarly to both images.225

The firing rates of neurons with weak normalization and weak selectivity increase linearly as the contrast of226

either one of the images increases (Figure 4A1). Thus they respond maximally when both images have high227

contrast. On the contrary, neurons with strong normalization and weak selectivity are largely suppressed when228

both images have high contrast, and respond maximally when there is only one image present (Figure 4A2).229

Neurons with strong selectivity preferentially respond when their preferred image has high contrast (contrast230

1), as expected (Figure 4A3-A4). However, neurons with strong normalization are much more suppressed231

by increasing the contrast of their non-preferred image (contrast 2), and respond maximally when only their232

preferred image is present (Figure 4A4). Together, neurons with heterogeneous normalization strength and233
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Figure 4: Neurons with stronger normalization are more sensitive to contrast differences of images.
(A) Neurons exhibit diverse response tuning to different contrast combinations of two Gabor images with
orthogonal orientations. (A1) The firing rates of neurons with weak normalization and weak selectivity. (A2)
The firing rates of neurons with strong normalization and weak selectivity. (A3) The firing rates of neurons
with weak normalization and strong selectivity. (A4) The firing rates of neurons with strong normalization and
strong selectivity. Neurons that prefer stimulus 1 were selected for the results in A1-4. Crosses indicate the
contrast combinations analyzed in B-D with the same color labels. (B-C) As contrast difference between the
two images increases, the distribution of relative rate changes (r/r0) of neurons becomes broader. The relative
rate changes are neurons’ firing rates to images of a given contrast difference, ∆c, divided by their firing rates to
images of equal contrast (i.e. ∆c = 0). Neurons with strong normalization (C) have a much broader distribution
of relative rate changes compared to neurons with weak normalization (B). (D) The standard deviation of rate
changes increases with normalization index.
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selectivity preferentially respond to different contrast combinations of the two images.234

We notice in the contrast dependence of responses that neurons with strong normalization are mostly active235

when the contrast difference between the two images is large (Figure 4A, lower right corners). To quantify236

this, we consider conditions where the average contrast of the two images is 0.5 and we gradually increase237

the difference between the contrasts of the two images. Specifically, we choose contrast 1 as c1 = 0.5 + ∆c238

and contrast 2 as c2 = 0.5 −∆c, where 2∆c is the contrast difference between the images (crosses in Figure239

4A1-A4). We quantify the relative change in firing rate, r/r0, by normalizing the firing rate of each neuron with240

its rate (r0) when both images have equal contrasts, i.e. ∆c = 0. As ∆c increases, the distribution of relative241

rate changes of neurons becomes broader, suggesting that some neurons become more active (r/r0 > 1) while242

other neurons become more suppressed (r/r0 < 1) (Figure 4B,C). Here neurons of both stimulus preferences243

are included. For the same contrast difference, ∆c, neurons with stronger normalization have a much broader244

distribution of relative rate changes compared to neurons with weaker normalization, suggesting that they are245

more sensitive to contrast difference (Figure 4B,C). Indeed, the standard deviation of the distributions of relative246

rate changes increases with the normalization index for each ∆c (Figure 4D). This indicates that neurons with247

strong normalization exhibit much larger changes in their firing rates when there is a contrast difference in the248

two images.249

Neurons with stronger normalization encode information more efficiently250

Normalization has been hypothesized to be computational advantageous because it adapts neurons’ dynamical251

range of responses and can increase neurons’ sensitivity to changes in stimulus. To quantify the computa-252

tional benefits of normalization in our model, we measure the linear Fisher information of stimulus parameters253

from the activity of neurons with different normalization indices. The linear Fisher information measures the254

accuracy of estimating a stimulus parameter, such as contrast or orientation, from neuron population activity255

using an optimal linear decoder (Beck et al., 2011; Kohn et al., 2016; Seriès et al., 2004). The linear Fisher256

information of a stimulus parameter, s, is defined as257

IF (s) = f ′(s)TΣ−1(s)f ′(s), (2)

where f is the tuning curve function of the neuron population with respect to s, ′ denotes differentiation with258

respect to s, and Σ is the covariance matrix of the population responses. Higher Fisher information means259

lower threshold in detecting changes in the stimulus parameter s. We focused our analysis on the information260

of the contrast and orientation of one image while keeping the other image at the same contrast and of an261

orthogonal orientation. The linear Fisher information were measured from the spike counts of the V4/MT262

excitatory neurons using a bias-corrected estimation (Kanitscheider et al. (2015); see Methods).263

We find that neurons with stronger normalization encode more information per spike compared to neurons264

with weaker normalization (Figure 5). We grouped neurons based on their normalization indices and randomly265

sampled a various number of neurons within each group. We then divided the Fisher information of the sampled266

neurons by the their trial-averaged total number of spikes (See Methods). The Fisher information of contrast267

per spike is non-monotonic for neurons with weak normalization with a maximum at around 12 spikes and268

reduces to zero as the total number of spikes increases (Figure 5A1,A3). The variance of the Fisher information269

per spike across samples also peaks at around 10 spikes and largely shrinks when the total number of spikes270

is above 100. Neurons with stronger normalization encode more information per spike when the total number271

of spikes is below 100 (Figure 5A2). This is consistent with our observation in the previous section that the272
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Figure 5: Neurons with stronger normalization encode information more efficiently.
(A) The linear Fisher information (Eq. 2, see Methods) of the contrast of one of the two images per spike from
neurons with different normalization indices. Various numbers of neurons were randomly sampled from the
model V4/MT excitatory neurons whose normalization indices were within the specified range indicated by the
color bar. The linear Fisher information of the sampled group of neurons was divided by the number of spikes
from the sampled group of neurons during the time window used for calculating the Fisher information. (A1)
The linear Fisher information per spike as a function of the total number of spikes from the sampled neurons.
Neurons with normalization indices from 1 to 1.4 were sampled. Each dot is a different sampling of a group of
neurons. The solid curves is the average for each bin of the number of spikes and the error bar is standard error.
(A2) Same as A1 except that neurons with normalization indices from 2.6 to 3 were sampled. (A3) The average
Fisher information per spike as a function of the total number of spikes from the sampled neurons, for neurons
of different ranges of normalization indices. Neurons with stronger normalization (lighter color) encode more
information per spike than neurons with weak normalization (darker color). (B1-3) Same as A1-3 for the linear
Fisher information of the orientation of one of the two images.
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Figure 6: Heterogeneous normalization enhances the information of image contrast but not orientation.
(A) The distribution of normalization indices is narrower in the network with matched in-degrees (grey) than
that in the default network (black). In the network with matched in-degreess, the number of presynaptic neurons
that project to each V4/MT neuron is fixed to be the same for each type of inputs (recurrent excitation, recurrent
inhibition and feedforward excitation). The default network is the same as described in Figure 1 and analyzed
in previous figures. (B) The linear Fisher information of the contrast of one image as a function of the number
of excitatory neurons sampled from the model V4/MT network. Open circles are the numerical estimation of
the linear Fisher information (Eq. 18). The asymptotic values of the linear Fisher information at limit of large
number of sampled neurons (dots at N = ∞) are estimated by fitting Eq. 19, and solid curves are the fits
(see Methods). Error bars are the 95% confidence intervals. Dashed line is the total amount of linear Fisher
information from V1 neurons. The total input information is the same for both networks. (C) Same as B for
the linear Fisher information of the orientation of one image.

firing rates of neurons with strong normalization are sensitive to contrast changes in the images (Figure 4).273

The efficiency of information encoding of neurons with different normalization indices converges and decays274

to zero when the total number of spikes is large (Figure 5A3). The Fisher information of orientation shows275

similar trend as the information of contrast, except that the Fisher information per spike for orientation tends to276

decrease monotonically for neurons with weak normalization (Figure 5B).277

Heterogeneous normalization enhances the information of image contrast but not orientation278

Lastly, we compare the information content in networks with different amount of heterogeneity in normaliza-279

tion. We have shown that the normalization index of a model neuron is strongly correlated with the inhibitory280

current it receives (Figure 3A-C). To reduce the heterogeneity in normalization, we constructed a control net-281

work with the same number of input connections (i.e. in-degree) to each V4/MT neuron, including both local282

and long-range connections, so that neurons receive roughly the same magnitude of currents. All the other283

parameters, such as the connection weights and the spatial spreads of connections were kept the same as the284

default network. Matching the in-degrees in a homogeneous network without spatial or tuning dependent con-285

nections leads to similar firing rates in neurons from the same cell type population (excitatory or inhibitory)286

(Brunel, 2000). Matching the in-degrees in our spatial network also largely reduces the spread of normalization287

indices (Figure 6A). The remaining heterogeneity in normalization is partly due to the tuning selectivity of288

neurons and the spatial arrangement of the pinwheel orientation map.289

As the number of sampled V4/MT neurons increases, the Fisher information of the sampled neurons increases290
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and approaches the upper bound of the total input information from V1 neurons (Figure 6B,C). The information291

of image contrast is higher in the default network than that in the network with matched in-degrees, which has292

less heterogeneity in normalization (Figure 6B). The information difference between the two networks reduces293

as the number of sampled neurons increases and the information curves from both networks saturate to a294

similar level close to the upper bound of input information. This again demonstrates the efficiency of neural295

coding in networks with heterogeneity, that is, networks with more heterogeneity of normalization encode more296

information of contrast with a smaller number of neurons.297

Interestingly, the information of orientation is very similar in both networks with different amounts of nor-298

malization heterogeneity across various number of sampled neurons, with the information from the default299

network being slightly higher (Figure 6C). This suggests that heterogeneous normalization is more beneficial300

for encoding contrast than orientation in our network.301

Discussion302

Normalization mechanism has often been used to describe neurons’ sublinear responses to multiple stimuli in303

visual cortex (Britten and Heuer, 1999; Heeger, 1992; Ni et al., 2012; Rust et al., 2006; Verhoef and Maunsell,304

2017)). However, neurons exhibit diverse response patterns in their integration of multiple stimuli; some neu-305

rons show facilitated responses to two stimuli, while some neurons are strongly suppressed by an addition of a306

non-preferred stimulus (Barbera et al., 2022; Guan et al., 2020; Ni et al., 2012; Ruff et al., 2016). The mech-307

anism underlying the neuronal heterogeneity of normalization and its contribution to neural coding is not well308

studied. In this work, we analyzed response properties of a recurrent network of excitatory and inhibitory spik-309

ing neurons modeling the visual cortex. Our model neurons exhibit a range of normalization strengths that is310

consistent with experimental data (Ruff et al., 2016). We find that a neuron’s normalization strength is strongly311

correlated with the relative magnitude of inhibitory current it receives. In addition, our model reproduces the312

relationship between normalization strength and the spike count correlations between pairs of neurons observed313

in experimental data, which can be explained by the covariance with inhibitory current. Further, we demonstrate314

that model neurons with different normalization strengths and selectivity respond to different combinations of315

the stimulus contrasts. Model neurons with stronger normalization are more sensitive to the contrast difference316

of images and encode more stimulus information per spike. Lastly, we show that neuronal heterogeneity can317

be beneficial for coding, as networks with more heterogeneity encode more information of image contrast.318

We find that strong recurrent coupling among the excitatory and inhibitory neurons and distinct sources of319

feedforward inputs are important for generating a wide range of heterogeneity of normalization strength. In320

networks with weak recurrent coupling, the distribution of normalization indices is narrow and the spike count321

correlations between neurons only weakly depend on their normalization strengths (Supp Fig S4). This suggests322

that strong recurrent connections amplify the heterogeneity in neuron responses to multiple inputs. In networks323

with strong recurrent coupling and disordered connections (i.e. no spatial or tuning dependence of connections),324

neurons exhibit a range of normalization strengths when the network receives two sources of feedforward inputs325

(Supp Fig S3). The distribution of normalization strengths broadens as the two sources of inputs target more326

distinct populations of neurons. The range of normalization strengths is similar to that of the detailed circuit327

model of visual cortex where the two images of orthogonal orientations activate largely non-overlapped groups328

of neurons in the V4/MT network (Figure 1). Our results are consistent with a recent finding where models329

with strong recurrent coupling explains the large distribution of rate changes in monkey visual cortex induced330
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by optogenetic stimulation (Sanzeni et al., 2023).331

The balanced network model (Van Vreeswijk and Sompolinsky, 1996) has been successful at explaining the332

genesis of neuronal variability and the close relationship of excitation and inhibition observed in experiments333

in cortex (Haider et al., 2006; Okun and Lampl, 2008; Xue et al., 2014). However, balanced networks produce334

a linear relationship between input and output rate, which has been considered as a limitation for complex com-335

putation (van Vreeswijk and Sompolinsky, 1998). Recent theoretical work suggests that nonlinear computation336

can be achieved in balanced networks when some neurons are silenced by excess inhibition, creating a local337

imbalance in currents (Baker et al., 2020). They show that a network can produce sub-linear summation, if338

individual stimulus silences a group of neurons when presented alone (Baker et al., 2020). Our finding is dif-339

ferent from this work in that we analyzed neurons with positive rates in all three stimulus conditions (stimulus340

1 alone, stimulus 2 alone or both). In other words, neurons in our model do not need to be silenced in one341

stimulus condition to show sublinear summation. Consistent with the previous work, our results demonstrate342

that individual neurons can exhibit diverse and nonlinear response functions to multiple stimuli, even though343

the population averaged rate remains mostly linear (Figure 4A1-4).344

Even though the normalization phenomena has been widely observed in visual cortex, as well as in other brain345

regions, the source of normalization has been under debate. It was initially hypothesized that the divisive form346

of normalization can be implemented by shunting inhibition (Carandini et al., 1997). However, it has been347

shown that shunting inhibition alone results in a subtractive, not divisive, modulation of firing rates (Chance348

et al., 2002). Instead, divisive gain modulation can be achieved by modulating both excitatory and inhibitory349

inputs in a balanced manner (Chance et al., 2002). Later experimental findings suggest that it is the excitation,350

rather than inhibition, that underlies the sublinear responses of neurons since both excitation and inhibition are351

suppressed with an addition of non-preferred stimulus (Sato et al., 2016). Recent experiments suggest that a352

feedforward mechanism is sufficient to account for the sublinear responses of neurons in primary visual cortex353

without invoking a recurrent mechanism (Barbera et al., 2022; Priebe and Ferster, 2006), though mechanisms354

for higher-order visual areas are not studied. In our model, we find that the normalization strength of a neuron is355

highly anti-correlated with the inhibitory current it receives, and is only weakly correlated with the feedforward356

and recurrent excitatory currents (Figure 3A-C). Moreover, the covariance with the inhibitory current also ex-357

plains the relationship between spike count correlation and normalization. Neurons with stronger normalization358

receive relatively more inhibitory currents, which cancel out more correlation in their currents, making those359

neurons less correlated with other neurons. Our results are consistent with previous theoretical work which sug-360

gests that the population firing rate patterns in cortical circuits are primarily determined by inhibitory currents361

(Mongillo et al., 2018). Together, our results emphasize the role of inhibition in determining the normalization362

strength and neuronal correlations.363

Numerous experimental work has demonstrated that the neural mechanisms of normalization and selective364

attention are closely related (Carandini and Heeger, 2012; Ni et al., 2012; Reynolds and Heeger, 2009; Reynolds365

et al., 1999; Treue and Maunsell, 1996). In particular, the neuronal heterogeneity of attentional modulation in366

firing rates is highly correlated with the neuronal heterogeneity of normalization, meaning that neurons that367

demonstrate stronger normalization are also more modulated by attention (Lee and Maunsell, 2009; Ni et al.,368

2012). In addition, the spike count correlations among neurons with stronger normalization are also more369

modulated by attention (Verhoef and Maunsell, 2017). Both experimental and modeling work suggests that370

inhibitory neurons are more targeted by attention than excitatory neurons, which could stabilize population371

dynamics and reduce neural correlations (Huang et al., 2019; Kanashiro et al., 2017; Mitchell et al., 2007;372
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Thiele et al., 2016). Our finding of the strong correlation between normalization strength and inhibitory current373

(Figure 3C) suggests that inhibition may be the unifying mechanism that relates the neuronal heterogeneity of374

normalization and attentional modulation. Future extension of our model is needed to explore the interplay375

between normalization and attention mechanisms in enhancing the neural representation of attended stimuli.376

Several network models have been proposed to explain the normalization mechanism (Heeger and Zemlianova,377

2020; Rubin et al., 2015; Somers et al., 1998). One of them, the stabilized supralinear network (SSN) model378

(Hennequin et al., 2018; Rubin et al., 2015), is closely related to our model. The SSN model also has strong379

recurrent excitation which is stabilized by inhibitory feedback and the recurrent connections depend on tuning380

similarity. The SSN model reproduces the sublinear summation of neuronal responses to two stimuli and the381

quenching of neuronal variability by stimulus contrast. The key differences between our model and the SSN382

model are that our model consists of spiking neurons instead of rate units and that the population rate of our383

model do not show strong saturation as input strength increases. Nevertheless, both our model and the SSN384

model may share common mechanisms for generating heterogeneous normalization strength. For comparison,385

we implemented the two-dimensional version of the SSN model with probabilistic connections to introduce386

heterogeneity (Supp Fig S8; Rubin et al. (2015)). We found that the normalization index of a neuron strongly387

depended on the neuron’s preferred orientation in the SSN model, which was not observed in our experimental388

data and the spiking network model (compare Supp Fig S8B with Supp Fig S2). There was a similar relationship389

between spike count correlations and normalization indices in the SSN model, however, the relationship was390

absent after we matched for the distribution of tuning preferences across normalization indices (Supp Fig S8C).391

Past work has proposed several computational benefits of normalization (summarized in review Carandini and392

Heeger (2012)). For example, by adapting neurons’ response range based on background input, neurons can393

remain sensitive to small changes in stimulus. This is most evident for retinal neurons which need to respond to394

light intensities over a range of several orders of magnitude (Rieke and Rudd, 2009). In visual cortex, it has been395

shown that divisive normalization can reduce the statistical redundancy present in natural images (Schwartz and396

Simoncelli, 2001). Divisive normalization can also implement marginalization in the framework of probabilistic397

population code (Beck et al., 2011). Complementary to these works, our results reveal additional benefits of398

normalization, that is, neurons with stronger normalization encode more stimulus information per spike (Figure399

5).400

In addition, we demonstrate that the neuronal heterogeneity of normalization contributes to coding. Past works401

have shown that cellular heterogeneity, such as in spiking threshold or excitability, can increase network re-402

sponsiveness (Di Volo and Destexhe, 2021), improve network resilience to changes in modulatory inputs (Hutt403

et al., 2023) and enhance the mutual information between stimulus and neural responses (Kastner et al., 2015;404

Sharpee, 2017). Heterogeneity in neuronal time scales can also improve learning in tasks with rich intrinsic405

temporal structure (Perez-Nieves et al., 2021). Our work is different from these works in that our model neu-406

rons are homogeneous in terms of their cellular properties, and the heterogeneity in their response properties407

is generated by network interactions. The heterogeneous normalization strength allows the neural population408

to encode different contrast combinations of the two images (Figure 4). In networks with less heterogeneity409

of normalization, more neurons are needed to encode the same amount of information (Figure 6B). Therefore,410

neuronal heterogeneity in normalization improves the efficiency of information coding. Interestingly, we find411

that heterogeneity has a larger impact on the information of image contrast than on the information of orien-412

tation. Future work is needed to investigate how neuronal heterogeneity impacts population representational413

geometry of multiple stimulus features in circuit models.414
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Methods415

Spiking neuron network model of visual cortex416

The model consists of two layers of spiking neurons, modeling the primary visual cortex (V1) and a higher-417

order visual area (V4 or MT), respectively (Figure 1A). Neurons from the two layers are arranged on a uniform418

grid covering a a rectangle of size Γ = [0, 2]× [0, 1]. There are 5,000 excitatory neurons in the V1 layer, 20,000419

excitatory neurons and 5,000 inhibitory neurons in the V4/MT layer.420

V1 model neurons V1 neurons are modeled as linear-nonlinear Poisson spiking neurons, following previous421

models (Huang et al., 2022; Kanitscheider et al., 2015). V1 neurons are divided into two populations, V11 and422

V12, each of which has a non-overlapping receptive field centering on each Gabor image, respectively. Neurons423

located at the left half of the rectangle Γ ([0, 1]× [0, 1]) have receptive fields centered at and with the same size424

as image 1 , while those located at the right half of the rectangle ([1, 2] × [0, 1]) have receptive fields centered425

at and with the same size as image 2. The receptive field of a neuron from population k (k = 1, 2) is modeled426

as a Gabor filter:427

F
(k)
i (x, y) = exp

(
− 1

2σ2

(
(x− xk)

2 + (y − yk)
2
))

cos

(
2π

λ
((x− xk) cos θi + (y − yk) sin θi)

)
, (3)

where the subscript i denotes the neuron’s index, σ = 0.2 is the standard deviation of the Gaussian envelope,428

λ = 0.6 represents the wavelength of the sinusoidal factor, x and y are the coordinates of the neuron, (xk, yk) is429

the center of the receptive field ((x1, y1) = (0.5, 0.5) for V11 neurons and (x2, y2) = (1.5, 0.5) for V12 neurons)430

and θi is the preferred orientation of neuron i. The preferred orientation of each neuron was assigned according431

to a pinwheel orientation map generated with the method from Kaschube et al. (2010) (Supp Materials Eq. 20).432

The preferred orientation at (x, y) is θi(x, y) = angle(z(x, y))/(2π) and433

z(x, y) =

n−1∑
j=0

exp

(
i
2π

Λ
(lj (cos(jπ/n)x+ sin(jπ/n)y) + ϕj)

)
, n = 30

where Λ = 0.125 is the average column spacing, lj = ±1 is a random binary vector and the phase ϕj is434

uniformly distributed in [0, 2π].435

Spike trains of V1 neurons are generated as inhomogeneous Poisson process with instantaneous rate436

ri(t) =

[∫∫
F

(k)
i (x, y) · m̃k(x, y, t)dxdy

]
+

, (4)

where m̃k(x, y, t) is the pixel value of image k (k = 1, 2) defined below (Eq. 6) and [x]+ =

{
x, x ≥ 0

0, x < 0
437

denotes half rectification. In the presence of image k, the average of rate of V1k neurons was 10 Hz. In the438

absence of image k, V1k neurons had a spontaneous rate of 5 Hz.439

Two Gabor images of orthogonal orientations are presented to the V1 neurons, either individually or simulta-440

neously. Each image has 25× 25 pixels and is defined as441

mk(x, y) = ck exp

(
− 1

2σ2

(
(x− xk)

2 + (y − yk)
2
))

cos

(
2π

λ
((x− xk) cos θk + (y − yk) sin θk)

)
(5)
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where ck is the contrast of image k, and σ and λ are the same as the Gabor filters of the V1 neurons (Eq. 3).442

Each pixel is corrupted by independent additive noise as443

m̃k(x, y, t) = mk(x, y) + ξk(x, y, t), k = 1, 2, (6)

where ξk(x, y, t) is modeled as Ornstein-Uhlenbeck process444

τndξk = −ξkdt+ σndW (7)

with τn = 40 ms, σn = 3.5 and dW being a Wiener process.445

V4/MT model neurons V4/MT layer is a recurrently coupled network of excitatory (α = e) and inhibitory446

neurons. The neuronal and synaptic parameters are the same as in our previous model (Huang et al., 2019).447

The preferred orientation of each neuron was assigned with a separately generated orientation map using the448

same method as that of V1 neurons. Each neuron is modeled as an exponential integrate-and-fire (EIF) neuron449

whose membrane potential is described by:450

Cm
dV α

j

dt
= −gL(V

α
j − EL) + gL∆Te

(V α
j −VT)/∆T + Iαj (t). (8)

A spike is generated each time V α
j (t) exceeds a threshold, Vth. Then the neuron’s membrane potential is held451

for a refractory period, τref, after which it is reset to a fixed value Vre. Neuron parameters for excitatory neurons452

are τm = Cm/gL = 15ms, EL = −60mV, VT = −50mV, Vth = −10mV, ∆T = 2mV, Vre = −65mV and453

τref = 1.5ms. Inhibitory neurons are the same except τm = 10ms, ∆T = 0.5mV and τref = 0.5ms. The total454

current to the jth neuron is:455

Iαj (t)

Cm
=

NF∑
k=1

JαF
jk√
N

∑
n

ηF(t− tF,k
n ) +

∑
β=e,i

Nβ∑
k=1

Jαβ
jk√
N

∑
n

ηβ(t− tβ,kn ) (9)

where N = Ne +Ni is the total number of the network population. The postsynaptic current is given by456

ηβ(t) =
1

τβd − τβr

{
e−t/τβd − e−t/τβr , t ≥ 0

0, t < 0
(10)

where τer = 1ms, τed = 5ms for excitatory synapses and τir = 1ms, τid = 8ms for inhibitory synapses. The457

feedforward synapses from V1 neurons to V4/MT neurons have a fast and a slow component.458

ηF(t) = pfηe(t) + psηs(t) (11)

with pf = 0.2, ps = 0.8. ηs(t) has the same form as equation 10 with a rise time constant τ s
r = 2ms and a decay459

time constant τ s
d = 100ms.460

Network connections There are two types of feedforward and recurrent excitatory connections projecting461

to the excitatory V4/MT neurons. 85% of connections are generated according to connection probability that462

depends only on the physical distance between neurons (Eq. 12). The remaining 15% of excitatory connections463

are randomly chosen from similarly tuned neurons and do not depend on space. The probability of inhibitory464
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projections and the projections to the inhibitory neurons only depends on distance (Eq. 12) and not on tuning465

similarity.466

The distance-dependent connections are sampled according to probability function, pαβ(x1,x2), between a467

neuron from population β at location x1 = (x1, y1) to a neuron from population α at location x2 = (x2, y2),468

α, β ={e, i}.469

pαβ(x1,x2) = p̄αβg(x1 − x2, y1 − y2;σβ). (12)

Here p̄αβ is the mean connection probability and470

g(x, y;σ) =
1

2πσ2

( ∞∑
k=−∞

e−(x+2k)2/(2σ2)

)( ∞∑
k=−∞

e−(y+k)2/(2σ2)

)
, (13)

is a wrapped Gaussian distribution periodic on the domain Γ. The excitatory and inhibitory recurrent connection471

widths of the V4/MT layer were σe = σi = 0.2 and the feedforward connection width from the V1 layer to the472

V4/MT layer was σffwd = 0.1. A presynaptic neuron was allowed to make more than one synaptic connection473

to a single postsynaptic neuron.474

The long-range excitatory connections are sampled between similarly tuned neurons, i.e. cos (θi − θj) ≥ 0.6,475

where θi and θj are the preferred orientations of neuron i and j.476

The recurrent synaptic weights within the V4/MT layer were Jee = 80mV, Jei = −240mV, Jie = 40mV477

and Jii = −300mV. Note that each synaptic weight was scaled by 1/
√
N (Eq. 9). The mean connection478

probabilities were p̄ee = 0.01, p̄ei = 0.04, p̄ie = 0.03 and p̄ii = 0.04. The out-degrees were Kout
ee = 200,479

Kout
ei = 800, Kout

ie = 150 and Kout
ii = 200. The feedforward connection strengths from V1 layer to V4/MT480

layer were JeF = 160mV and JiF = 140mV, with probabilities p̄eF = 0.05 and p̄iF = 0.05 (out-degrees481

Kout
eF = 1000 and Kout

iF = 250).482

Network with matched in-degrees In the network with matched-in-degrees (Figure 6), the number of presy-483

naptic neurons (in-degrees) that project to each V4/MT neuron was matched to be the same across each popula-484

tion for each type of connections (V4/MT excitatory, V4/MT inhibitory, or V1 excitatory), while the out-degrees485

were allowed to vary. All other parameters including synaptic weights and connection probabilities were the486

same as the default network.487

Simulation All simulations were performed on the CNBC Cluster in the University of Pittsburgh. All simula-488

tions were written in a combination of C and Matlab (Matlab R 2021b, Mathworks). The differential equations489

of the neuron model were solved using forward Euler method with time step 0.05 ms.490

Datasets and analysis491

Neuronal activity was collected from four adult male rhesus monkeys (Macaca mulatta; monkeys BR, JD, ST,492

SY) as they were passively fixating at superimposed orthogonal drifting gratings at a range of contrasts (details493

are described in Ruff et al. (2016)). All animal procedures were approved by the Institutional Animal Care and494

Use Committees of the University of Pittsburgh and Carnegie Mellon University.495

MT data was collected with 24-channel V-Probes and 24-channel linear microarrays in area MT of two monkeys496

(Figure 2B). There were a total of 2,133 visual stimulus trials for 769 units and 10,600 pairs from 28 recording497
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sessions. V4 data was collected with a pair of 6×8 microelectrode arrays implanted in area V4 of two monkeys498

(Figure 2C). In one monkey, both arrays were in V4 in the right hemisphere. In the other monkey, arrays were499

implanted bilaterally in area V4. There were a total of 2,160 visual stimulus trials for 1,276 units and 39,719500

pairs from 21 recording sessions. V1 data was collected with a 10× 10 microelectrode array implanted in area501

V1 of two monkeys (Figure S5). There were a total of 1,467 visual stimulus trials for 2,124 units and 97,169502

pairs from 23 recording sessions.503

In our analysis, we included units if their response to 0% contrast stimuli was significantly different from the504

average response to stimuli with at least 50% contrast (t-test, P < 0.01). Pairs of units that came from the505

same electrode were excluded for correlation analysis. For each unit recorded in each stimulus condition, spike506

counts were calculated from 30 to 230 ms for V1 units and from 50 to 250 ms for V4 and MT units after stimulus507

onset, to allow for latency in response. Each stimulus was presented for 200 ms. We quantified spike count508

correlations as the Pearson’s correlation coefficient between spike count responses to repeated presentations of509

the same stimulus. This measure is extremely sensitive to outliers, so we did not analyze trials for which the510

response of either unit was more than three standard deviations away from its mean (following the convention511

of Kohn and Smith (2005)).512

To compute the normalization index of recorded units, we included the mean spike counts in response to513

stimulus conditions where the contrast of one stimulus was 50% and the other was 0%, and where the contrast514

of both stimuli were 50%. The normalization index was computed using Equation 14 for each combination515

of orthogonal drifting gratings and then averaged across all combinations within a session. To compute the516

selectivity of recorded units, we included the mean spike counts in response to stimulus conditions where the517

contrast of one stimulus was 50% and the other was 0%. Tuning similarity was quantified as the Pearson’s518

correlation coefficient between mean spike count responses to each stimulus direction presented alone, with519

50% contrast and the contrast of the other direction equal to 0%. The spike count correlation of a pair of units520

in one session was averaged across the stimulus conditions used to compute the normalization index. In Figure521

2B, 2C, and S5, the spike count correlation was averaged across unit pairs from all recording sessions.522

Statistical methods523

Normalization index The normalization index of a neuron is defined as the sum of a neuron’s firing rate to524

each one of the two stimuli when presented alone divided by its firing rate when both stimuli are presented525

togenther (Ruff et al., 2016):526

norm index = (FRstim1 + FRstim2)/FRboth. (14)

A normalization larger than 1 indicates sublinear summation.527

The current normalization index is defined similarly:528

current norm index = (Istim1 + Istim2)/Iboth, (15)

where I is the average recurrent excitatory, recurrent inhibitory or feedforward excitatory current a neuron529

receives.530

Spike count correlation and current covariance We computed the spike count correlation of V4/MT model531

neurons when both images of orthogonal orientations were presented together. Spike counts were computed532
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using a sliding window of 200 ms with 50 ms step size and the Pearson correlation coefficients were computed533

between pairs of neurons. In Figure 2A, there were 10 simulations and each simulation was 20 seconds long.534

The first 1 second of each simulation was excluded from the correlation analysis to avoid transient effects.535

Neurons whose average firing rates were within one standard deviation from the mean population rates in all of536

the three stimulus conditions (image 1 alone, image 2 alone, or both images presented together) were included.537

In total, 8663 excitatory V4/MT neurons were sampled to compute spike count correlations.538

To compute current covariance (Figure 3D,E), each type of synaptic currents (feedforward excitation, recurrent539

excitation and recurrent inhibition) to each neuron were recorded every 10 ms. The excitatory current combines540

both feedforward and recurrent excitation. In total, 4163 neurons were sampled to compute current covariance.541

The simulation was 20 seconds long.542

Tuning similarity Tuning similarity between a pair of neurons is defined as the Pearson correlation between543

their tuning curves of orientation:544

tuning similarity = corr, (fi(θ), fj(θ)) (16)

where fi and fj are neuron i and neuron j’s tuning curves, respectively. Tuning curves were computed using545

one image.546

Selectivity Selectivity measures how selective a neuron is to stimulus 1 compared to stimulus 2.547

selectivity =
FRstim1 − FRstim2

FRstim1 + FRstim2
. (17)

Selectivity takes a value between −1 and 1. The larger the absolute value of selectivity is, the more selective the548

neuron is to its preferred stimulus. A selectivity equaling 0 means there is no preference of the neuron between549

the two stimuli.550

Linear Fisher information To compute the linear Fisher information, stimulus 2 was presented during 200551

ms intervals (ON) interleaved with 300 ms OFF intervals, during which the spike trains of V12 neurons were552

independent Poisson process with rate 5 Hz. Meanwhile stimulus 1 was present throughout a simulation.553

Spike counts of V4/MT excitatory neurons during the ON intervals were used to compute the linear Fisher554

information. Each simulation was 20 seconds long. The first spike count in each simulation was excluded. The555

connectivity matrices were fixed for all simulations and the initial state of each neuron’s membrane potential556

was randomized in each simulation.557

For the linear Fisher information of contrast, the contrast of stimulus 2 during ON intervals was randomly558

chosen from c1 = c+ δc/2 and c2 = c− δc/2, where c = 0.5 and δc = 0.01. For the linear Fisher information559

of orientation, the orientation of stimulus 2 during ON intervals was randomly chosen from θ1 = θ+ δθ/2 and560

θ2 = θ − δθ/2, where θ = 0.5π rad and δθ = 0.02 rad. The linear Fisher information of V4/MT neurons was561

computed using a bias-corrected estimate (Kanitscheider et al. (2015))562

Îbc =
(f2 − f1)

⊤

δx
(
Q1 +Q2

2
)−1 (f2 − f1)

δx

2Ntr −N − 3

2Ntr − 2
− 2N

Ntrδx2
, (18)
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where δx = δc or δθ, fi and Qi are the empirical mean and covariance, respectively, for ci or θi. Ntr is the563

number of trials for each ci or θi.564

We used the fitting algorithm proposed by Kafashan et al. (2021) to estimate the asymptotic value of the linear565

Fisher information, I∞, at the limit of N → ∞, where N is the number of sampled neurons (Figure 6B,C).566

Briefly, the theory of information-limiting correlations (Moreno-Bote et al. (2014)) shows that the linear Fisher567

information, IN , in a population of N neurons can be decomposed into a limiting component, I∞, and a568

nonlimiting component I0(N),569

IN =
1

1
I0

+ 1
I∞

, (19)

where we assume that the nonlimiting component increases linearly with N , i.e., I0 = aN . Hence, Equation570

19 can be rewritten as571

1/IN = (1/a)(1/N) + 1/I∞, (20)

which shows that 1/IN scales linearly with 1/N with 1/I∞ as the intercept. Hence, we do a linear fit of 1/IN572

versus 1/N , with N varying from 8 to 12000 and estimate 1/I∞.573

The linear Fisher information from V1 neurons can be estimated analytically as ((Kanitscheider et al., 2015),

I inF (s) =
∂f

∂s

⊤
Σ−1(s)

∂f

∂s
,

where s = c or θ, with
∂f

∂s
= TFi ·

∂m(c, θ)

∂s
,

Σij(s) = Fi · FjVar(ξ
T ) + δijTFi ·m(c, θ),

where ξT (t) =
∫ t+T
t ξ(u)du, T is the time window for spike counts, and δij is a Kronecker delta, which is574

1 if i = j, and 0 otherwise. We can calculate the variance of the integrated noise over time window T as575

Var(ξT ) = σ2
n[T − τn(1− exp (−T/τn))].576

In Figure 5, a number of neurons were randomly sampled from the model V4/MT excitatory neurons whose577

normalization indices were within a specified range. The number of sampled neurons, N , was logarithmically578

spaced between 1 and 8103. For N < 545 neurons, the number of samplings for each N decreased from 200 to579

14 proportionally with log(N), rounded to the nearest integer. For N ≥ 545 neurons, there were 5 samplings580

for each N . The linear Fisher information of the sampled group of neurons was divided by the average number581

of spikes from the sampled group of neurons during the time window used for calculating the Fisher information582

(T = 200 ms). In Figure 6B,C, the number of neurons were N = 8, 16, 31, 62, 125, 250, 500, 1000, 2000,583

4000, 8000, 12000. There were 20 samples of neurons for each N . Neurons with firing rates less than 1 Hz584

were excluded. There were 304,000 spike counts in total for c1 and c2, or θ1 and θ2 conditions.585
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Figure S1: Related to Figure 1. The V4/MT network activity is stable and asynchronous in both sponta-
neous and evoked states.
(A1) Spike raster of V4/MT neurons when both V11 and V12 neurons have homogeneous rates of 10 Hz. 500
neurons were randomly sampled from the V4/MT population. (A2) Spike raster of V4/MT neurons when two
images are simultaneously presented. (B) The firing rate distributions of V4/MT neurons when only stimulus
1 (red), only stimulus 2 (green) or both stimuli are presented (black). (C) The distributions of spike count
correlations of V4/MT neuron pairs from the three stimulus conditions. Dashed lines indicate the average spike
count correlations (0.012 when only stimulus 1 is presented, 0.012 when only stimulus 2 is presented, 0.007
when both stimuli are presented).
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Figure S2: Related to Figure 2. The normalization index of a neuron is independent from its tuning
preference in both the model and data.
(A) The normalization index and the tuning preference of model V4/MT neurons are statistically independent.
We use permutation test to assess the statistical significance of the null hypothesis that the normalization index
and tuning preference are independent. First, we calculate the mutual information between the normalization
index and tuning preference of V4/MT neurons. Then, we shuffle the normalization index of neurons 2000
times and recalculate the mutual information for each permutation. Lastly, we compute the p-value as the
proportion of permutations with higher mutual information than that of the original observation. There is no
significant dependence between the normalization index and the tuning preference of model V4/MT neurons
(p = 0.31). (B) The normalization index and the tuning preference of experimentally recorded neurons are
statistically independent in V1 area (B1, p > 0.05 for all 23 recording sessions), MT area (B2, p > 0.05 for 21
out of 28 recording sessions), and V4 area (B3, p > 0.05 for 14 out of 21 recording sessions).
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Figure S3: Related to Figures 1 and 3. Neurons exhibit a range of normalization strength in networks
with strong recurrent coupling and disordered connections.
(A) The schematic of the disordered network. The excitatory and inhibitory connections within V4/MT layer
are random and with the same connection probability as those of the default model with spatial structure. The
two V1 populations project randomly to the excitatory and inhibitory neurons in the V4/MT layer with the
same connection probabilities as those in the default model. A fraction, α, of neurons in the V4/MT layer can
receive input from both V1 populations, which represents the overlap of the feedforward projections from V11
and V12. The spike trains of V1 neurons are independent Poisson processes with fixed rates. In Stimulus 1
alone condition, V11 neurons have firing rate of 10Hz and V12 neurons have rate 5Hz. In Stimulus 2 alone
condition, V11 neurons have firing rate of 5Hz and V12 neurons have rate of 10Hz. When both stimuli are
presented, both V11 and V12 neurons fire at 10 Hz. (B) The distribution of normalization indexes is broader in
networks with smaller overlap, α. The distribution of normalization indexes from the default network (black;
same as that in Figure 1C) is similar to that of the random network model with α = 0.6. The normalization
index of neurons in the random network model is calculated in the same way as in the default model, i.e.
norm index = (FRstim1 + FRstim2)/FRboth. (C) Relationship between current and rate normalization indexes
in a random network model with α = 0.6. Only the normalization index of recurrent inhibitory current has a
strong correlation with that of the firing rate. The range of the normalization index of feedforward excitatory
current is very small in the random network model, since there is no spatial or tuning dependent connections.
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Figure S4: Related to Figures 1 and 2. Networks with weak recurrent coupling produce homogeneous
normalization strength and weak dependence of spike count correlations on normalization.
(A) The distribution of normalization indexes is much narrower in a network with weak recurrent coupling
(black) compared to that in the default network (gray). The gray curve is the same as in Figure 1C but with
different scale of the y-axis. (B) The dependence of spike count correlations on normalization index was
weaker in the network with weak recurrent coupling. The range of spike count correlations between pairs of
model V4/MT neurons was 0.008 in the network with weak recurrent coupling, compared to a range of 0.02 in
the default network (Figure 2A1). In the network with weak recurrent coupling, the strengths of all recurrent
connections were decreased to 10% of those in the default network. Independent white noise currents with
mean 0 and standard deviation 6.8 mV/ms were applied to every excitatory and inhibitory V4/MT neuron such
that the neurons’ f-I curve was the same as that in the default network. The strengths of feedforward projections
were scaled down by a factor of 2.9 to keep the mean firing rate of V4/MT neurons the same as that in the default
network. The default network was the same as that used in Figures 1 and 2.
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Figure S5: Related to Figure 1 and 2. Heterogeneity of normalization index and normalization-related
modulation of spike count correlations are also observed in experimental data recorded from V1 area.
(A) The recorded V1 neurons exhibit a similar range of normalization indexes as V4 and MT neurons (Figure
1D). (B) Spike count correlations between recorded V1 neurons depend on their normalization indexes. Same
format as Figure 2A1,B1,C1). (C) Across all levels of tuning similarity, the spike count correlations between
recorded V1 neurons with similar normalization indexes are consistently larger than those of neurons with
distinct normalization indexes. Same format as Figure 2A4,B4,C4). Data from Ruff et al., 2016.
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Figure S6: Related to Figures 1 and 2. Heterogeneity in normalization index and normalization-related
modulation of spike count correlations in the model in response to two superimposed Gabor images.
(A) Distribution of normalization indexes (Eq. 14 where FRboth was the firing rate when two superimposed
Gabor images were presented. (B) Spike count correlations as a function of the normalization indexes of the
two neurons in the pair. (C) Neurons with similar normalization indexes have higher noise correlations than
those with different normalization indexes. This relationship is consistent across neuron pairs with various
tuning similarities. Model results with superimposed Gabor images are qualitatively the same as those with
two separate Gabor images (Figures 1C, 2A1,A4).

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.22.624903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.22.624903
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 2 3
1.5

2

2.5

3

3.5

cu
rre

nt
 (a

bs
ol

ut
e 

va
lu

e)

Feedforward excitation
A1

1 2 3
1.5

2

2.5

3

3.5
Recurrent excitation

A2

1 2 3
3

4

5

6
Recurrent inhibition

A3

1 2 3
normalization index

200

250

300

350

nu
m

be
r o

f c
on

ne
ct

io
ns

B1

1 2 3
normalization index

150

200

250

300
B2

1 2 3
normalization index

150

200

250

300
B3

Figure S7: Related to Figure 3. The normalization index of neurons is strongly correlated with the
magnitude of the mean recurrent inhibitory current.
(A) There is a strong correlation between the firing rate normalization indexes and the average inhibitory current
a neuron receives when two images are presented (A3), and only weak correlations with the feedforward (A1)
and recurrent (A2) excitatory currents. (B) The correlation between normalization and the number of excitatory
or inhibitory input connections is weak.
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Figure S8: The normalization index of a neuron strongly depends on the neuron’s preferred orientation
in the stabilized supralinear network (SSN) model.
The SSN model is a large-scale, probabilistically connected, 2D model of a visual area. E/I units are arranged
on a grid of 75×75. Preferred orientations are assigned according to a superposed orientation map. Parameters
of the model are the same as those used in Figure 6 of Rubin et al., 2015. Additionally, we apply globally
correlated additive noise to each unit, ξi, where ξi satisfies τndξi = −ξidt+ σn(

√
cdW0 +

√
1− cdWi), with

dW0 and dWi being Wiener process, τn = 40 ms, σn = 3.5, and correlation c = 0.2. (A) The normalization
index of model neurons is broadly distributed in the SSN model. (B) The normalization index and the tuning
preference of model SSN neurons are statistically dependent (p = 0.001). (C1) Spike count correlations
between a pair of neurons as a function of the normalization indexes of the pair. (C2) The dependence of spike
count correlation on normalization indexes is absent after matching for the distribution of tuning preferences of
neurons across normalization indexes (C2).
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