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Abstract

Identification of medical conditions using claims data is generally conducted with algorithms

based on subject-matter knowledge. However, these claims-based algorithms (CBAs) are

highly dependent on the knowledge level and not necessarily optimized for target conditions.

We investigated whether machine learning methods can supplement researchers’ knowl-

edge of target conditions in building CBAs. Retrospective cohort study using a claims data-

base combined with annual health check-up results of employees’ health insurance

programs for fiscal year 2016–17 in Japan (study population for hypertension, N = 631,289;

diabetes, N = 152,368; dyslipidemia, N = 614,434). We constructed CBAs with logistic

regression, k-nearest neighbor, support vector machine, penalized logistic regression, tree-

based model, and neural network for identifying patients with three common chronic condi-

tions: hypertension, diabetes, and dyslipidemia. We then compared their association mea-

sures using a completely hold-out test set (25% of the study population). Among the test

cohorts of 157,822, 38,092, and 153,608 enrollees for hypertension, diabetes, and dyslipi-

demia, 25.4%, 8.4%, and 38.7% of them had a diagnosis of the corresponding condition.

The areas under the receiver operating characteristic curve (AUCs) of the logistic regression

with/without subject-matter knowledge about the target condition were .923/.921 for hyper-

tension, .957/.938 for diabetes, and .739/.747 for dyslipidemia. The logistic lasso, logistic

elastic-net, and tree-based methods yielded AUCs comparable to those of the logistic

regression with subject-matter knowledge: .923-.931 for hypertension; .958-.966 for diabe-

tes; .747-.773 for dyslipidemia. We found that machine learning methods can attain AUCs

comparable to the conventional knowledge-based method in building CBAs.
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Introduction

A growing body of studies using medical and pharmacy claims data has been conducted in

various fields of health research [1–7]. Among them, a notable amount of research has used

claims data to assess medical conditions [1, 2, 6]. Despite its large volume of information and

highly standardized format, however, claims data is frequently criticized for its potential

imprecision in the identification of medical conditions mainly because they are primarily

issued for reimbursement purpose [8–12].

To address these concerns, plenty of studies have proposed a claims-based algorithm (CBA)

for identifying patients with their target condition and computed association measures to assess

the usability of the algorithm [9, 10, 13–41]. Previous studies have engaged in a knowledge-based

condition-specific CBA construction procedure, i.e., researchers selected input variables and

decided how to incorporate them in the CBA based on their experience or existing clinical knowl-

edge regarding the target condition. Although this approach is widely used and intuitively plausi-

ble, it is highly dependent on the level of knowledge on the target conditions and is hard to obtain

appropriate and reproducible CBAs. This is imposing challenges to the use of administrative data

in the transition from the ICD-9 to the ICD-10 coding scheme in the United States [42, 43].

Moreover, since previous CBA studies are predominantly coming from North American

countries, research using diagnosis derived from North American countries’ claims data can

be largely backed by a corresponding CBA study. In contrast, despite the rapid increase of

research using diagnosis derived from claims data in other countries–e.g., Japan and Taiwan–

CBAs are not established for most medical conditions thus far [44]. It is notable that the lack

of confirmed CBA not only degrades the quality of research but also makes the research

extremely difficult to be accepted by journals with high impact factors [45]. For this reason,

researchers who are using claims data in these countries are facing an urgent need to establish

CBAs for various medical conditions.

To this end, some researchers applied conventional regression methods to develop CBAs

which are less dependent on the knowledge [9, 14, 17, 19, 24, 35, 37, 40]. However, the selec-

tion of input variables is required before implementing a regression model to obtain a satisfac-

tory CBA, as conventional regression methods often work poorly in prediction accuracy when

the number of input variables is large relative to the sample size [46]. Besides, if researchers

expect nonlinear or interactive effects of the input variables, they have to specify those terms a
priori as a functional form of the regression model.

Machine learning methods are promising technologies to overcome the problems of conven-

tional regression methods, and some researchers have attempted to use these methods in the con-

text of CBA [18, 25, 29, 30, 39]. However, they selected the input variables according to their

target condition. Thus, to apply their procedures to other conditions, it is necessary to start over

from the variable selection. Additionally, among different methods for machine learning, the

methods better suited than others for developing CBAs have not been addressed yet.

In this study, using a large database of employees’ health insurance programs, we developed

CBAs with selected machine learning methods for identifying patients with three common

chronic conditions: hypertension, diabetes, and dyslipidemia. We then compared their associ-

ation measures using a hold-out test set.

Methods

Institutional settings

The Japanese government provides a universal health insurance program for all registered

inhabitants. Besides, each employer is obliged by law to provide annual health check-up to its
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employees. Medical and pharmacy claims data combined with annual health check-up results

of employees’ health insurance programs were obtained in an anonymous format from JMDC

Inc. [47]. Further details on the institutional settings have been described previously [33].

Claims data contain enrollee information, including gender, month and year of birth, and

their diagnostic code, medical institutions, pharmacies, and medical treatments provided.

Diagnostic and medication codes are classified by the 2003 version of the International Statisti-

cal Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) [48] and

2016 version of the World Health Organization-Anatomical Therapeutic Chemical

(WHO-ATC) [49], respectively. Enrollees’ age was defined as their age in March 2018. Annual

health check-up results include information on the results of the physical examination and

blood test, whether fasting blood samples were collected, and the answer to a health-related

questionnaire including questions on medication usage. The study protocol was approved by

the research ethics committee of the University of Tokyo (approval number: KE18-44). The

ethics committee waived informed consent because this is a retrospective study with the data

that were fully anonymized before we accessed them. JMDC Inc. applies strict policies to pro-

tect the privacy of enrollees and medical providers, and all private information that could iden-

tify enrollees and medical providers were removed beforehand [47].

Study population

The study population for each condition of hypertension, diabetes, and dyslipidemia was

defined as beneficiaries (1) who were enrolled in the claims database from April 1, 2016, to

March 31, 2018, and whose health check-ups were sequentially conducted for fiscal year (FY)

2016 and FY2017 (N = 1,040,351), (2) with complete data on the self-reported use of blood

pressure- and lipid-lowering drugs and hypoglycemic drugs for FY2016 and FY2017

(N = 944,717), (3) who in FY2017 visited a clinic/hospital that mainly specializes in internal

medicine (N = 631,731), and (4) with complete data on examination results required for the

gold standard of each condition mentioned later for FY2016 and FY2017 (hypertension,

N = 631,289; diabetes, N = 152,368; dyslipidemia, N = 614,434) (Fig 1).

In similar studies to date, chart review has often been the source of the gold standard, with

the population to calculate association measures constrained to those who visited primary care

facilities [15, 16, 19]. To make the present study comparable to the past research, we restricted

the study population to those who, at least once in the FY, had visited a clinic/hospital that

mainly specializes in internal medicine, which has the function of primary care in Japan.

Gold standard and claims-based algorithm

We constructed a gold standard to diagnose each condition from the health check-up results

of FY2016 and FY2017 as previously described (Table 1) [33]. We used FY2017 claims data as

the source of the CBA and compared it with the diagnosis derived from the gold standard. The

scheme of using one-year claims data corresponding to the latter health check-up year for

developing CBAs is the same as that of the previous study [33].

To construct CBAs, we first set up a dataset containing the input variables that can be cho-

sen without subject-matter knowledge on the target conditions, namely, age, gender, and the

number of observations of each of ICD-10/WHO-ATC code with a letter followed by two dig-

its (main dataset). We counted the observations of ICD-10/WHO-ATC codes on claims as one

occurrence when the information was accrued from the same month. We excluded the ICD-

10 codes for suspected cases and counted the ICD-10 codes regardless of whether they were

listed as primary diagnoses. We then applied following popular machine learning methods, (1)
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k-nearest neighbor (kNN), (2) support vector machine (SVM), (3) penalized logistic regres-

sion, (4) tree-based model, and (5) neural network, to the dataset.

Additionally, as benchmarks, we developed two sets of conventional CBAs. Firstly, we emu-

lated two manually constructed CBAs proposed in the previous study [33]. Patients meeting

the following selection rule were classified as “test-positive” for condition X (hypertension,

diabetes, or dyslipidemia): (1) the diagnostic code corresponding to condition X is found in

the claims at least once (diagnostic code-based CBA); and (2) the medication code correspond-

ing to condition X is found in the claims at least once (medication code-based CBA).

Secondly, we applied a logistic regression model to the main dataset and an alternative data-

set where input variables were selected according to each condition. The logistic regression

model with the alternative dataset corresponds to a typical procedure among the conventional

Fig 1. Flowchart of inclusion and exclusion of study participants. Abbreviations: dBP, diastolic blood pressure; FBG,

fasting blood glucose; FY, fiscal year; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C,

low-density lipoprotein cholesterol; sBP, systolic blood pressure; TG, triglyceride.

https://doi.org/10.1371/journal.pone.0254394.g001

Table 1. Gold standards to diagnose hypertension, diabetes, and dyslipidemia.

Diagnose as hypertension if any of the following conditions are satisfied:

1. Systolic blood pressure� 140 mmHg and/or diastolic blood pressure� 90 mmHg for FY2016 and FY2017

2. Self-report of taking blood pressure-lowering drugs in at least one of FY2016 and FY2017�

Diagnose as diabetes if any of the following conditions are satisfied:

1. HbA1c� 6.5% in at least one of the two years and FBG� 126 mg/dL in at least one of FY2016 and FY2017

2. FBG� 126 mg/dL for FY2016 and FY2017

3. Self-report of taking hypoglycemic drugs in at least one of FY2016 and FY2017�

Diagnose as dyslipidemia if any of the following conditions are satisfied:

1. Low-density lipoprotein cholesterol� 140 mg/dL for FY2016 and FY2017

2. High-density lipoprotein cholesterol � 40 mg/dL for FY2016 and FY2017

3. Triglyceride � 150 mg/dL for FY2016 and FY2017

4. Self-report of taking lipid-lowering drugs in at least one of FY2016 and FY2017�

Abbreviations: HbA1c, hemoglobin A1c; FBG, fasting blood glucose; FY, fiscal year.

�The reliability of the self-report of medication usage was demonstrated to be satisfactorily high when compared with

the pharmacy claims-based drug usage [33].

https://doi.org/10.1371/journal.pone.0254394.t001
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knowledge-based methods in building CBAs. The selected input variables were age, gender,

and the number of observations of each of ICD-10/WHO-ATC codes that corresponds to the

target condition. The ICD-10 codes corresponding to hypertension, diabetes, and dyslipidemia

were defined as I10-I15, E10-E14, and E78, respectively. The WHO-ATC codes corresponding

to hypertension, diabetes, and dyslipidemia were defined as C08 and/or C09, A10, and C10,

respectively.

Association measures

We quantified the goodness of CBAs by the following association measures: sensitivity, speci-

ficity, positive predictive value (PPV), negative predictive value (NPV), receiver operating

characteristic (ROC) curve, and area under the ROC curve (AUC). For the calculation of the

association measures, true positive and test positive cases were defined as the enrollees who

were assessed as having a disease by the gold standard and those who were identified as having

a disease by the CBA, respectively.

Statistical analysis

We randomly divided the dataset into two sets: training (75%), which was used to estimate

parameters and tune hyperparameters; test (25%), which was used to assess the association

measures of the CBA. The sensitivity, specificity, PPV, and NPV were estimated for the diag-

nostic code- and medication code-based CBAs, and their 95% confidence intervals (CIs) were

calculated using exact binomial confidence limits [50]. We calculated these association mea-

sures and 95% CIs using the epiR package [51].

We estimated a prediction function that outputs the score of the propensity for having a

disease given a set of input variables using the selected methods. The outcome variable in hand

is a binary indicator of having a disease that is assessed by the gold standard. For each selected

machine learning method, we chose several types of prediction procedures that are commonly

applied. The Euclidean distance with raw or standardized (i.e., rescaled to have mean zero and

variance one) input variables was adopted as a distance metric for the kNN [52, 53]. A linear

basis function with a hinge or squared hinge loss was adopted in the SVM [54]. From the

penalized logistic regression, logistic regressions with the L2-penalty (logistic ridge) [55], L1-

penalty (logistic lasso) [56], and elastic-net penalty (logistic elastic-net) [57] were applied. Two

types of tree-based models were applied: random forest [58] and importance sampled learning

ensemble (ISLE) [59]. A single hidden layer neural network was applied with a different num-

ber of hidden units: 5, 10, and 20 [60].

If the model involved a hyperparameter to be tuned, the training set was used for the tun-

ing. The expected value of the AUC was estimated through tenfold cross-validation with the

training set. If the computational burden of tenfold cross-validation was prohibitive, we used a

validation set to estimate the expected value of the AUC. A third of the training set was chosen

at random to construct the validation set. Which of tenfold cross-validation or a validation set

was used for each model is described below. The hyperparameter was then chosen to be the

value that maximized the AUC. After the hyperparameter determination, the training set was

used again to estimate parameters for the prediction function. When no hyperparameter tun-

ing was required, the training set was used to estimate parameters in the prediction function

from the beginning. We described the details of the parameter estimation and hyperparameter

tuning for each method in the following.

Logistic regression. The outcome variable was regressed on the input variables to gener-

ate a prediction function. The analysis of the logistic regression was implemented by the mnlo-
git package [61].
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k-nearest neighbor. The number of the nearest neighbors to be counted, k, was optimized

using the validation set. The predicted class probabilities that were computed from (1) the fre-

quency of the class of the k-nearest neighbors (vote) [52] and (2) the inverse distance weighted

frequency of the class of the k-nearest neighbors (IDW) [53] composed a prediction function.

The analysis of the kNN was implemented by the fastknn package [62].

Support vector machine. The cost parameter was optimized using the validation set.

Decision values (i.e., the distance of the point from the hyperplane) made up a prediction func-

tion. The analysis of the SVM was implemented by the LiblineaR package [63].

Penalized logistic regression. The regularization coefficient and elastic-net mixing

parameter were determined by cross-validation. The analysis of the penalized logistic regres-

sion model was implemented by the glmnet package [64].

Tree-based model. The minimum node size was set to 10 for each tree, and 200 trees

were bagged in the random forest. The number of variables selected for each split was tuned

using the validation set. The probability forest was used to generate a prediction function [65].

The analysis of the random forest was implemented by the ranger package [66]. There are five

hyperparameters in the importance sampled learning ensemble (ISLE): a hyperparameter for

the tree size, subsampling ratio for each tree, learning rate, number of trees to be bagged, and

regularization coefficient for the post-processing. We adopted the depth of the tree as the

hyperparameter for the tree size and fixed it to be six [60]. As the combination of the subsam-

pling ratio for each tree and learning rate, we selected (1,0.05), (0.5,0.1), and (0.1,0.1). Since

the basis function generating process of the ISLE is identical to that of the gradient boosting

machine (GBM) if the subsampling ratio is one and that of the stochastic gradient boosting

machine (SGBM) if otherwise, we set the learning rate according to Friedman’s recommenda-

tion for the GBM and SGBM [67, 68]. The remaining two hyperparameters, the number of

trees to be bagged and regularization coefficient, were determined by cross-validation. In par-

ticular, for a given value of the regularization coefficient, the basis function generating process

was stopped if the cross-validation AUC did not improve for three basis function generating

rounds. The value with the maximum cross-validation AUC was then chosen as the regulariza-

tion coefficient for the prediction function. The L1-penalty was adopted in the post-processing

following the recommendation of Friedman and Popescu (2003) [59]. The analysis of the ISLE

was implemented by the xgboost package [69].

Neural network. All hidden units were fully connected with the nodes in the input and

output layers. Weight decay was employed for the regularization of parameters, and the regu-

larization coefficient of it was tuned using the validation set. The analysis of the neural network

was implemented by the nnet package [70].

Provided an estimated prediction function from the model, an ROC curve was drawn from

the scores and the matched observed outcome values as the threshold of considering a patient

positive were moved over the range of all possible scores. The AUC was calculated from the

resulting ROC curve, and DeLong’s method was used to determine the 95% CI for the AUC

[71].

In the end, a representative point of sensitivity and specificity on the ROC curve was chosen

based on the Youden index [72, 73]. The PPV and NPV were calculated according to the repre-

sentative point. Moreover, the 95% CIs for the sensitivity, specificity, PPV, and NPV were cal-

culated with 200 bootstrap resampling and the averaging methods as described previously

[74]. We drew the ROC curve and calculated the association measures and their 95% CIs using

the pROC package [75]. All statistical analysis was conducted using R version 3.6.1 [76]. R

codes are available at https://github.com/harakonan/research-public/tree/master/cba.
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Results

Summary statistics

Table 2 tabulates the summary statistics of 944,717 enrollees’ characteristics and health check-

up results for each fiscal year. The mean age was 48.0 years (standard deviation ± 10.4 years).

More than 80% of people received fasting blood tests. Furthermore, 85% of the enrollees vis-

ited any clinics/hospitals during the year, while 67% went to the primary care clinics/hospitals.

Among the test cohorts of 157,822, 38,092, and 153,608 enrollees for hypertension, diabetes,

and dyslipidemia, 25.4%, 8.4%, and 38.7% of them had a diagnosis of the corresponding

condition.

Table 3 displays the cumulative counts and distribution of the proportion of enrollees

whose claims contain the ICD-10/WHO-ATC code at least once in the study population. The

numbers of the ICD-10 and WHO-ATC codes that appeared in the dataset for the study popu-

lation were 1333 and 92, respectively. Nearly 90% of the ICD-10 codes that appeared in the

dataset were only observed for less than 1% of enrollees, and more than half of the WHO-ATC

codes that appeared in the dataset were observed for less than 5% of enrollees.

Table 2. Summary statistics of enrollees’ characteristics and health check-up results for each fiscal year of the enrollees with complete data on the self-reported use

of blood pressure- and lipid-lowering drugs and hypoglycemic drugs (N = 944,717).

FY2016 FY2017

Variables Mean SD Missing (%) Mean SD Missing (%)

Demographics

Male − − − 0.8 − −
Age� (year) − − − 48 10.4 −

Visited clinic/hospital

Any clinic/hospital† 0.85 − − 0.85 − −
Primary care clinic/hospital‡ 0.67 − − 0.67 − −

Health check-up results

Fasting time� 10 hours§ 0.81 − 54.9 0.81 − 56.8

Systolic blood pressure (mmHg) 121.5 15.8 0.1 122.1 15.9 0.0

Diastolic blood pressure (mmHg) 75.5 11.7 0.1 75.9 11.8 0.0

Fasting blood glucose (mg/dL) 96.7 18.5 20.5 97.3 19 21.1

Hemoglobin A1c (%) 5.56 0.64 15.7 5.59 0.64 14.5

Low-density lipoprotein cholesterol (mg/dL) 121.1 30.8 2.4 121.3 30.6 2.8

High-density lipoprotein cholesterol (mg/dL) 60.6 15.9 2.4 60.9 16.1 2.8

Triglyceride (mg/dL) 117.1 94 2.4 118.3 94.5 2.8

Self-report of taking drug¶

Blood-pressure-lowering drugs 0.12 − − 0.13 − −
Hypoglycemic drugs 0.04 − − 0.04 − −
Lipid-lowering drugs 0.07 − − 0.08 − −

Abbreviations: FY, fiscal year; SD, standard deviation.

Notes: Only mean (or proportion) is stated for a categorical variable. Because the variables “Male” and “Age” do not change with the year, we only tabulated them in

column FY2017. There are no missing values in the variables other than the health check-up results by construction.

�Age is defined as the age in March 2018.
†Any clinic/hospital indicates that a person visited any kind of clinic/hospital in the corresponding FY.
‡Primary care clinic/hospital indicates that a person visited a clinic/hospital that mainly provides internal medicine in the corresponding FY.
§Fasting time� 10 hours indicates if more than 10 hours have passed since the last meal when blood samples were collected.
¶Self-report of taking drugs are extracted from the answer to a health-related questionnaire.

https://doi.org/10.1371/journal.pone.0254394.t002
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Association measures

Table 4 reports the association measures and their 95% CIs for the diagnostic code- and medi-

cation code-based CBAs. The sensitivity, specificity, PPV, and NPV closely followed those val-

ues computed previously [33]. The diagnostic code-based CBAs had higher sensitivity and

NPV but lower specificity and PPV compared to the medication code-based CBAs. For hyper-

tension, all association measures were acceptably high, while, for diabetes, the diagnostic code-

Table 3. Cumulative distribution of the proportion of enrollees whose claims contain the ICD-10/WHO-ATC code at least once in the study population

(N = 631,731).

ICD-10 code WHO-ATC code

Proportion Count Percentile Count Percentile

� 0.01% 485 36.4 th 5 5.4 th

� 0.1% 879 65.9 th 12 13.0 th

� 1% 1195 89.6 th 32 34.8 th

� 2% 1254 94.1 th 39 42.4 th

� 3% 1277 95.8 th 45 48.9 th

� 5% 1302 97.7 th 49 53.3 th

� 10% 1318 98.9 th 69 75.0 th

� 20% 1326 99.5 th 80 87.0 th

� 30% 1331 99.8 th 86 93.5 th

� 50% 1333 100.0 th 91 98.9 th

� 100% 1333 100.0 th 92 100.0 th

Abbreviations: ICD-10, International Classification of Diseases and Related Health Problems, tenth revision; WHO-ATC, World Health Organization-anatomical

therapeutic chemical.

Notes: For each two-digit ICD-10/WHO-ATC code, the proportion of enrollees whose claims contain the code at least once was computed for the study population.

Cumulative counts and distribution of the computed proportion was tabulated separately for ICD-10 codes and WHO-ATC codes. The count (percentile) column

tabulates the number (fraction) of two-digit ICD-10/WHO-ATC codes that the proportion of enrollees whose claims contain the code at least once is below the value in

the proportion column.

https://doi.org/10.1371/journal.pone.0254394.t003

Table 4. Association measures and their 95% confidence intervals for the diagnostic code- and medication code-based claims-based algorithms.

Sensitivity Specificity PPV NPV

Method % 95%CI % 95%CI % 95%CI % 95%CI

Hypertension (N = 157,822, Prevalence = 25.4%)

Diagnostic code 80.7 80.3 81.1 95.2 95.0 95.3 85.0 84.6 85.4 93.6 93.4 93.7

Medication code 75.3 74.9 75.7 97.8 97.7 97.9 92.0 91.7 92.3 92.1 91.9 92.2

Diabetes (N = 38,092, Prevalence = 8.4%)

Diagnostic code 90.8 89.8 91.8 92.9 92.6 93.2 53.8 52.5 55.2 99.1 99.0 99.2

Medication code 79.3 77.8 80.6 99.5 99.4 99.6 93.5 92.5 94.4 98.1 98.0 98.3

Dyslipidemia (N = 153,608, Prevalence = 38.7%)

Diagnostic code 49.6 49.2 50.0 90.0 89.8 90.2 75.9 75.5 76.3 73.9 73.6 74.1

Medication code 36.2 35.8 36.6 96.9 96.8 97.0 88.1 87.7 88.5 70.6 70.3 70.8

Abbreviations: CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

Patients meeting the following selection rule were classified as “test-positive” for each condition: (1) the diagnostic code corresponding to the condition is found in the

claims at least once (diagnostic code-based claims-based algorithm); and (2) the medication code corresponding to the condition is found in the claims at least once

(medication code-based claims-based algorithm). We calculated 95% CIs for all estimates of sensitivity, specificity, PPV, and NPV using exact binomial confidence

limits.

https://doi.org/10.1371/journal.pone.0254394.t004
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based CBA fell short of a satisfactory level of the PPV. For dyslipidemia, the sensitivity of both

CBAs was considerably lower than those for hypertension and diabetes.

Table 5 shows the association measures and their 95% CIs for the CBAs derived from the

machine learning methods for hypertension (Table 5A), diabetes (Table 5B), and dyslipidemia

(Table 5C). ROC curves are shown in S1 File.

The AUC of the logistic regression with subject-matter knowledge about the target condi-

tion, i.e., the logistic regression with the alternative dataset, was .923 for hypertension, .957 for

diabetes, and .739 for dyslipidemia. The representative sensitivity, specificity, PPV, and NPV

of this method were comparable to those of the convex combination of the diagnostic code-

and medication code-based CBAs: hypertension, sensitivity 78.0%, specificity 96.1%, PPV

87.0%, and NPV 92.8%; diabetes, 86.9%, 95.6%, 64.3%, and 98.8%; dyslipidemia, 42.6%, 91.8%,

76.6%, and 71.6%. Without subject-matter knowledge about the target condition, i.e., the logis-

tic regression with the main dataset, the AUC for hypertension stayed similar, .921, that for

diabetes decreased to .938, and that for dyslipidemia increased to .747.

The logistic lasso, logistic elastic-net, and tree-based methods yielded AUCs that were com-

parable to or higher than those of the logistic regression with subject-matter knowledge: logis-

tic lasso, .924 for hypertension, .959 for diabetes, and .753 for dyslipidemia; logistic elastic-net,

.923, .960, and .747; random forest, .923, .958, and .763; ISLE (the range from three hyperpara-

meter specifications), .930–.931, .964–.966, and .771–.773.

The kNN with raw input variables, SVM, and neural network attained AUCs that were

comparable to those of the logistic regression without subject-matter knowledge: kNN with

raw input variables (the range from the vote and IDW), .915–.917 for hypertension, .942–.942

for diabetes, and .740–.742 for dyslipidemia; SVM (the range from the hinge and squared

hinge loss specifications), .916–.923, .944–.945, and .738–.748; neural network (the range from

three different hidden units), .918–.922, .938–.940, and .748–.758.

The kNN with standardized input variables and logistic ridge failed to reach AUCs that

were comparable to those of the logistic regression: kNN with standardized input variables

(the range from the vote and IDW), .845–.847 for hypertension, .884–.885 for diabetes, and

.675–.678 for dyslipidemia; logistic ridge, .892, .928, and .726.

The model which achieved the highest AUC for all three conditions, the ISLE with 1 for the

subsampling ratio and 0.05 for the learning rate, yielded the following association measures at

the representative coordinate on the ROC curve: hypertension, sensitivity 80.5%, specificity

95.8%, PPV 86.8%, and NPV 93.5%; diabetes, 89.8%, 94.7%, 60.5%, and 99.0%; dyslipidemia,

51.2%, 88.9%, 74.5%, and 74.2%.

Discussion

Using health check-up results as the source of the gold standard, we demonstrated the associa-

tion measures of the CBAs derived from machine learning methods without a condition-spe-

cific variable selection for identifying patients with three common chronic medical conditions,

hypertension, diabetes, and dyslipidemia. This is the first study to investigate the benefits of

machine learning methods in building CBAs comprehensively.

Among the logistic regression and penalized logistic regression, the logistic lasso and logis-

tic elastic-net achieved the highest AUC, followed by logistic regression and logistic ridge.

They are all linear in the parameter model with the same loss function, log-loss, but different

penalty functions: zero penalties for logistic regression; an L2-penalty for logistic ridge; an L1-

penalty for logistic lasso; and an elastic-net penalty for logistic elastic-net.

The methods using the L1-penalty are better suited to sparse and high-dimensional situa-

tions than those using zero penalties or the L2-penalty because of the selection of the effective
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Table 5. Association measures and their 95% confidence intervals for claims-based algorithms derived from machine learning methods.

A. Hypertension (N = 157,822, Prevalence = 25.4%)

AUC Sensitivity Specificity PPV NPV

Method 95%CI % 95%CI % 95%CI % 95%CI % 95%CI

Logistic regression

Main dataset 0.921 0.919 0.923 78.5 78.0 79.1 95.7 95.3 96.1 86.0 85.1 87.1 92.9 92.8 93.1

Alternative dataset 0.923 0.921 0.924 78.0 77.5 78.6 96.1 95.6 96.3 87.0 85.7 87.8 92.8 92.6 92.9

k-nearest neighbor

Vote 0.917 0.915 0.919 77.2 76.8 77.9 96.1 95.4 96.3 87.2 85.3 87.5 92.6 92.4 92.7

Vote-Standardized 0.847 0.844 0.849 72.7 70.7 73.1 81.8 81.6 83.6 57.6 57.2 59.5 89.8 89.4 90.0

IDW 0.915 0.913 0.917 77.3 76.8 78.0 95.9 95.4 96.2 86.5 85.3 87.3 92.6 92.4 92.7

IDW-Standardized 0.845 0.842 0.847 72.4 70.6 73.5 81.9 80.8 83.6 57.6 56.6 59.5 89.7 89.3 90.0

Support vector machine

Hinge loss 0.916 0.914 0.918 76.9 76.4 77.7 95.5 94.7 95.8 85.2 83.3 86.2 92.4 92.3 92.6

Squared hinge loss 0.923 0.921 0.924 79.6 79.3 80.2 95.7 95.4 95.9 86.2 85.5 86.8 93.3 93.1 93.4

Penalized logistic regression

Logistic Ridge 0.892 0.890 0.894 77.1 76.3 77.8 88.0 87.6 88.7 68.7 67.9 69.7 91.9 91.7 92.1

Logistic Lasso 0.924 0.922 0.925 78.7 78.2 79.1 95.6 95.3 96.1 86.0 85.2 87.4 93.0 92.8 93.1

Logistic Elastic-net 0.923 0.921 0.925 78.7 78.2 79.1 95.5 95.2 95.7 85.6 84.8 86.2 92.9 92.8 93.1

Tree-based method

Random Forest 0.923 0.922 0.925 80.5 79.8 81.1 95.5 95.2 96.1 85.8 85.0 87.5 93.5 93.3 93.7

ISLE-sample 1 learn 0.05 0.931 0.929 0.932 80.5 80.1 81.0 95.8 95.5 96.0 86.8 85.9 87.3 93.5 93.4 93.7

ISLE-sample 0.5 learn 0.1 0.931 0.929 0.932 80.7 80.2 81.1 95.7 95.3 95.9 86.3 85.4 87.0 93.6 93.4 93.7

ISLE-sample 0.1 learn 0.1 0.930 0.928 0.932 80.7 80.2 81.2 95.6 95.2 95.9 86.1 85.2 86.8 93.6 93.4 93.7

Neural network

Hidden units 5 0.918 0.916 0.919 79.6 78.9 80.2 94.9 94.5 95.4 84.2 83.1 85.4 93.2 93.0 93.4

Hidden units 10 0.922 0.920 0.924 79.4 78.8 80.1 95.6 94.9 96.0 85.9 84.3 87.1 93.2 93.0 93.4

Hidden units 20 0.921 0.919 0.923 79.3 78.8 79.9 95.3 94.7 95.6 85.1 83.6 85.9 93.1 93.0 93.3

B. Diabetes (N = 38,092, Prevalence = 8.4%)

AUC Sensitivity Specificity PPV NPV

Method 95%CI % 95%CI % 95%CI % 95%CI % 95%CI

Logistic regression

Main dataset 0.938 0.932 0.944 85.0 83.4 86.4 95.4 94.1 96.4 62.6 56.8 67.8 98.6 98.5 98.7

Alternative dataset 0.957 0.952 0.961 86.9 85.8 88.4 95.6 94.7 95.9 64.3 59.9 65.9 98.8 98.7 98.9

k-nearest neighbor

Vote 0.942 0.936 0.948 84.5 82.9 86.2 94.8 93.5 95.8 59.8 54.2 64.2 98.5 98.4 98.7

Vote-Standardized 0.884 0.877 0.891 77.6 75.1 81.9 84.7 80.4 87.3 31.5 27.5 34.7 97.6 97.4 98.0

IDW 0.942 0.936 0.948 84.7 82.9 86.9 95.0 92.9 96.0 60.7 52.5 65.5 98.6 98.4 98.7

IDW-Standardized 0.885 0.878 0.892 78.8 75.8 82.9 83.6 79.8 86.0 30.5 27.0 33.3 97.7 97.5 98.1

Support vector machine

Hinge loss 0.944 0.938 0.950 86.0 84.3 87.7 95.4 94.0 96.5 62.9 57.0 68.7 98.7 98.5 98.8

Squared hinge loss 0.945 0.939 0.951 86.9 84.9 88.1 95.7 95.0 96.9 64.8 61.5 71.6 98.8 98.6 98.9

Penalized logistic regression

Logistic Ridge 0.928 0.922 0.933 83.3 80.5 85.1 89.7 88.0 91.8 42.3 39.0 47.2 98.3 98.1 98.5

Logistic Lasso 0.959 0.955 0.964 88.7 87.4 89.8 94.8 94.3 95.4 60.8 58.5 63.5 98.9 98.8 99.0

Logistic Elastic-net 0.960 0.956 0.964 88.9 87.8 89.9 94.5 93.9 95.0 59.7 57.0 61.5 98.9 98.8 99.0

Tree-based method

Random Forest 0.958 0.953 0.962 88.5 86.5 90.0 94.9 93.5 96.6 61.3 55.8 70.0 98.9 98.7 99.0

ISLE-sample 1 learn 0.05 0.966 0.962 0.970 89.8 88.5 90.9 94.7 93.8 95.1 60.5 56.9 62.4 99.0 98.9 99.1

ISLE-sample 0.5 learn 0.1 0.965 0.961 0.969 89.8 88.7 91.2 94.5 93.5 95.0 59.9 56.2 61.9 99.0 98.9 99.2

ISLE-sample 0.1 learn 0.1 0.964 0.960 0.968 90.3 88.3 91.4 93.7 92.9 95.4 56.5 53.9 64.1 99.1 98.9 99.2

Neural network

Hidden units 5 0.938 0.932 0.944 83.3 81.2 85.0 94.5 93.1 96.1 57.9 52.6 65.8 98.4 98.2 98.6

Hidden units 10 0.940 0.935 0.946 83.7 81.9 86.0 95.4 93.3 96.4 62.5 53.6 67.7 98.5 98.3 98.6

(Continued)
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Table 5. (Continued)

Hidden units 20 0.938 0.932 0.944 83.9 82.3 85.8 95.8 94.2 97.0 64.7 57.1 71.5 98.5 98.3 98.6

C. Dyslipidemia (N = 153,608, Prevalence = 38.7%)

AUC Sensitivity Specificity PPV NPV

Method 95%CI % 95%CI % 95%CI % 95%CI % 95%CI

Logistic regression

Main dataset 0.747 0.744 0.749 48.8 43.8 51.1 86.1 83.9 91.0 69.2 66.7 75.5 72.6 71.9 73.1

Alternative dataset 0.739 0.736 0.742 42.6 42.1 43.4 91.8 91.1 92.1 76.6 75.3 77.2 71.6 71.5 71.8

k-nearest neighbor

Vote 0.742 0.739 0.745 46.6 45.1 49.5 89.3 86.4 90.4 73.2 69.5 75.0 72.6 72.3 73.0

Vote-Standardized 0.678 0.676 0.681 54.6 47.6 55.4 69.5 69.0 76.4 53.2 52.7 56.1 70.7 69.7 71.0

IDW 0.740 0.737 0.742 48.2 45.3 50.0 87.3 85.7 90.4 70.9 69.0 74.7 72.7 72.3 73.0

IDW-Standardized 0.675 0.673 0.678 53.8 49.3 54.9 70.3 69.3 74.6 53.4 52.9 55.3 70.6 69.9 70.9

Support vector machine

Hinge loss 0.738 0.735 0.740 49.6 49.0 50.0 90.0 89.8 90.2 75.8 75.4 76.2 73.8 73.6 74.0

Squared hinge loss 0.748 0.746 0.751 50.0 45.7 50.6 85.2 84.9 89.3 68.2 67.7 73.0 72.9 72.2 73.1

Penalized logistic regression

Logistic Ridge 0.726 0.723 0.728 54.8 51.2 58.2 76.6 73.2 80.2 59.8 57.9 62.0 72.8 72.2 73.5

Logistic Lasso 0.753 0.751 0.756 49.3 48.9 49.7 90.3 90.0 90.5 76.3 75.8 76.7 73.8 73.6 74.0

Logistic Elastic-net 0.747 0.744 0.749 45.5 44.5 47.4 89.7 87.7 90.4 73.5 70.8 74.7 72.2 72.0 72.6

Tree-based method

Random Forest 0.763 0.761 0.766 49.8 48.3 50.3 90.0 89.7 91.4 76.0 75.4 78.0 73.9 73.6 74.1

ISLE-sample 1 learn 0.05 0.773 0.771 0.775 51.2 49.9 52.0 88.9 88.0 90.1 74.5 73.2 76.2 74.2 74.0 74.4

ISLE-sample 0.5 learn 0.1 0.773 0.770 0.775 51.4 49.5 52.5 88.8 87.5 90.6 74.3 72.7 76.9 74.2 73.9 74.5

ISLE-sample 0.1 learn 0.1 0.771 0.768 0.773 50.0 49.0 51.5 90.0 88.4 90.9 75.9 73.6 77.4 74.0 73.8 74.3

Neural network

Hidden units 5 0.748 0.745 0.750 48.3 46.6 50.8 87.7 85.3 89.4 71.3 68.5 73.5 72.9 72.5 73.3

Hidden units 10 0.751 0.749 0.754 47.7 46.7 50.0 89.3 86.8 90.2 73.9 70.6 75.2 73.0 72.8 73.3

Hidden units 20 0.758 0.755 0.760 49.4 48.3 51.8 88.5 86.0 89.5 73.0 70.1 74.5 73.5 73.2 73.8

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; IDW, inverse distance weighting; ISLE, importance sampled

learning ensemble; NPV, negative predictive value; PPV, positive predictive value.

Notes: Age, gender, and all International Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)/World Health Organization-Anatomical

Therapeutic Chemical (WHO-ATC) codes with a letter followed by two digits were used as input variables for all models but the logistic regression using the alternative

dataset. The main logistic regression fitted a logistic regression model to the dataset that was appropriately trimmed. The Euclidean distance with raw or standardized

(i.e., rescaled to have mean zero and variance one) input variables was adopted as a distance metric for the k-nearest neighbor (kNN). The number of the nearest

neighbors to be counted, k, was optimized using the validation set. The predicted class probabilities that were computed from (1) the frequency of the class of the k-

nearest neighbors (vote) and (2) the inverse distance weighted frequency of the class of the k-nearest neighbors (IDW) composed a prediction function. A linear basis

function with a hinge or squared hinge loss was adopted in the support vector machine (SVM). The cost parameter was optimized using the validation set. Decision

values (i.e., the distance of the point from the hyperplane) made up a prediction function. From the penalized logistic regression, logistic regression with the L2-penalty

(logistic ridge), L1-penalty (logistic lasso), and elastic-net penalty (logistic elastic-net) were applied. The regularization coefficient and elastic-net mixing parameter were

determined by cross-validation. Two types of tree-based models were applied: random forest and importance sampled learning ensemble (ISLE). The minimum node

size was set to 10 for each tree, and 200 trees were bagged in the random forest. The number of variables selected for each split was tuned using the validation set. We

fixed the depth to be six for the ISLEs. As the combination of the subsampling ratio for each tree and the learning rate, we selected (1,0.05), (0.5,0.1), and (0.1,0.1). The

number of trees and regularization coefficient were determined by cross-validation. The L1-penalty was adopted in the post-processing. A single hidden layer neural

network was applied with a different number of hidden units: 5, 10, and 20. All hidden units were fully connected with the nodes in the input and output layers. Weight

decay was employed for the regularization of parameters, and the regularization coefficient of it was tuned using the validation set. Delong’s method was used to

determine the 95% CI for the AUC. A representative point of sensitivity and specificity on the ROC curve is chosen based on the Youden index. PPV and NPV were

calculated according to the representative point, and the 95% CIs for the resulting sensitivity, specificity, PPV, and NPV were calculated with 200 bootstrap resampling

and the averaging methods.

https://doi.org/10.1371/journal.pone.0254394.t005
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input variables. These results are backed by theoretical results that support the superiority of

the estimation methods that use the L1-penalty in sparse and high-dimensional settings [77–

79]. Despite the fact that the prediction performance of the lasso is expected to be improved by

the elastic-net if there is a group of variables among which the pairwise correlations are very

high [46] and usually the diagnostic and medication codes corresponding to the target disease

are highly correlated, we could not boost the AUC by the elastic-net compared with the lasso.

The tree-based model and neural network automatically select the input variables that are

crucial to the discrimination and flexibly incorporate nonlinearity and interactions of them.

The tree-based model largely attained superior AUC to any models and was at least as good as

the benchmark cases. Among the tree-based models, the ISLE performed better than the ran-

dom forest. Past Monte Carlo simulation studies have shown the superior performance of the

ISLE to the random forest that uses the lasso post-processing in the aggregation process and

the superior performance of the latter to the usual random forest [59, 60]. Therefore, two com-

ponents of the ISLE are contributing to its superior performance to that of the random forest:

learning term in the basis function generating process and lasso post-processing. The differ-

ence of the hyperparameter within the ISLE was not so much affecting the results.

In contrast to the tree-based model, the AUC of the neural network was not that high but

comparable to that of the logistic regression. The performance of the neural network was

much lower in the preliminary investigation that used a smaller sample size. The number of

parameters in the neural network is nearly 7500, 15000, and 30000 for 5, 10, and 20 hidden

units, respectively. Although the use of weight decay should alleviate the overfitting of the

parameters to some extent, the sample size may still be insufficient for the neural network to

demonstrate its true predictive power. As using multiple hidden layers with constraints such

as local connectivity and weight sharing on the network, which allow for more complex con-

nectivity but fewer parameters, improved the performance of the neural network dramatically

in the field of image recognition [80, 81], it may also improve the performance of the neural

network in the current subject. Increasing the sample size of data and devising more complex

connectivity that suits the situation are fruitful directions for future research.

The AUC of the kNN with raw input variables was as good as that of the logistic regression,

but that of the kNN with standardized input variables was lower. As is implicated by the differ-

ence of the AUC of the kNN with raw and standardized input variables, designing the distance

metric in the kNN is difficult. If the input variables are standardized, the model is coerced to

attach less importance on the input variables with high standard deviation, such as age and

gender, than otherwise. Although the kNN had established an era in image recognition by the

invention of the tangent distance [82], there is no such versatile distance measure yet in the

field of CBA or studies using administrative data. It may be possible to improve the perfor-

mance of the kNN by applying an unsupervised learning method that extracts essential com-

ponents of the input variables, for example, principal component analysis [83], before

measuring the distance. Although we do not probe further in this study, this is one direction of

future research.

The AUC of the SVM was higher than that of the logistic ridge. They are linear in the

parameter model with the same L2-penalty but different loss functions. The logistic ridge uses

the log-loss, while the SVM uses the (squared) hinge loss. The hinge losses give zero penalties

to points correctly classified and outside the margin. On the other hand, the log-loss gives con-

tinuously decreasing penalties as the correctly classified points get farther from the boundary

of the margin. This feature of the hinge losses makes the SVM more robust to outliers than the

other methods that are using the log-loss. Since most of the enrollees were far from the margin

or outliers (i.e., most of them could be easily labeled as disease or non-disease by the CBA), the
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SVM is achieving a higher performance by better-discriminating enrollees with and without

the target disease near the boundary than the other methods.

By comparing the results from the two datasets prepared for the logistic regression, we can

see that the AUC declined for diabetes without a condition-specific variable selection. The

inconsistency of the trend of the AUC among the target conditions demonstrates the trade-off

between the accuracy and variance of the prediction function. When the number of the input

variables of the prediction model becomes large relative to the sample size, there is a potential

accuracy gain from the use of rich information and a possibility of a variance increase due to

the variance inflation of the parameter estimates. In diabetes, the main dataset did not provide

enough accuracy gain to offset the variance inflation, as the sample size was relatively small

and the factors of being diagnosed as the target condition are successfully captured in the con-

dition-specific variable selection (i.e., a high AUC is achieved by the alternative dataset). Con-

versely, in dyslipidemia, since the factors of being diagnosed as the condition seem to be not

sufficiently covered by the condition-specific variable selection, the effect of the accuracy gain

outweighs that of the variance increase.

There are potentially various ways of refining the AUC obtained in this study, drawing on

the context of machine learning. Although the objective of this study is not to seek high AUC

or prediction accuracy but to outline the prospect of the development of an efficient CBA con-

struction procedure, we briefly introduce the concepts that are expected to become significant

in the future accuracy pursuit of CBAs. The first one is more complicated and sophisticated

learning models flourished in the field of machine learning, such as deep learning models [84].

The second is the pre-processing techniques that transform datasets ex-ante to utilize the

power of learning machines more efficiently. There are mainly two approaches for pre-pro-

cessing: methods that deal with imbalanced datasets [85] and those that perform feature selec-

tion [86]. The last one is error analysis in the performance analysis and debugging step of

model building [87]. How one can successfully use these methods in CBA or, more broadly,

claims data situation should be a worthwhile subject to be pursued.

We note that, admittedly, the most demanding and time-consuming task when conducting

CBA research will usually be the construction of gold standards. For instance, most previous

studies reviewed medical charts to construct the gold standard [13, 15, 16, 18, 19, 21–23, 25,

26, 28, 36, 39, 41]. Nevertheless, we still believe that our proposed method may also lower the

bar of CBA research and useful for the following three reasons. Firstly, the performance mea-

sures calculated using appropriate machine learning methods can be potentially useful as a ref-

erence point, even when creating CBAs manually or exploring new CBA construction

procedures.

Secondly, in some cases, it may be possible to sidestep the burden of chart reviewing by

using regularly collected data like annual health screening results, which are used in this study.

Electronic medical records and disease registries are possible candidates along this line. An

increasing number of phenotype algorithms [88–90] may well function as gold standards for

CBA research when electronic medical records are available. Cancer registries can be used to

conduct comprehensive CBA research for various cancers. In fact, some CBA research is using

health screening results [27, 33], blood test results from electronic medical records [22, 31],

and disease registries [9, 14, 17, 24, 29, 40]. If this is the case, researchers can construct the

gold standards from the regularly collected data without a serious burden and may be able to

apply our proposed method to construct CBAs for a broad set of target conditions once an ini-

tial set of input variables are selected.

Finally, as we highlighted in the Introduction, there are demands to build CBAs for a wide

variety of diseases efficiently. For instance, we need to renew CBAs when the coding scheme

changes [42, 43], and a number of countries are still suffering from a lack of CBAs [44]. The
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lack of confirmed CBAs degrades the research quality, and the research will likely fail to attract

high impact factor journals’ attention [45].

There is a two-dimensional generalizability issue on the value of association measures com-

puted here: the study population only covers regular employees; the research only dealt with

three conditions, hypertension, diabetes, and dyslipidemia. Additionally, input variables

selected without using subject-matter knowledge on the target conditions in this study may be

inadequate for other situations and conditions. Additional enrollee characteristics, ICD-10/

WHO-ATC codes with three or more digits, and procedure codes may need to be included to

attain satisfactory CBAs. The information on primary diagnoses and suspected cases may also

be helpful. However, considering that comorbidities were our focus, we do not expect that

incorporating those types of information would appreciably affect the methods’ accuracy in

this study. Lastly, the learning method that suits may depend on the target condition. We hope

that similar studies will be conducted on situations other than those that were investigated in

the present research to gain a deeper understanding regarding the development of efficient

CBA research.

In sum, the penalized logistic regressions other than ridge and tree-based models, which

are the leading machine learning methods, achieved AUCs comparable to the logistic regres-

sion with a knowledge-based condition-specific variable selection. Besides, the AUC level was

satisfactory for hypertension and diabetes. Appropriate machine learning methods can substi-

tute our knowledge of target conditions to construct CBAs efficiently.

Supporting information

S1 File. Receiver operating characteristic curve for claims-based algorithms derived from

machine learning methods (A, Hypertension; B, Diabetes; C, Dyslipidemia). Abbreviations:
AUC, area under the receiver operating characteristic curve; IDW, inverse distance weighting;

ISLE, importance sampled learning ensemble; kNN, k-nearest neighbor; Std., standardized;

SVM, support vector machine; RF, random forest. Notes: Age, gender, and all International

Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)/World

Health Organization-Anatomical Therapeutic Chemical (WHO-ATC) codes with a letter fol-

lowed by two digits were used as input variables for all models but the logistic regression using

the alternative dataset. The main logistic regression fitted a logistic regression model to the

dataset that was appropriately trimmed. The Euclidean distance with raw or standardized (i.e.,

rescaled to have mean zero and variance one) input variables was adopted as a distance metric

for the k-nearest neighbor (kNN). The number of the nearest neighbors to be counted, k, was

optimized using the validation set. The predicted class probabilities that were computed from

(1) the frequency of the class of the k-nearest neighbors (vote) and (2) the inverse distance

weighted frequency of the class of the k-nearest neighbors (IDW) composed a prediction func-

tion. A linear basis function with a hinge or squared hinge loss was adopted in the support vec-

tor machine (SVM). The cost parameter was optimized using the validation set. Decision

values (i.e., the distance of the point from the hyperplane) made up a prediction function.

From the penalized regression, logistic regression with the L2-penalty (logistic ridge), L1-pen-

alty (logistic lasso), and elastic-net penalty (logistic elastic-net) were applied. The regulariza-

tion coefficient and elastic-net mixing parameter were determined by cross-validation. Two

types of tree-based models were applied: random forest and importance sampled learning

ensemble (ISLE). The minimum node size was set to 10 for each tree, and 200 trees were

bagged in the random forest. The number of variables selected for each split was tuned using

the validation set. We fixed the depth to be six for the ISLEs. As the combination of the sub-

sampling ratio for each tree and the learning rate, we selected (1,0.05), (0.5,0.1), and (0.1,0.1).
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The number of trees and regularization coefficient were determined by cross-validation. The

L1-penalty was adopted in the post-processing. A single hidden layer neural network was

applied with a different number of hidden units: 5, 10, and 20. All hidden units were fully con-

nected with the nodes in the input and output layers. Weight decay was employed for the regu-

larization of parameters, and the regularization coefficient of it was tuned using the validation

set.
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