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When subjected to stress, terminally differentiated neurons are susceptible to reactivate
the cell cycle and become hyperploid. This process is well documented in Alzheimer’s
disease (AD), where it may participate in the etiology of the disease. However, despite its
potential importance, the effects of neuronal hyperploidy (NH) on brain function and its
relationship with AD remains obscure. An important step forward in our understanding
of the pathological effect of NH has been the development of transgenic mice with
neuronal expression of oncogenes as model systems of AD. The analysis of these mice
has demonstrated that forced cell cycle reentry in neurons results in most hallmarks
of AD, including neurofibrillary tangles, Aβ peptide deposits, gliosis, cognitive loss,
and neuronal death. Nevertheless, in contrast to the pathological situation, where a
relatively small proportion of neurons become hyperploid, neuronal cell cycle reentry
in these mice is generalized. We have recently developed an in vitro system in which
cell cycle is induced in a reduced proportion of differentiated neurons, mimicking the
in vivo situation. This manipulation reveals that NH correlates with synaptic dysfunction
and morphological changes in the affected neurons, and that membrane depolarization
facilitates the survival of hyperploid neurons. This suggests that the integration of
synaptically silent, hyperploid neurons in electrically active neural networks allows their
survival while perturbing the normal functioning of the network itself, a hypothesis that
we have tested in silico. In this perspective, we will discuss on these aspects trying to
convince the reader that NH represents a relevant process in AD.

Keywords: neuronal cell cycle reentry, SV40 large T antigen, neuron hypertrophy, neurite retraction, synaptic
dysfunction, neural network modeling, synaptic firing rate, oscillatory patterns

INTRODUCTION

As the nervous system ages, it undergoes functional alterations that diminish its performance and,
as these changes increase, brain homeostasis becomes compromised resulting in neurodegenerative
conditions including Alzheimer’s disease (AD). A plethora of neuroanatomical and functional
alterations in the nervous system accompanying the process of aging and leading to AD-associated
neurodegeneration has so far been described. Among these changes, DNA level variation and
aneuploidy (Cuccaro et al., 2017; Shepherd et al., 2018) as well as cell cycle reentry in neurons
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leading to increased DNA levels [i.e., neuronal hyperploidy
(NH)] (Frade and Ovejero-Benito, 2015) are known to precede
and recapitulate the classical neuropathological signs of AD
(Yang et al., 2001; Arendt et al., 2010; Frade and López-Sánchez,
2017). In some cases, NH results in full DNA duplication (i.e.,
neuronal tetraploidy). This latter condition affects around 2–
3% of neurons in AD (Mosch et al., 2007; López-Sánchez et al.,
2017), a proportion that increases to around 8% when specific
neuronal subtypes are evaluated (López-Sánchez et al., 2017).
Once chromosomes have been fully replicated in these neurons,
the latter may remain as 2N cells with 4C DNA content, as
observed in G2, or as 4N cells, if they undergo premature
chromosomal separation (Spremo-Potparević et al., 2008; Bajić
et al., 2009). Moreover, above 30% of neurons become hyperploid
in the middle stages of AD (Arendt et al., 2010). Since the fate
of hyperploid neurons is delayed cell death (Yang et al., 2001;
Arendt et al., 2010) these numbers likely underestimate the actual
proportion of AD-affected neurons undergoing NH.

The involvement of NH in the etiology of AD has been directly
proven by forcing neuronal cell cycle reentry in transgenic mice
expressing oncogenes such as SV40 T large antigen (TAg) (Park
et al., 2007) or c-Myc (Lee et al., 2009) under the control of the
neuron-specific CAMKII promoter. This manipulation results
in neuropathological hallmarks of AD, including tau protein
hyperphosphorylation and neurofibrillary tangles, extracellular
deposits of Aβ peptide, neuronal cell death, gliosis, and cognitive
deficits. McShea et al. (2007) have also shown that c-Myc/Ras-
induced cell cycle reentry in primary cortical neurons triggers tau
phosphorylation that result in conformational changes similar to
that seen in AD.

NH might also lead to other alterations compromising normal
brain function, thus participating in several aspects of the
etiology of AD (Frade and López-Sánchez, 2010). In this regard,
the increase of ploidy levels is associated with nuclear and
cellular hypertrophy (Orr-Weaver, 2015), and several lines of
evidence suggest that these changes can be detected in AD
(Frade and López-Sánchez, 2010). In this article, we will explore
the morphological changes observed in cortical neurons forced
to reactivate the cell cycle in response to TAg expression, a
procedure recently used by our laboratory to induce hyperploidy
in a small proportion of cortical neurons, thus mimicking
the in vivo situation (Barrio-Alonso et al., 2018). By using
this model, we demonstrated that neuronal hyperploidization
correlates with synaptic dysfunction (Barrio-Alonso et al., 2018),
a known alteration occurring at early stages of AD (Scheff et al.,
2006), and that membrane depolarization with high K+ facilitates
the survival of hyperploid neurons without reversing synaptic
dysfunction in these cells (Barrio-Alonso et al., 2018). This
suggests that AD-associated hyperploid neurons can be sustained
in vivo if integrated in active neuronal circuits while remaining
synaptically silent (i.e., without capacity to fire action potentials).
Given that each cortical neuron can establish connections with
hundreds other neuronal cells (Markram et al., 2015), it is
conceivable that a relatively small fraction of silent hyperploid
neurons could disrupt the normal functioning of the circuits
in which they are inserted (Lusch et al., 2018). If this were
the case, NH might contribute to cognitive impairment at early

stages of AD due to synaptic dysfunction, while triggering
neuronal cell death at later stages (Yang et al., 2001; Arendt
et al., 2010; Barrio-Alonso et al., 2018). On this basis, we have
also explored whether the presence of hyperploid neurons could
disrupt the normal functioning of the circuits in which they are
inserted. As a first approximation to the problem, this analysis
has been performed in silico, by simulating the outcome of
a neural network that contains different proportions of silent,
hyperploid neurons.

RESULTS AND DISCUSSION

Morphological Changes Induced by Cell
Cycle Reentry in Cortical Neurons
We exploited the capacity of TAg to induce cell cycle reentry
in cortical neurons (Barrio-Alonso et al., 2018) to explore the
effects of hyperploidy on neuronal morphology. This analysis
demonstrated that, 48 h after lipofection, the soma of cortical
neurons expressing TAg was significantly larger than that of
control neurons expressing either LacZ or TAg K1 (K1), an
E107K TAg variant that lacks binding capacity to the pRb family
members and therefore cannot induce cell cycle reactivation
(Zalvide and DeCaprio, 1995; Figures 1A,B). Since no significant
differences were observed between cell somas of neurons
lipofected with LacZ or K1 (Figure 1B), we concluded that the
effect of TAg on cell soma size is specific on its capacity to induce
cell cycle reentry/hyperploidy (Barrio-Alonso et al., 2018).

We also found that, at this time point, TAg-induced cell
cycle reentry specifically triggered a significant reduction in the
length of the dendritic tree of cortical neurons, as compared with
neurons lipofected with LacZ or K1 (Figure 1C; Supplementary
Figure 1). The observed length reduction correlated with the
degree of dendrite branching, evaluated through Sholl analysis,
which was significantly reduced in TAg-lipofected neurons
(Figure 1D). Again, this effect derives from the capacity of TAg
to induce cell cycle re-entry as the K1 construct did not modified
the branching profile (Figure 1D). The reduction of dendritic
length and branching observed in TAg-lipofected neurons is
consistent with studies carried out with mouse models of AD
and postmortem material from AD patients in which a reduction
in the total dendritic area was evident (Moolman et al., 2004).
Interestingly, this reduction of dendritic length and branching
mimics what has been observed in mitotic neurons induced to
reactivate the cell cycle with a truncated form of cyclin E/Cdk2
(Walton et al., 2019).

Simulation of Neural Networks
Containing Silent Hyperploid Neurons
The morphological changes observed in neurons that reactivate
the cell cycle, along with the capacity of cell cycle reentry to
trigger synaptic dysfunction in neurons (Barrio-Alonso et al.,
2018) suggest that NH participates in the etiology of Alzheimer
by affecting neurons’ capacity to fire action potentials and
therefore altering the neuronal circuits in which hyperploid
neurons are inserted.
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FIGURE 1 | Effect of cell cycle reentry on the neuronal soma and dendritic tree. (A) TAg-lipofected neurons incorporating BrdU exhibit a larger soma than both
control (LacZ) and K1-lipofected neurons (representative examples are shown). Arrow: neuron lipofected for 48 h with RFP and the indicated protein. Scale bar:
20 µm. (B) Soma size quantification in control (LacZ), K1-lipofected, and TAg-lipofected neurons, normalized to control (n = 3). (C) Normalized length of the dendritic
tree in neurons lipofected for 48 h with LacZ, K1, or TAg (n = 3). (D) Average number of intersections for each distance from the soma in lipofected neurons with
LacZ, Tag, or K1 (n = 3). Hashtags: statistical significance between LacZ and TAg; asterisks: statistical significance between K1 and TAg. ***p < 0.001, **p < 0.01,
*p < 0.05, ##p < 0.01, #p < 0.05 (One-way ANOVA followed by Tukey’s post hoc test in (B,C); two-way ANOVA, followed by Tukey’s post hoc test in (D).

As a first attempt to verify this hypothesis, we employed an
in silico approach. We simulated the impact that the presence
of silent hyperploid neurons may have on the functional
connectivity of a neural network through an “integrate-and-
fire” model (Knight, 1972) constituted by 4,000 neurons. In
this model, the membrane potential of each neuron at any
simulation time point (dt = 1 ms) depends on two factors: (i) an
exponential function, governed by a time constant, which pushes
the voltage to its resting membrane potential; and (ii) the amount
of excitation and synaptic inhibition received from the partner
cells (Figure 2A). The local field potential (LFP) was estimated as
the average of all transmembrane currents.

Different fractions of silent neurons (0.01, 0.1, 0.2, 0.3, 0.5,
or 0.8) were included in (i) the whole neuronal population,
(ii) the excitatory neuronal subpopulation, or (iii) the leading
neuronal subpopulation, defined as those neurons with higher
firing frequency and thus representing functional circuit
hubs. In contrast, the control condition included no silent
neurons. In a different cohort of simulations, we tested
the effect of silencing the inhibitory neuron subpopulation
(interneurons). As expected, this manipulation leads to an

epileptic-like network with hyper-synchronous activity patterns
(Supplementary Figure 2), maybe resembling the comorbidity
between AD and epilepsy seen in some transgenic mouse models
(Palop et al., 2007).

Our results indicate that an increase in the percentage of
synaptic silencing in any of the analyzed neuronal types has
defined effects on the firing rate of all simulated subpopulations
present in the neural network (see Figure 2B for the
subpopulation of excitatory neurons, and Supplementary
Figures 3A–C for other neuronal subpopulations). In all cases,
a significant inverse correlation between the fraction of silenced
leading or excitatory neurons, and the firing frequency was
observed (Figure 2C and Supplementary Figures 3D–F). In
contrast, the disruption in the firing ability over the entire
network led to an increase in the firing frequency of the
excitatory subpopulation and the whole population (Figure 2C
and Supplementary Figure 3F), likely due to silencing of a
portion of inhibitory neurons. Therefore, we concluded that the
presence of hyperploid neurons with synaptic deficits (silent
neurons) affects the firing frequency of the neural network in
which they are integrated. This effect is cell-type dependent and
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FIGURE 2 | Continued
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FIGURE 2 | Effect of the presence of hyperploid neurons on the firing frequency of the excitatory subpopulation and in gamma type oscillations.
(A) Hyperploidization neural network model. An example of the control network (without the presence of hyperploid neurons) is shown in comparison with a network
with hyperploid neurons distributed randomly throughout the network (Silenced network). Excitatory neurons are shown in purple, interneurons in dark blue, leader
neurons in light blue, and silent hyperploid neurons are shown as squares. Parameters defining the different neuronal subpopulations (Ws, PC, V0, τ, τe, and τi ) are
described in the methodological section. In plots, each dot indicates an action potential emitted by each neuron. The decrease in the number of dots is noticeable in
the affected network with a 50% of random neuronal silencing compared to the control network. (B) The graph shows how the firing frequency of the excitatory
neuron subpopulation is affected by the indicated fraction of silent hyperploid neurons in the whole neuron population (green), leader neurons (blue), or excitatory
neurons (purple). Each line shows the average trigger frequency of each population when the corresponding type of neurons have been affected. The gray line
shows the average frequency of the population when there is no silencing of neurons. 95% confidence intervals for each line are shown in shading. (C) Each point
represents the Pearson correlation value. The color code shows the p-value (in logarithmic scale) of the correlation. (D) The graph shows how the activity of gamma
rhythm is affected at the indicated fraction of silent hyperploid neurons in the whole neuron population (green), leader neurons (blue), or excitatory neurons (purple).
The gray line shows the average power of this population oscillation when there is no silencing of neurons. 95% confidence intervals for each line are shown in
shading. (E) Each point represents the Pearson correlation value. The color code shows the p-value (in logarithmic scale) of the correlation. **p < 0.01; ***p < 0.001
(two-way ANOVA followed by Tukey’s post hoc test), n.s.: non-significant, in (B, C).

correlated to the fraction of affected neurons, causing an increase
or decrease of firing rate depending on the tested cell type.

We also explored the effect of silencing on the oscillatory
patterns generated spontaneously by the network. Brain
oscillations, similar to those observed in our model, are an
emergent property of the system associated with the coordination
of the circuit and the transmission of information between its
elements (Buzsáki and Draguhn, 2004; Buzsáki et al., 2013).
In this regard, our model presents peaks of synaptic activity
in the spectral bands gamma, beta, theta and delta (Buzsáki
and Draguhn, 2004; Supplementary Figure 4). We observed a
significant effect of synaptic silencing on gamma activity, this
being dependent on both the proportion of silent neurons and
the specific population in which they are found (Figure 2D).
These effects are mainly appreciated as a negative correlation
between silencing in total and excitatory neurons and gamma
power (Figure 2E), reminiscent of the gamma oscillations
impairment observed in AD (Mably and Colgin, 2018). In
the rest of the spectral bands we found minor or insignificant
changes except for the whole neuronal population and the
excitatory subpopulation when the beta and theta rhythms,
respectively, were analyzed (Supplementary Figure 5).

CONCLUSION

Cumulative evidence indicates that NH may participate in
the classical neuropathology observed in AD. In addition, our
results suggest that NH can also lead to alterations in neuronal
circuit functioning due to the morphological and synaptic
changes observed in hyperploid neurons. We believe these
alterations, together with any other perturbation underlying
the synaptic deficits found in AD (Scheff et al., 2006), could
account for the etiology of AD as well. Our simulation
study indicates that NH may trigger alterations in the firing
frequency of the neural network, an effect that increases
as the proportion of hyperploid neurons raises. Therefore,
the presence of a high proportion of hyperploid neurons in
specific local circuits could lead to major effects in AD. This
conclusion should be experimentally tested in the future. In
areas such as the entorhinal cortex, where above 30% of
neurons become hyperploid in AD patients (Arendt et al.,
2010), this condition could have an important impact not only

on the firing frequency but also on the oscillations observed
in the neural networks (Kitchigina, 2018), which according
to our in silico model requires a high proportion of silent
neurons to be relevant.

MATERIALS AND METHODS

Neuronal Soma and Dendritic Tree
Analysis
Primary cortical cultures, co-lipofection with red fluorescent
protein (RFP) and plasmids expressing LacZ, TAg, or K1,
and immunocytochemistry were performed as described
by Barrio-Alonso et al. (2018). RFP-positive neurons
were randomly chosen. Image analysis was performed
with ImageJ (National Institutes of Health). Sholl analysis
(Binley et al., 2014) was carried out with the Sholl analysis
module (Fiji) using digital tracings generated with the
NeuronJ plugin (Fiji) from confocal projection images of
neurons co-lipofected with RFP (n = 30 per condition).
Analysis parameters were: starting radius = 1 µm, ending
radius = NaN, and radius step size = 10 µm. Linear Sholl
plots were generated, representing the average number of
intersections with radii in each condition. Total length
of neurites was also evaluated. At least 25 lipofected
neurons/culture from 3 independent cultures were analyzed for
each experimental condition.

Neural Network Simulation
“Integrate-and-fire” simulation (Knight, 1972) of neural
networks containing hyperploid neurons was implemented using
the Python-based Brian 2 simulator (Goodman and Brette, 2008;
Stimberg et al., 2017). In the simulation model (Figure 2A), each
neuron has a membrane potential (V) governed by the following
differential equation:

τ
dV
dt
= − (V − V0)

where τ is the membrane time constant, which parameterizes
the time it takes for the neuron to reach its resting membrane
potential (V0). In turn, V can be disturbed by depolarizing and
hyperpolarizing synaptic currents. The excitatory and inhibitory
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conductances (ge and gi) of such synaptic currents follow the
following differential equations:

dge
dt
= −

ge
τe

dgi
dt
= −

gi
τi

The value of ge and gi depends, respectively, on the number
of active excitatory and inhibitory synapses according to their
synaptic weight (Ws). The Ws of each excitatory synapse is
+2 mV while each inhibitory synapse has a Ws of −9 mV.
An action potential (AP) from synapse s at time t induces the
following change in V in neuron j: V→ V+Ws. Thus, if s is an
excitatory synapse, the neuron j is depolarized by+2 mV at a rate
defined by τe. An inhibitory synapse induces a change of−9 mV
governed by τi.

Each neuron initializes V in a randomly chosen value between
−50 and−60 mV and begins to receive excitatory and inhibitory
synapses with their corresponding weights. If V reaches−50 mV,
the trigger AP threshold (Vt), the neuron fires, which induces a
synaptic current in those neurons to which it is connected. At
this point, there is a refractory period of 5 ms in which the neuron
cannot fire again.

The network is composed of 4,000 neurons of three
types, with different proportion, electrical properties,
and probabilities of connection to other neurons (Pc):
(i) excitatory neurons (85% of all neurons), τe = 20 ms,
V0 = −49 mV, and Pc = 0.1; (ii) leading neurons (5% of all
neurons), a subtype of excitatory neurons whose membrane
potential is 3 mV more depolarized, and therefore have a
higher trigger frequency that simulate neurons constituting
relevant hubs of the circuit; and (iii) interneurons (10%
of all neurons), τi = 9 ms (i.e., high trigger frequency),
V0 = −49 mV, and Pc = 0.2. Five repetitions of each
condition were simulated.

Parameters established in the model reasonably mimic the
physiological situation (Markram et al., 2015) according to the
firing frequency: most excitatory neurons fires at a frequency
lower than 1 Hz, leading neurons fire at a frequency of 1–
5 Hz, and the inhibitory neurons (or interneurons) show a firing
frequency of around 2 Hz.

For the simulation of hyperploid neurons (i.e., silent
neurons unable to fire APs), a “damage” parameter (dam)
was incorporated in the differential equation of the model.
dam has a value equal to −30 mV, which hyperpolarizes
the membrane potential, setting its V away from Vt. The
percentages of hyperploid neurons in this study were
1, 10, 20, 30, 50, and 80%. This provides a complete
picture of the effects of this variable on the outcome of
the neural network.

As an internal control, we found that the simulated neural
network has a strong synaptic dependence on its activity patterns.
If all synaptic connections are removed, the network presents
a synchronous firing rate, reflecting the exponential component
that repolarizes V (Supplementary Figure 6).

Oscillatory patterns and their power were estimated by
the sum of all membrane potentials from the network
(Supplementary Figure 4).

Statistical Analysis
Statistical analyses were performed with ANOVA, followed by the
Tukey’s post hoc test. Pearson correlation test was also applied in
simulation experiments.
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