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Applying machine learning algorithms to protein–ligand scoring functions has aroused widespread

attention in recent years due to the high predictive accuracy and affordable computational cost.

Nevertheless, most machine learning-based scoring functions are only applicable to a specific task, e.g.,

binding affinity prediction, binding pose prediction or virtual screening, suggesting that the development

of a scoring function with balanced performance in all critical tasks remains a grand challenge. To this

end, we propose a novel parameterization strategy by introducing an adjustable binding affinity term that

represents the correlation between the predicted outcomes and experimental data into the training of

mixture density network. The resulting residue-atom distance likelihood potential not only retains the

superior docking and screening power over all the other state-of-the-art approaches, but also achieves

a remarkable improvement in scoring and ranking performance. We emphatically explore the impacts of

several key elements on prediction accuracy as well as the task preference, and demonstrate that the

performance of scoring/ranking and docking/screening tasks of a certain model could be well balanced

through an appropriate manner. Overall, our study highlights the potential utility of our innovative

parameterization strategy as well as the resulting scoring framework in future structure-based drug design.
Introduction

Identication of lead active compounds is one of the most
vigorous and innovative stages in drug discovery. Convention-
ally, it relies on high-throughput screening (HTS) to screen
millions of drug-like molecules against a specied target of
interest, followed by multiple cycles of structural optimizations
according to the expert knowledge of medicinal chemists.1,2

Owing to the rapid advancement of computational chemistry
and computer technology, molecular docking, a structure-based
technique that aims to predict the binding mode and binding
affinity of a protein–ligand complex using a predened scoring
function (SF), has gradually become a routine tool in computer-
aided drug design (CADD) in the past two decades, and has
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played a critical role in the discovery and design of a large
number of drug candidates and approved drugs.3–6

At present, improving the reliability of SF remains to be one
of the most crucial tasks in the docking eld.7,8 During the last
few years, the expertise accumulated on the applications of
machine learning (ML) and articial intelligence (AI) algo-
rithms in quantitative structure–activity relationship (QSAR)
models has been widely transferred to the development of SFs,
thus leading to the emergence of a series of ML-based SFs
(MLSFs). Unlike the additive formulated hypothesis utilized in
traditional physics-based, empirical or knowledge-based SFs,
most MLSFs rely on ML algorithms to learn the functional
forms from the data, and has achieved remarkably improved
prediction accuracy over classical approaches in numerous
retrospective benchmark studies.9–15

Four main metrics are typically considered to assess the
performance of a SF, i.e., the scoring power to estimate the
linear correlation between the predicted and experimentally-
determined binding strengths, the ranking power to assess
the capability of a SF to rank the known ligands for a certain
target, the docking power to evaluate the capability to
discriminate near-native poses from computer-yielded decoy
poses, and the screening power to evaluate the ability to identify
the true binders for a certain target from a pool of decoy
compounds.16,17 An ideal SF should perform well across a wide
Chem. Sci., 2023, 14, 8129–8146 | 8129
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range of applications, e.g., binding affinity prediction, binding
pose prediction, virtual screening (VS), etc. Classical SFs such as
GlideScore18 and GOLD ChemPLP19 can obtain acceptable
docking and screening powers in several retrospective assess-
ment studies, but the scoring power is usually far from
satisfaction.17,20–22 A variety of MLSFs trained on pure crystal
structures as regression models always exhibit vastly superior
scoring power than classical methods but are rather weak in
docking and screening.10,23–25 Several data argumentation
strategies have been employed to improve the situation, for
example, incorporating decoy poses into the training set to
construct a classicationmodel that directly distinguishes near-
native poses and those with high root-mean-square-deviations
(RMSDs),26–28 or introducing plenty of decoy/inactive
compounds for a specic target in the training set to train
a classication model to differentiate active and inactive
compounds.29–33 These task-specic MLSFs perform well in the
dened task, but are inevitably lack of accuracy in other tasks,
which limits their applications in a molecular docking protocol.
Thus, developing a MLSF with balanced performance for
multiple objectives remains a big challenge.

A few strategies have been proposed in recent years to over-
come this challenge, and it is worth noting that the classical
additive function form is retained in these newly-developed
MLSFs.34–40 The pioneering one is the D-ML approach rst
introduced into the SF eld by Zhang et al., where a correction
term tted by ML algorithms was utilized to correct the classical
empirical SF score. Three MLSFs, namely DVinaRF20,38 DVina-
XGB34 and DLin_F9XGB,39 have been successively developed and
exhibit excellent performance in all four tasks in the widely-
recognized Comparative Assessment of Scoring Functions
(CASF) benchmarks.17 OnionNet-SFCT40 adopts an extension of
the D-ML strategy, in which the original binding affinity
regression model is replaced by a RMSD classication model to
serve as the correction term. The use of the linear combination
of Vina scores and predicted RMSD values achieves enhanced
performance on multiple docking and screening datasets, but
the scoring and ranking powers on the CASF-2016 benchmark
are reduced. PIGNet proposed by Moon et al.36 can be calculated
as the sum of four energy components evolved from the physics-
informed parameterized equations, where neural networks are
employed to t the pairwise interactions at the atom level. The
introduction of physics-informed parameterized equations and
several data argumentation strategies leads to the out-
performing docking and screening powers of the approach in
the CASF-2016 benchmark, and their scoring and ranking
powers remain competitive. Another strategy worth mentioning
is the mixture density network (MDN) rst employed in Deep-
Dock,35 which inherits the function form of traditional
knowledge-based SFs. The protein–ligand pairwise distance
likelihood can be learned through the MDN and then aggre-
gated into a statistical potential by summing all independent
negative log-likelihood values. Inspired by this innovative idea,
we recently developed an improved SF called RTMScore37 based
on residue-atom distance likelihood potential with graph
transformers serving as feature extractors to learn protein and
ligand node representations. Our approach could achieve state-
8130 | Chem. Sci., 2023, 14, 8129–8146
of-the-art docking and screening powers, but its scoring and
ranking powers on the CASF-2016 benchmark are far below the
average due to the underutilization of experimental binding
data in model training.

In this study, we extend our original model to all four tasks
important for a SF and propose a generalized protein–ligand
scoring framework (GenScore) by introducing an adjustable
binding affinity term into the training of MDN. Here we
describe how the trade-off between the MDN term and the
affinity term enables our approach to obtain balanced scoring,
ranking, docking and screening powers. Our newly-developed
framework successfully retains the excellent docking/
screening power of RTMScore while exhibits signicantly
superior performance in binding affinity prediction/ranking
task.
Materials and methods
Dataset collection

The dataset used in the training and validation of the model has
been described in our previous work.37 19 443 protein–ligand
complexes along with their experimental binding affinity data
were retrieved from the PDBbind-v2020 general set41 and pre-
processed with the Protein Preparation Wizard42 module
implemented in Schrödinger 2020 to add hydrogens, delete
waters, and optimize hydrogen bonds. The protonation states of
the co-crystallized ligands and proteins were determined with
the built-in Epik43 and PropKa44 utilities, respectively with pH =

7.0. The structures were nally minimized using the OPLS3
force eld45 until the RMSD of heavy atoms averaged at 0.30 Å.
Aer eliminating the PDB entries existing in the PDBbind-v2020
core set and CASF-2016 benchmark as well as those not iden-
tied by RDKit,46 a total of 19 149 complexes were remained, in
which 1500 were randomly selected for validation and the rest
were used for training. The validation set here was employed for
the judgement of early stopping in model training to avoid
overtting as well as the selection of the model that exhibited
optimal performance in internal testing.
Initial graph representations

For a specic protein–ligand complex, the ligand and the
protein were individually handled. Each ligand was represented
as an undirected graph (Gl = (Vl, El)) with nodes and edges
denoting atoms and bonds in a two-dimensional (2D) molecule.
Each protein was rst truncated to the binding pocket dened
as the residues within a 10.0 Å radius from the reference ligand,
and then represented as an undirected graph (Gp = (Vp, Ep)) at
the residue level, where each node corresponded to a residue
and each edge represented the interaction between any two
residues with a maximum distance of 10.0 Å. The cutoff of 10.0
Å was an empirical parameter, and was determined in order to
cover most important interactions with affordable cost of
computing resources. The input nodes and edge features for
ligands and protein pockets were the same as those employed in
RTMScore,37 as summarized in Tables S1 and S2,† respectively.
The former only contained some basic atom and bond features,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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while the latter included not only the basic amino acid types but
also several three-dimensional (3D) geometric features, such as
some kinds of distances and dihedral angles. The above
features were primarily generated through RDKit and MDA-
nalysis47 toolkits, and the graphs were produced by using the
Pytorch Geometric (PyG)48 package.
Model architectures

The overall model architecture (Fig. 1) was the same as that
used in RTMScore, which was made up of three major compo-
nents, i.e., node representation learning module, representa-
tion concatenation module and MDN.49 The 3D protein residue
graphs and 2D ligand graphs yielded according to the above
section were employed by the node representation learning
module to learn their corresponding node representations. The
learned node representations were further concatenated in
a pairwisemanner by the representation concatenationmodule,
and nally the concatenated features were processed in the
MDN to learn the probability density distribution of the
distance between each ligand–protein pair.

Node representation learning module. Two graph-based
feature extractors were explored here for node representation
Fig. 1 Overall model architecture of GenScore. The protein and ligand gr
their corresponding node representations, then the learned node repr
concatenation module, and finally the concatenated features will be pr
distribution of the distance between each ligand–protein pair. Three cruc
the feature extractors employed for representation learning (GT or GatedG
finetuning technique to train the model.

© 2023 The Author(s). Published by the Royal Society of Chemistry
learning, including an expanded graph transformer (GT)
framework50 that was used in RTMScore, and a fork of graph
convolutional neural network (GatedGCN).51,52 The protein and
ligand were independently embedded with the same architec-
ture since no remarkable improvement was observed when
different architectures for the embedding of protein and ligand
were used, e.g., applying protein-specic geometric vector per-
ceptrons (GVP)53,54 to embed the protein pocket and GT or
GatedGCN in ligand representation.

Specically, for a graph G with its node features ai ˛ R
d
h
×1

for node i and edge features bij ˛ R
d
e
×1 for the edge between

node i and its neighboring node j, the initial node features ai

and edge features bij were rst embedded into d-dimensional
hidden features h0i and e0ij via two independent fully connected
layers.

h0i = W0
aai + b0a; e

0
ij = W0

bbij + b0b (1)

where W0
a ˛ R

d×d
h, W0

b ˛ R
d×d

e and b0a,b
0
b ˛ R

d denote the
weights and biases of linear layers. Then h0i and e0ij are fed into l
tandem repeated GT/GatedGCN layers to obtain the updated
features hi

l and eij
l. For GT, it relies on a modied multi-head

self-attention (MHA) mechanism for the update of node and
aphs first go through the node representation learning module to learn
esentations are concatenated in a pairwise manner in representation
ocessed in a mixture density network to learn the probability density
ial settings for model performance are specially investigated, including
CN), the weight of the affinity term (a 0, 0.5 or 1.0), and whether to use
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edge features, and the layer update equations for a layer l are
described as follows:

ĥi
lþ1 ¼ Oh
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and Qk,l, Kk,l, Vk,l, Ek,l ˛ R
dk×d, Oh

l, Oh
l ˛ R

d×d are the weight
matrices for linear layers; k ˛ 1,.,H represents the number of
attention heads; dk denotes the dimension for each head, which
can be computed as d divided by H; j ˛ Ni denotes the neigh-
boring nodes of node i; BN, Concat, Dropout and Somax
denote batch normalization, concatenation, dropout, and so-
max operations, respectively. The attention outputs ĥi

l+1 and
êij

l+1 are then passed to several batch normalization layers, fully
connected layers and residual connections to obtain the nal
features of the lth layer hi

l+1 and eij
l+1 as:

hi
l+1 = ĥi

l+1 + Øh2
lDropout(SiLUØh1

lBN(hi
l + ĥi

l+1)) (5)

eij
l+1 = êij

l+1 + Øe2
lDropout(SiLUØe1

lBN(eij
l + êij

l+1)) (6)

where Øh1
l, Øe1

l ˛ R
2d×d and Øh2

l, Øe2
l ˛ R

d×2d are the weight
matrices for linear layers; SiLU denotes a type of nonlinear
activation.

For GatedGCN, an edge gating mechanism was utilized to
update the node and edge features, and for the lth layer:

hi
lþ1 ¼ hi

l þReLU

 
BN

 
Ulhi

l þ
X
j˛Ni

eij
lV lhj

l

!!
(7)

where Ul, Vl ˛ R
d×d, ReLU is a type of nonlinear activation, and

the edge gates eij
l is dened as:

eij
l ¼ s

�
êij

l
�

P
j
0˛Ni

s
�
êij0

l
�
þ 3

(8)

êij
l+1 = êij

l + ReLU(BN(Alhi
l + Blhj

l + Cleij
l)) (9)

where s denotes sigmoid function; 3 denotes a small xed
constant for numerical stability; Al, Bl, Cl ˛ R

d×d represent
weight matrices.

Representation concatenation module and MDN. The
protein and ligand representations learned from the above
module (hprotu and hligv ) were pairwise-concatenated and fed into
the MDN. The dm-dimensional hidden feature hu,v that repre-
sented the interactions between the uth protein node and the
vth ligand node was calculated as:

hu,v = Dropout(ELU(BN(WcConcat([h
prot
u , hligv ])))) (10)
8132 | Chem. Sci., 2023, 14, 8129–8146
where Wc ˛ R
2d×d

m. The representation hu,v is passed into three
individual fully-connected layers, and the three vectors that are
necessary to parametrize a mixture density model, i.e., means
(mu,v), standard deviations (su,v), and mixing coefficients (ru,v),
are calculated as follows:

mu,v = ELU(Wmhu,v) + 1 (11)

su,v = ELU(Wshu,v) + 1.1 (12)

ru,v = Softmax(Wrhu,v) (13)

where Wm, Ws, Wr ˛ R
dm×Ng. The mixture density model is

dened as the mixture of Ng Gaussians, thus mimicking the
probability density distribution of the ligand–protein distance
for each ligand–protein node pair. Here, the minimum distance
between a specic ligand atom and each atom is used in
a specic residue as the nal indicator due to its superior
performance in our previous study.37 Besides, two auxiliary
representations as suggested by Méndez-Lucio et al.35 are
computed based on hu,v in order to learn the atom type of each
ligand atom and the bond type of each bond formed between
a specic atom and its neighboring atoms, thus serving as two
auxiliary tasks for the memorization of molecular structures.
Training procedures

We utilized the Adam optimizer with a batch size of 64,
a learning rate of 10−3 and a weight decay of 10−5 for model
training. The training procedure proceeded unless the valida-
tion performance would not be improved in successive 70
epochs. The detailed settings of hyperparameters were listed in
Table S3.†

The loss function was dened as eqn (14), which could be
described as the sum of anMDN loss ðLMDNÞ; two auxiliary cross-
entropy losses ðLat and LbtÞ and an adjustable affinity correction
term ðLaffiÞ: The MDN loss was computed as the negative log-
likelihood of a pool of protein–ligand node distances and then
summed into a potential E(x) at the protein–ligand complex level.
The affinity term was dened as the correlation coefficient of the
nal predicted scores and experimentally-determined binding
affinities. a denoted the weight of Laffi; and a = 0 indicated
a model without affinity term. The protein–ligand node pairs
with distances less than 7.0 Å were taken into consideration
when training the MDN while the cutoff was changed to 5.0 Å for
model predictions, since this combination could achieve rela-
tively better performance in our previous study.37

L ¼ LMDN þ aLaffi þ 0:001� Lat þ 0:001� Lbt (14)

LMDN ¼ �log P
�
du;v
��hprotu ; hligv

� ¼ �log
XNg

k¼1

ru;v;kN
�
du;v
��mu;v;k; su;v;k

�
(15)

EðxÞ ¼ �
XU
u¼1

XV
v¼1

log P
�
du;v
��hprotu ; hligv

� ¼ �score (16)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Laffi ¼ corr
�
score; yexp

�
(17)

To explore the impact of incorporating binding affinity term
on the nal performance, in addition to the routine model
training from scratch, we also constructed several models using
transfer learning by netuning the models without the affinity
term (a = 0) to the models that incorporated the affinity term.
Specically, a model without the affinity term was pretrained as
an initial, and then the parameters learned from this model was
employed to initialize the models with the affinity term. For
a single training-validation split, three independent models
were trained and the mean performance was assessed to further
demonstrate the robustness of the methodology.
Evaluation procedures

A variety of benchmark sets were included in this study to
comprehensively validate our generalized protein–ligand
scoring framework, including the CASF-2016 benchmark,17

three VS datasets namely the demanding evaluation kits for
objective in silico screening (DEKOIS) 2.0,55 the Directory of
Useful Decoys-Enhanced (DUD-E)56 and the LIT-PCBA,57 and
several extra test sets, i.e., the Community Structure–Activity
Resource (CSAR) NRC-HiQ benchmark,58 the Merck FEP
benchmark59 and the PDBbind-CrossDocked-Core.60

CASF-2016 benchmark. The CASF benchmark originally
proposed by Cheng et al.61 in 2007 is a widely-recognized dataset
for the benchmarking of classical SFs. Although a cloud of
doubt has been raised for its over-estimation of MLSFs,62–64 it
remains an important standard since more than 30 popular SFs
have been tested on it. The most updated CASF-2016 (ref. 17) is
constructed based on 285 diverse protein–ligand complexes (57
targets and 5 known ligands for each target). In this work, the
performance of a SF was assessed from four different aspects,
i.e., scoring, ranking, docking and screening. Scoring power was
mainly evaluated by the Pearson's correlation coefficient (Rp)
between the predicted and experimental binding affinities of all
the 285 complexes; ranking power was primarily indicated by
the average Spearman's rank correlation coefficient (Rs) across
the 57 targets; docking power was measured using the success
rate (SR), where a successful prediction could be marked if one
of the RMSD values between the top-ranked poses and the
native poses was less than 2.0 Å; screening power was divided
into the forward screening power and the reverse screening
power. The forward screening power calculated the SR of
identifying the highest-affinity binder among the 1%, 5% or
10% top-scored ligands over all 57 targets, as well as the
enrichment factor (EF) that was measured by the average
percentage of the true binders observed among the top-scored
candidates (1%, 5% or 10%) across all 57 targets. The reverse
screening power calculated the SR of predicting the target of
a ligand among the 1%, 5% or 10% top-scored candidate
proteins.

DEKOIS2.0 and DUD-E. DEKOIS2.0 and DUD-E are two
crucial datasets for benchmarking VS protocols, and can be
considered complementary owing to their different actives
© 2023 The Author(s). Published by the Royal Society of Chemistry
versus decoys ratios and distinct ways to generate the decoys.
Some studies have doubted the applicability of these datasets
for the evaluation of MLSFs due to the hidden biases.65,66

However, all the SFs in this study are trained on just crystalized
ligand poses with low structural similarity to the diverse decoy
compounds in the retrospective VS benchmarks, and the
external testing of VS performance on the two datasets can in
turn validate the generalization capability of our approach.
DEKOIS2.0 consists of 81 diverse targets with 30 actives and
1200 decoys for each target. DUD-E contains a total of 22 886
active ligands against 102 diverse targets with 50 decoys
generated for each active compound. The docking poses
produced by Glide SP37 were used for model evaluation. In
short, up to 10 docking poses were generated for each
compound, and then rescored by each model. The VS perfor-
mance was assessed according to the area under the receiver
operating characteristic curve (AUROC),67 Boltzmann enhanced
discrimination of receiver operating characteristic (BEDROC,
a = 80.5),68 and EFs with different percentiles (0.5%, 1%, and
5%).

LIT-PCBA. LIT-PCBA is claimed as an unbiased dataset
designed for benchmarking ML and VS, where the bioactivities
of both the active and inactive compounds are veried by
experimental results. The full set contains a total of 15 targets,
10 030 true actives and 2 798 737 true inactives. For each target,
the ratio of actives to inactives is around 1 : 1000, and this high
imbalance could better mimic the challenging scenarios in real-
word applications. The proteins and ligands were prepared as
described above, and then Glide SP was employed to generate
up to 10 docking poses for each compound. It should be noted
that multiple PDB templates are provided for each target in the
original version of the dataset. To save computational costs, we
assessed the quality of each PDB entry by taking multiple
factors (e.g., binding site, binding site mutations, missing
residues, resolution, etc.) into account, and nally selected just
one for each target for the following docking calculations. As for
the molecule failing in docking, an extreme low score was
exerted to it. The detailed information of the dataset employed
here is summarized in Table S4.† The performance is indicated
majorly according to the EF at the top 1% percentile (EF1%).

CSAR NRC-HiQ benchmark. The CSAR NRC-HiQ set updated
in 2011 consists of 466 high-quality protein–ligand crystal
structures with experimentally-determined binding informa-
tion from the literature. A large number of the structures
collected in the CSAR benchmark set are identical to those in
the PDBbind-v2020 general set, and therefore, we further con-
structed two subsets of the CSAR NRC-HiQ set, where Setet was
generated by eliminating the entries appeared in the training
and validation sets and Setep was obtained by excluding all the
same structures existing in PDBbind-v2020. The nal numbers
of structures in the subsets of Setet and Setep were 102 and 66,
respectively. The complexes were then prepared using the
Protein Preparation Wizard module as described above, and
rescored by each model. The scoring power represented by Rp

and Rs was summarized.
PDBbind-CrossDocked-Core. The PDBbind-CrossDocked-

Core set was derived from the PDBbind-v2016 core set in our
Chem. Sci., 2023, 14, 8129–8146 | 8133
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previous study60 consisting of 285 diverse protein–ligand
complexes. Each ligand was extracted and re-docked into the
pocket of the original protein (or cross-docked into the pockets
of the other four proteins belonging to the same target cluster)
by using three docking programs, i.e., Surex-Dock,69 Glide SP18

and AutoDock Vina,70 with up to 20 poses generated. The
docking power was assessed by calculating the SR across the 285
complexes based on either the re-docked poses or cross-docked
poses using the idea of ensemble docking. The scoring power
was assessed in an end-to-end manner, i.e., using the MLSFs to
select the best-scored pose of a specic ligand and to calculate
the Rp and Rs that represent the capability of binding affinity
prediction.

Merck FEP benchmark. The Merck FEP benchmark set is
initially developed for assessing models based on the theoret-
ical prediction of free energy, such as Schrödinger's FEP+.71 The
dataset consists of 8 pharmaceutically relevant targets and
a total of 264 active ligands with their binding affinity data
curated from the literature. The ligands for a specic target
share a similar scaffold but include various structural trans-
formations, thus well mimicking the real-world applications
during the hit-to-lead and lead optimization stages. Given that
the analogues for a specic target may exhibit similar binding
poses while conventional molecular docking can hardly repro-
duce the binding poses of all the series, the poses provided by
the authors were directly employed here for rescoring, which
were predicted by using either the Flexible Ligand Alignment
tool or Glide core-constrained docking based on a reference
structure. The average Rs values across 8 targets was used as the
major indicator of the ranking power.
Baselines

In addition to the models emphatically explored in this study,
some other SFs were also included as the baselines. For the
CASF benchmark, the results of several classical SFs and
recently-developed MLSFs tested on the same dataset were
directly retrieved for comparison. Regarding DEKOIS2.0 and
DUD-E, only the docking score of Glide SP was utilized as the
major baseline since it demonstrated signicantly superior
screening power than other tested classical SFs and a pool of
generic MLSFs in our previous study.24 As for LIT-PCBA, besides
the Glide SP, we also collected the results of several approaches
from some relevant publications for comparison.39,72,73 When it
comes to the other tests, six classical SFs, i.e., three in the latest
version of AutoDock Vina74 (AD4,75 Vina70 and Vinadro76), Glide
SP,18 Glide XP,77 X-Score,78 and two MLSFs of DLin_F9XGB39 and
Pafnucy,79 were used for comparison. As for the Merck FEP
benchmark, the Prime-MM/GBSA method was also performed
using the prime_mmgbsa utility in Schrödinger with the residues
within 5.0 Å from the ligand set as exible.
Results and discussions
Assessment on CASF-2016 benchmark

In this study, a total of ten groups of models were constructed
and the impacts of three crucial settings were emphatically
8134 | Chem. Sci., 2023, 14, 8129–8146
investigated, including the feature extractors employed for
representation learning (GT or GatedGCN), whether to use
netuning technique for model training, and the weight of the
affinity term (a = 0, 0.5 or 1.0).

Our models were rst tested on the routine CASF-2016
benchmark, and compared with 33 traditional SFs reported by
Su et al.17 (Fig. 2) as well as several representative MLSFs
(Table 1). As shown in Fig. 2, the results indicated that our
methods consistently outperformed the classical SFs in terms of
all four powers. Incorporation of the affinity term remarkably
improved the scoring and ranking powers (Fig. 2A and B), while
maintained strong docking and screening powers inmost cases.
Specically, the GT model with a = 1.0 (GT_1.0) exhibited
greater scoring (0.829 vs. 0.458) and ranking (0.673 vs. 0.536)
powers, but decrease in the docking and screening powers
could be observed. In contrast, the DT model with a = 0.5
(DT_0.5) obtained a more balanced performance compared to
the DT_1.0 and DT_0.0 models. As for the netuned models,
GT__0.5 and GT__1.0 showed signicantly improved dock-
ing and screening powers than themodels trained from scratch.
The average top 1 success rates of GT__0.5 and GT__1.0 with
the crystal poses excluded from the test set were 93.6% and
94.0%, respectively, and the values increased to 97.6% and
96.6% when the crystal poses were included. In the assessment
of the screening power, two netuned models exhibited supe-
rior forward screening performance according to either the
average top 1 success rate (71.4% and 71.9% vs. 64.9%) or the
EF1% (28.16 and 28.12 vs. 27.54), but showed weaker reverse
screening power indicated by the top 1 success rate (32.7% and
29.0% vs. 38.7%). As for the scoring and ranking power, ne-
tuned models obtained higher ranking power (0.659 vs. 0.614;
0.684 vs. 0.673) but slightly decreased scoring power (0.773 vs.
0.787; 0.802 vs. 0.829). All the above ndings demonstrated that
direct use of the affinity term together with the MDN term could
get higher scoring and ranking powers but lower docking and
screening powers. However, the introduction of different
weights to combine the two terms in a different manner or
using netuning technique to give a set of initial parameters to
model training could efficiently achieve a balanced perfor-
mance in terms of all four tasks. Similar results were observed
when the GT feature extractor was replaced by GatedGCN. Of
note, the GatedGCN models exhibited overall superior scoring
and ranking powers but weaker docking and screening powers
compared to GT models. For example, the scoring and ranking
powers of GatedGCN__0.5 (0.816 and 0.667, respectively) were
higher than those of GT__0.5 (0.773 and 0.659, respectively),
while the docking powers (SR1 with or without native poses) and
screening powers (forward SR1, EF1 and reverse SR1) of
GatedGCN__0.5 (93.3%, 96.4%, 67.3%, 25.43 and 29.2%,
respectively) were relatively decreased compared to those of
GT__0.5 (93.6%, 97.6%, 71.4%, 28.16 and 32.7%, respectively).
These results suggested that it would be critical to balance the
scoring/ranking power and the docking/screening power in
order to develop a generalized protein–ligand scoring
framework.

Compared with the other state-of-the-art MLSFs, our models
were still competitive. Early MLSFs were always trained as non-
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Performances of scoring functions on CASF-2016 benchmark, including (A) the scoring power measured by Pearson correlation coef-
ficient (Rp), (B) the ranking power evaluated by Spearman correlation coefficient (Rs), the docking powers indicated by success rates at the top 1%,
2% and 5% levels either (C) with or (D) without the crystalized poses in the test set, and the screening powers in terms of (E) success rates (SR1%,
SR5% and SR10%) and (F) enrichment factors (EF1%, EF5% and EF10%) in forward screening and (G) success rates (SR1%, SR5% and SR10%) in reverse
screening. The models constructed in this study are in bold font. The methods in each subplot are ranked in a descending order according to (A)
Rp, (B) Rs, (C, D, E and G) SR1% and EF1%, respectively.

Edge Article Chemical Science
linear regression models to directly t the predicted scores and
experimental binding data based on the pure crystal structures,
thus leading to their extremely excellent scoring power with the
Rp values ranging from 0.80 to 0.86.10,11 Two representative
methods listed in Table 2, i.e., AKScore80 and AEScore,81 could
obtain the scoring powers of 0.812 and 0.830, respectively, but
© 2023 The Author(s). Published by the Royal Society of Chemistry
their docking powers (36.0% and 35.8%) were far worse than
expected. The screening powers of these two MLSFs were also
quite weak, which was in accordance with our previous study
that MLSFs trained in a similar way (e.g., RFscore,14,82

NNscore,15,83 OnionNet,84 and Pafnucy79) exhibited signicantly
worse VS performance than classical Glide SP on the DUD-E and
Chem. Sci., 2023, 14, 8129–8146 | 8135



Table 1 Performances of several representative SFs on the CASF-2016 benchmarka

Feature extractor
Training
mode a

Docking Screening Scoring Ranking

SR1

(native poses
included)

SR1

(native poses
excluded) Forward SR1 EF1 Reverse SR1 Rp Rs

AutoDock Vina70 0.846 0.902 0.298 7.70 0.137 0.604 0.528
ChemPLP@GOLD19 0.832 0.860 0.351 11.91 0.165 0.614 0.633
GlideScore-SP18 0.846 0.877 0.368 11.44 0.175 0.513 0.419
KORP-PL85 0.856 0.891 0.421 22.23 0.151 0.447 0.570
KDEEP80,89 0.291 — — — — 0.701 0.528
AKScore80 0.360 — — — — 0.812 0.670
DVinaRF20 (ref. 38 and 39) 0.849 0.891 0.456 12.36 — 0.739 0.635
DVinaXGB

34 — 0.916 0.368 13.14 — 0.796 0.647
DLin_F9XGB

39 — 0.867 0.404 12.61 — 0.845 0.704
OnionNet-SFCT + Vina40 — 0.937 0.421 15.50 — 0.428 0.393
AEScore81 0.358 — — — — 0.830 0.640
D-AEScore81 0.856 — 0.193 6.16 0.800 0.590
PIGNet36 0.870 — 0.554 19.60 — 0.761 0.682
DeepDock35 0.870 — 0.439 16.41 0.239 0.460 0.425
RTMScore37 0.934 � 0.002 0.973 � 0.013 0.667 � 0.071 28.00 � 0.94 0.376 � 0.019 0.455 � 0.015 0.529 � 0.004
GT — 0 0.938 � 0.011 0.974 � 0.007 0.649 � 0.035 27.54 � 0.65 0.387 � 0.011 0.458 � 0.012 0.536 � 0.034

— 0.5 0.933 � 0.007 0.969 � 0.007 0.667 � 0.046 25.68 � 1.60 0.254 � 0.013 0.787 � 0.026 0.614 � 0.022
— 1.0 0.905 � 0.012 0.933 � 0.013 0.573 � 0.041 18.58 � 1.69 0.187 � 0.046 0.829 � 0.015 0.673 � 0.009
Finetune 0.5 0.936 � 0.007 0.976 � 0.005 0.714 � 0.053 28.16 � 0.88 0.327 � 0.030 0.773 � 0.004 0.659 � 0.016
Finetune 1.0 0.940 � 0.000 0.966 � 0.006 0.719 � 0.035 28.12 � 0.13 0.290 � 0.016 0.802 � 0.011 0.684 � 0.024

GatedGCN — 0 0.939 � 0.018 0.963 � 0.011 0.544 � 0.061 23.99 � 0.54 0.353 � 0.006 0.495 � 0.005 0.558 � 0.014
— 0.5 0.924 � 0.006 0.957 � 0.010 0.667 � 0.031 23.53 � 0.35 0.266 � 0.034 0.818 � 0.010 0.693 � 0.029
— 1.0 0.912 � 0.006 0.936 � 0.005 0.585 � 0.010 19.78 � 0.09 0.196 � 0.004 0.837 � 0.011 0.682 � 0.014
Finetune 0.5 0.933 � 0.007 0.964 � 0.005 0.673 � 0.010 25.43 � 0.55 0.292 � 0.012 0.816 � 0.001 0.667 � 0.020
Finetune 1.0 0.926 � 0.016 0.954 � 0.004 0.661 � 0.037 23.54 � 1.00 0.259 � 0.027 0.834 � 0.014 0.686 � 0.017

a The training set information of each compared approach can be found in Table S5.

Table 2 Screening powers of scoring functions on the DEKOIS2.0 dataset

Method

AUROC BEDROC (a = 80.5) EF0.5% EF1% EF5%

Mean Median Mean Median Mean Median Mean Median Mean Median

Glide SP 0.747 0.754 0.385 0.314 14.61 13.30 12.47 9.61 6.30 5.97
RTMScore 0.764 �

0.007
0.774 �
0.012

0.550 �
0.009

0.603 �
0.003

20.78 �
0.21

25.30 �
0.87

18.39 �
0.16

21.38 �
0.33

8.33 �
0.12

8.53 �
0.37

GT_0.0 0.763 �
0.002

0.783 �
0.010

0.539 �
0.012

0.599 �
0.022

20.35 �
0.47

25.13 �
1.48

18.13 �
0.39

20.22 �
1.30

8.24 �
0.17

8.38 �
0.25

GT__0.5 0.757 �
0.002

0.767 �
0.007

0.539 �
0.007

0.588 �
0.011

20.24 �
0.52

24.81 �
1.31

17.87 �
0.10

19.82 �
0.63

8.25 �
0.11

8.36 �
0.43

GT__1.0 0.761 �
0.002

0.773 �
0.004

0.533 �
0.010

0.573 �
0.022

19.79 �
0.70

25.00 �
0.42

17.64 �
0.43

18.78 �
1.41

8.28 �
0.14

8.48 �
0.25

GT_0.5 0.762 �
0.003

0.778 �
0.008

0.529 �
0.004

0.583 �
0.027

20.12 �
0.20

23.97 �
0.71

17.63 �
0.17

19.56 �
1.96

8.13 �
0.16

8.52 �
0.61

GT_1.0 0.757 �
0.004

0.778 �
0.003

0.487 �
0.017

0.521 �
0.030

18.76 �
0.61

22.38 �
0.61

16.09 �
0.66

17.59 �
1.20

7.78 �
0.17

7.83 �
0.45

GatedGCN_0.0 0.758 �
0.004

0.779 �
0.002

0.532 �
0.014

0.586 �
0.030

19.64 �
0.34

24.36 �
1.18

17.66 �
0.37

18.64 �
0.60

8.21 �
0.18

8.19 �
0.40

GatedGCN__0.5 0.755 �
0.007

0.767 �
0.006

0.522 �
0.009

0.586 �
0.014

19.26 �
0.18

22.95 �
2.21

17.29 �
0.35

18.76 �
0.71

8.09 �
0.14

8.25 �
0.30

GatedGCN__1.0 0.753 �
0.005

0.768 �
0.013

0.503 �
0.012

0.550 �
0.028

18.63 �
0.25

21.47 �
1.14

16.98 �
0.49

18.11 �
2.54

7.93 �
0.17

8.18 �
0.18

GatedGCN_0.5 0.756 �
0.003

0.767 �
0.003

0.507 �
0.004

0.544 �
0.014

18.68 �
0.31

22.47 �
2.23

16.93 �
0.03

19.38 �
1.00

7.93 �
0.03

7.89 �
0.27

GatedGCN_1.0 0.752 �
0.007

0.770 �
0.015

0.468 �
0.013

0.504 �
0.027

17.37 �
0.46

19.50 �
1.63

15.38 �
0.39

16.98 �
1.61

7.51 �
0.21

7.56 �
0.25
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DEKOIS2.0 datasets.24 Some SFs relying on statistical potentials
such as KORP-PL85 and DeepDock35 exhibited a similar task
preference as our previously-developed RTMScore, i.e., per-
forming well in docking and screening but less accurate in
scoring and ranking. Besides, in comparison to several newly-
developed MLSFs, i.e., PIGNet,36 DVinaRF20,38 DVinaXGB,34

DLin_F9XGB39 and D-AEScore,81 our netuned models consis-
tently achieved superior docking and screening powers in all
cases, and maintained leading scoring and ranking powers over
most models.
Assessment on DEKOIS2.0, DUD-E and LIT-PCBA datasets

We further investigated the screening power of our models on
two large-scale VS datasets, i.e., DEKOIS2.0 and DUD-E, which
contained more diverse actives and decoys in comparison to the
limited crystalized ligands in the CASF-2016 benchmark. The
results on DEKOIS2.0 indicated by AUROC, BEDROC and EFs
were shown in Table 2 and Fig. 3. The overall screening
performance was not improved by using the affinity term in
model training, which was in contrast to the results from the
CASF-2016 forward screening test where the netuned models
could even outperform the models without the affinity term in
regard to both the top 1 success rate and EF1%. Similar to the
Fig. 3 Screening power of scoring functions on the DEKOIS2.0 dataset
factors at different percentiles (0.5%, 1.0%, and 5.0%), based on the dockin
different random seeds, and the white square in the box plot denotes th

© 2023 The Author(s). Published by the Royal Society of Chemistry
ndings on the CASF-2016 benchmark, tuning the weight of the
affinity term from 1.0 to 0.5, using GT rather than GatedGCN for
representation learning, and netuning the model from
a specic set of initial parameters, beneted to improving the
screening power. The optimal model GT__0.5 achieved the
mean BEDROC of 0.539 ± 0.007, EF0.5% of 20.24 ± 0.52, EF1% of
17.87± 0.10 and EF5% of 8.25± 0.11, which were innitely close
to the corresponding model without the affinity term (mean
BEDROC = 0.539 ± 0.012, EF0.5% = 20.35 ± 0.47, EF1% = 18.13
± 0.39 and EF5% = 8.24 ± 0.17). Notably, the worst-performed
models, GatedGCN_1.0 and GT_1.0, were still better than
Glide SP that was demonstrated to be one of the best-
performing SFs in our previous assessment study.

The results from the DUD-E dataset (Table 3 and Fig. 4) were
substantially consistent with those from the DEKOIS2.0 dataset,
and were relatively more stable. GT__0.5 still obtained the best
enrichment performance with the mean BEDROC of 0.534 ±

0.011, EF0.5% of 41.11 ± 0.84, EF1% of 33.31 ± 0.65 and EF5% of
10.68 ± 0.15, but was less effective than GT_0.0 (mean BEDROC
= 0.546± 0.010, EF0.5%= 44.02± 3.67, EF1%= 33.96± 0.69 and
EF5% = 10.73 ± 0.20). GatedGCN_1.0 and GT_1.0 still per-
formed the worst but superior to classical Glide SP (0.473 and
0.472 vs. 0.414; 35.54 and 35.62 vs. 29.44; 28.53 and 28.41 vs.
23.61; 9.98 and 10.02 vs. 9.24).
in terms of (A) AUROC, (B) BEDROC (a = 80.5), and (C–E) enrichment
g poses yielded by Glide SP. The color denotes themodels trained with
e mean value of each statistic.
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Table 3 Screening powers of scoring functions on the DUD-E dataset

Method

AUROC BEDROC (a = 80.5) EF0.5% EF1% EF5%

Mean Median Mean Median Mean Median Mean Median Mean Median

Glide SP 0.820 0.845 0.414 0.410 29.44 33.27 23.61 23.30 9.24 9.50
RTMScore 0.829 �

0.003
0.865 �
0.004

0.548 �
0.013

0.596 �
0.025

41.73 �
1.03

48.11 �
2.37

34.19 �
0.95

35.22 �
1.97

10.81 �
0.19

11.64 �
0.19

GT_0.0 0.828 �
0.001

0.865 �
0.003

0.546 �
0.010

0.604 �
0.027

44.02 �
3.67

51.19 �
3.07

33.96 �
0.69

34.78 �
0.43

10.73 �
0.20

11.63 �
0.27

GT__0.5 0.824 �
0.002

0.862 �
0.003

0.534 �
0.011

0.588 �
0.010

41.11 �
0.84

46.44 �
0.96

33.31 �
0.65

34.22 �
1.14

10.68 �
0.15

11.67 �
0.35

GT__1.0 0.824 �
0.003

0.859 �
0.002

0.532 �
0.017

0.567 �
0.024

40.56 �
1.33

45.58 �
1.39

32.65 �
1.36

33.20 �
2.19

10.66 �
0.20

11.39 �
0.38

GT_0.5 0.826 �
0.004

0.862 �
0.005

0.535 �
0.008

0.575 �
0.010

41.08 �
0.60

46.27 �
2.26

33.00 �
0.34

33.78 �
0.17

10.70 �
0.10

11.60 �
0.31

GT_1.0 0.820 �
0.002

0.852 �
0.004

0.472 �
0.021

0.471 �
0.031

35.62 �
1.84

38.14 �
1.74

28.41 �
1.48

27.73 �
1.90

10.02 �
0.26

10.14 �
0.46

GatedGCN_0.0 0.828 �
0.001

0.860 �
0.006

0.537 �
0.001

0.574 �
0.014

40.71 �
0.18

45.30 �
0.64

33.28 �
0.10

33.65 �
0.81

10.70 �
0.05

11.50 �
0.08

GatedGCN__0.5 0.826 �
0.003

0.862 �
0.002

0.529 �
0.007

0.556 �
0.005

40.03 �
0.42

44.63 �
0.61

32.47 �
0.50

32.32 �
0.19

10.67 �
0.17

11.34 �
0.39

GatedGCN__1.0 0.824 �
0.003

0.855 �
0.010

0.515 �
0.009

0.538 �
0.019

38.91 �
0.67

41.84 �
2.19

31.21 �
0.71

31.61 �
1.31

10.56 �
0.16

11.09 �
0.22

GatedGCN_0.5 0.822 �
0.002

0.856 �
0.002

0.514 �
0.004

0.533 �
0.009

39.14 �
0.29

42.91 �
1.82

31.36 �
0.21

31.42 �
1.37

10.48 �
0.12

10.94 �
0.01

GatedGCN_1.0 0.816 �
0.002

0.849 �
0.003

0.473 �
0.005

0.467 �
0.014

35.54 �
0.34

38.18 �
1.11

28.53 �
0.61

27.38 �
1.63

9.98 � 0.03 10.09 �
0.45

Fig. 4 Screening power of scoring functions on the DUD-E dataset in terms of (A) AUROC, (B) BEDROC (a= 80.5), and (C–E) enrichment factors
at different percentiles (0.5%, 1.0%, and 5.0%), based on the docking poses yielded by Glide SP. The color denotes the models trained with
different random seeds, and the white square in the box plot denotes the mean value of each statistic.
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Despite this, it should be noticed that several MLSFs con-
structed based on numerous decoy compounds or trained in
a target-specic way might exhibit comparable or even better
results on the DUD-E or DEKOIS2.0 dataset. For example, the
ROC enrichment scores at the 1.0% percentile for the models
presented by Ragoza et al.,29 Torng et al.,31 and Lim et al.30 were
29.654, 29.748 and 69.037, respectively, according to the cross-
validation on DUD-E, and similarly an average EF1% of 43.913
on the DUD-E could be obtained for SIEVE-Score,32 which was
trained as a target-specic MLSF. RF-Score-VS86 trained in
a horizontal split or per-target split way could obtain an average
EF1% of 32.05–43.43 on the DUD-E dataset, but the corre-
sponding indicators decreased to 9.52–13.5 when a vertical split
was employed, and the performance further decreased in the
external DEKOS 2.0 dataset (EF1% = 9.84 and 7.81 for RF-Score-
VS v2 and RF-Score-VS v3, respectively). These models could not
avoid the hidden biases in the training sets thus leading to their
poor generalization ability in other external test sets, and it
would be difficult to train and use a target-specic model
without sufficient experimentally-veried compounds in real-
world scenarios. The generic approach in this work was con-
structed based on the protein–ligand crystalized complexes that
comprised a completely different composition as the DUD-E/
DEKOIS dataset, and thus better avoided the potential hidden
biases or the lack of training data for certain targets.

Considering the potential biases in above two datasets, we
also tested our models on LIT-PCBA dataset, where both the
actives and inactives had been experimentally veried and an
extreme imbalance of actives and inactives was retained to
mimic the challenging real screening scenarios. It should be
noted that over half of the targets (8 of 15) use cell-based assays
to determine the bioactivity, so whether the data is consistently
reliable for benchmarking structure-based approaches remains
questioned. Nevertheless, the evaluation results based on it may
be still valuable to some extents. According to the average EF1%
of all the 15 targets (Table 4), GatedGCN_1.0 and GT_1.0 still
performed the worst among all our models (EF1% = 5.14 ± 0.62
and 5.24 ± 0.74) but slightly better than Glide SP (EF1% = 4.06).
However, owing to the smaller amounts of targets in this dataset
(15 vs. 102 and 81), the impacts of other settings might be a little
irregular. Here the top-three performed models were
GatedGCN__0.5 (EF1% = 6.80 ± 0.49), GT_0.0 (EF1% = 6.51 ±

0.37) and GT__1.0 (EF1% = 6.41 ± 0.71), and they could
outperform Glide SP in 10, 11 and 9 of the 15 targets, respec-
tively. Further comparison of our models with the data reported
by other groups (Table 5) also demonstrated the competitive-
ness of our methods. Our models could just obtain lower
average EF1% than IFP (EF1% = 7.46) and GRIM (EF1% = 6.87),
but performed generally superior to the other approaches, e.g.,
Pafnucy (EF1% = 5.32), DVinaRF20 (EF1% = 3.18 or 5.38) and
DLin_F9XGB (EF1% = 5.55). Of note, IFP and GRIM are not typical
SFs, and they shall belong to similarity searching approaches
that are highly dependent on the chosen PDB templates and
target-specic, while the other approaches are all generic. Two
recent studies conducted by Tran-Nguyen et al. have demon-
strated the poor generalization of the simple approaches like
IFP on other datasets.87,88 Additionally, just as we have
© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 8129–8146 | 8139



Table 5 Comparison of the screening powers on LIT-PCBA dataset with the data reported by other groups

Group Docking programs Scoring function Average EF1%
Number of targets
(EF1% > 2)

Number of targets
(EF1% > 5)

Number of targets
(EF1% > 10)

Sunseri et al.73 Smina RFScore-4 1.28 4 1 0
RFScore-VS 0.73 5 2 0
Vina 1.1 6 1 0
Dense (affinity) 2.58 6 6 2

Smina + Vinardo Vinardo 0.99 4 2 0
Yang et al.39 Smina + Lin_F9 Vina 2.78 6 2 1

DVinaRF20 3.18 6 3 2
Lin_F9 2.21 8 1 0
DLin_F9XGB 5.55 13 8 2

Tran-Nguyen et al.72 Surex Surex 2.51 6 3 0
Pafnucy 5.32 9 7 3
DVinaRF20 5.38 10 7 3
IFP 7.46 11 9 4
GRIM 6.87 12 8 5

Ours Glide SP Glide SP 4.06 9 4 1
GT_0.0 6.51 � 0.37 10.33 � 0.58 5.33 � 0.58 3.00 � 1.00
GT__0.5 5.95 � 0.45 9.67 � 1.15 4.67 � 0.58 2.67 � 0.58
GT__1.0 6.41 � 0.71 9.67 � 0.58 6.00 � 0.00 3.33 � 0.58
GT_0.5 5.69 � 0.23 11.00 � 1.00 5.00 � 1.00 2.00 � 0.00
GT_1.0 5.24 � 0.74 9.33 � 0.58 4.67 � 1.53 2.33 � 0.58
GatedGCN_0.0 6.22 � 0.87 8.67 � 0.58 5.00 � 1.00 3.00 � 1.00
GatedGCN__0.5 6.80 � 0.49 10.00 � 0.00 5.67 � 0.58 3.33 � 0.58
GatedGCN__1.0 6.27 � 0.35 8.67 � 1.15 6.33 � 0.57 3.00 � 0.00
GatedGCN_0.5 5.53 � 0.59 9.00 � 0.00 5.33 � 0.58 2.33 � 0.58
GatedGCN_1.0 5.14 � 0.62 8.33 � 0.00 5.00 � 0.71 2.00 � 0.00
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mentioned above, MLSFs trained for a specic target may
perform better than generic approaches on the assigned target.
For example, our previous study indicates that a descriptor-
based XGBoost model could achieve the average EF1% of 8.94
Table 6 Docking and scoring powers of scoring functions on the PDBb
are generated for the 285 complexes in the PDBbind-v2016 core set usi
docked poses are calculated with the consideration of all the poses fo
deviations for three repetitions are omitted for the clarity of presentatio

Method

Surex Glide S

Redocked Cross Redock

SR1 Rp SR1 Rp SR1

AD4 0.702 −0.043 0.498 0.541 0.603
Vina 0.691 0.512 0.505 0.430 0.606
Vinardo 0.677 0.319 0.477 0.199 0.628
DLin_F9XGB 0.705 0.783 0.509 0.776 0.617
X-Score 0.663 0.626 0.475 0.565 0.582
Pafnucy 0.512 0.597 0.319 0.558 0.422
Glide SP 0.730 0.475 0.547 −0.104 0.645
Glide XP 0.726 0.486 0.525 −0.103 0.610
GT_0.0 0.795 0.469 0.627 0.372 0.735
GT__0.5 0.821 0.731 0.638 0.619 0.747
GT__1.0 0.815 0.769 0.636 0.661 0.743
GT_0.5 0.809 0.764 0.633 0.684 0.738
GT_1.0 0.787 0.800 0.603 0.730 0.712
GatedGCN_0.0 0.811 0.504 0.609 0.415 0.736
GatedGCN__0.5 0.820 0.776 0.631 0.673 0.738
GatedGCN__1.0 0.822 0.798 0.627 0.706 0.719
GatedGCN_0.5 0.800 0.783 0.621 0.694 0.726
GatedGCN_1.0 0.805 0.810 0.600 0.739 0.716
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on seven targets of the LIT-PCBA validation set, and a 2D
ngerprint-based quantitative structure–activity relationship
(QSAR) model could even obtain the corresponding indicator of
14.59.33 But this type of approaches is not always available due
ind-CrossDocked-Core set, where redocked and cross-docked poses
ng Surflex-Dock, Glide SP or AutoDock Vina. The indicators on cross-
r a certain target using the idea of ensemble docking. The standard
n

P Vina

ed Cross Redocked Cross

Rp SR1 Rp SR1 Rp SR1 Rp

0.594 0.498 0.571 0.551 −0.166 0.437 0.531
0.549 0.505 0.499 0.540 0.528 0.380 0.492
0.459 0.477 0.369 0.558 0.460 0.391 0.385
0.814 0.509 0.787 0.509 0.726 0.376 0.747
0.565 0.475 0.486 0.512 0.475 0.401 0.402
0.562 0.319 0.519 0.211 0.441 0.165 0.442
0.473 0.547 0.380 0.502 0.380 0.376 0.225
0.446 0.525 0.404 0.470 0.332 0.366 0.178
0.408 0.579 0.296 0.660 0.370 0.583 0.255
0.703 0.584 0.563 0.673 0.596 0.583 0.498
0.727 0.585 0.599 0.660 0.617 0.590 0.547
0.734 0.571 0.624 0.669 0.603 0.579 0.561
0.769 0.539 0.671 0.658 0.632 0.551 0.619
0.448 0.573 0.344 0.664 0.394 0.575 0.304
0.744 0.576 0.614 0.677 0.620 0.584 0.555
0.762 0.575 0.648 0.674 0.640 0.581 0.601
0.748 0.558 0.642 0.669 0.624 0.572 0.589
0.779 0.545 0.677 0.664 0.651 0.542 0.629

© 2023 The Author(s). Published by the Royal Society of Chemistry
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to the insufficient data for model training. Of course, we should
admit that some external factors such as docking programs to
generate the binding poses and PDB entries employed for
docking may exert a signicant impact on the nal perfor-
mance, and the average indicators in our study are dominant by
some extreme targets (ADRB2, ESR_ago and PPARG), so the
comparison with the data reported by other groups is not
absolutely convincing. Despite this, all above ndings suggest
that our generalized protein–ligand scoring framework could
indeed retain the excellent screening power of RTMScore on
large VS benchmarks.

Assessment on other datasets regarding binding affinity
prediction/ranking

The scoring/ranking powers were further investigated on several
extra datasets. We rst assessed our models on the PDBbind-
Fig. 5 Docking and scoring powers of scoring functions on PDBbind-Cro
F) Pearson correlation coefficient (Rp), respectively, where the poses are
AutoDock Vina, respectively.

© 2023 The Author(s). Published by the Royal Society of Chemistry
CrossDocked-Core set, an extension of the PDBbind-v2016
core set. Either the re-docked or cross-docked poses of the 285
protein–ligand complexes produced by Surex-Dock, Glide SP
or AutoDock Vina were rescored by each MLSF to select the top-
ranked pose for a certain target, followed by the estimation of
the scoring power only based on those top-ranked poses. This
end-to-end procedure could well reproduce the real-world
applications of MLSFs for rescoring, and both the docking
and scoring powers could be evaluated within the process. The
docking power in terms of top 1 success rate (SR1) and the
scoring power in terms of Rp and Rs were summarized in
Table 6, Fig. 5 and S1.† The integrated use of the affinity term
and netuning slightly improved docking performance in most
cases, and our models could successfully identify ∼80% and
∼62% top-ranked poses as near-native (RMSD # 2.0 Å) for the
re-docked and cross-docked poses generated by Surex-Dock,
ssDocked-Core set indicated by (A–C) top 1 success rate (SR1) and (D–
generated by (A and D) Surflex-Dock, (B and E) Glide SP and (C and F)

Chem. Sci., 2023, 14, 8129–8146 | 8141
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∼72% and ∼56% by Glide SP, and ∼66% and ∼58% by Vina,
remarkably higher than all the baselines in all the subsets of the
benchmark (e.g., the corresponding SR1% of DLin_F9XGB were
only 70.5%, 50.9%, 61.7%, 50.9%, 50.9% and 37.6%). The
results of the scoring performance were consistent with the
tests on the CASF-2016 benchmark, where a prominent increase
could be achieved by incorporating the affinity term. Further
improvements could be made by assigning a higher weight of
the affinity term, training the model from scratch, or using
GatedGCN for feature extraction. Our models exhibited general
superiority over seven out of eight SFs except for DLin_F9XGB.
Further analysis indicated that the scoring and docking powers
of our models were highly correlated (e.g., the SR1% and Rp

values for GT__1.0 on the re-docked poses produced by
Surex-Dock, Glide SP and Vina are 81.5% and 0.769, 74.7% and
0.703, and 67.3% and 0.596, respectively), suggesting that the
binding scores predicted by our approach were highly sensitive
to the pose quality. Interestingly, DLin_F9XGB could still give
a high Rp value of 0.747 when only 37.6% near-native ligand
poses were used based on the cross-docked poses generated by
Vina. What DLin_F9XGB actually learnt from the incorrect
binding poses remained to be explored.

We also tested our models on the two subsets of the CSAR
NRC-HiQ benchmark, as shown in Table 7 and Fig. 6. DLin_F9-
XGB was excluded from the test since both subsets were used for
model training. Additionally, it should be noticed that the
structures overlapped with our training set/PDBbind were all
eliminated. For our models with different settings, incorpora-
tion of the affinity term could still make considerable
improvements in binding affinity prediction, and the use of
larger weight of the affinity term beneted to improving the
scoring power. However, the impacts of netuning and
GatedGCN onmodel performance were not signicant, partially
due to the relatively small amounts of the test data. In brief, our
framework remained competitive on this external benchmark
for binding affinity prediction.
Table 7 Scoring powers of scoring functions on two subsets of CSAR N

Method

Setet (102)

Rp Rs

AD4 0.527 0.542
Vina 0.306 0.589
Vinardo 0.286 0.586
X-Score 0.617 0.598
Pafnucy 0.610 0.625
Glide SP 0.126 0.571
Glide XP 0.126 0.388
GT_0.0 0.397 � 0.008 0.409
GT__0.5 0.624 � 0.011 0.622
GT__1.0 0.667 � 0.014 0.659
GT_0.5 0.671 � 0.043 0.668
GT_1.0 0.713 � 0.036 0.697
GatedGCN_0.0 0.420 � 0.008 0.431
GatedGCN__0.5 0.676 � 0.014 0.664
GatedGCN__1.0 0.710 � 0.027 0.690
GatedGCN_0.5 0.684 � 0.015 0.681
GatedGCN_1.0 0.697 � 0.007 0.681
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Finally, we evaluated the ranking powers of these methods
on the Merck FEP benchmark, a dataset initially developed for
the assessment of some theory-driven free energy prediction
methods. As shown in Table 8, this benchmark was challenging
for all the evaluated SFs, with the average Rs values of almost all
the SFs below 0.5, and the ranking power was also extremely
target-specic. In terms of the average Rs across the eight
targets, we could still observe an improved performance by
introducing the affinity term, as well as the superiority of our
approaches over the other tested methods.

To summarize, the above results on the three independent
benchmarks demonstrated that incorporation of the affinity
term into the training of MDN could indeed improve the scoring
and ranking powers, and the corresponding models achieved
comparable or even superior performance than the other SFs,
thus facilitating the development of a generalized framework
with balanced scoring, docking, ranking and screening powers.
Model interpretations

Poor interpretability is one of the major limitations of deep
learning models. Owing to the additive functional form
inherited from the classical SFs, the predicted outcomes of our
models can be easily decomposed into the contribution of each
independent residue-atom pair, which can be further described
as the contribution of each residue in a protein pocket or each
atom in a ligand. Our previous study has demonstrated that
RTMScore can provide extra information at either the atom or
the residue level but is not able to reect the relative binding
affinities of a series of protein–ligand complexes due to the poor
scoring/ranking power.37Here we provide the case studies based
on two targets retrieved from the CASF-2016 benchmark, i.e.,
Janus Kinase 1 (JAK1) and catechol-O-methyltransferase
(COMT), to clarify how the atomic contributions may benet to
the real-world hit/lead optimization. The results could be found
in Fig. 7, where two representative analogues were retrieved for
RC-HiQ benchmark

Setep (66)

Rp Rs

0.561 0.610
0.282 0.543
0.260 0.543
0.528 0.514
0.583 0.605
0.115 0.551
0.115 0.365

� 0.019 0.329 � 0.012 0.379 � 0.026
� 0.024 0.582 � 0.015 0.601 � 0.039
� 0.020 0.607 � 0.018 0.622 � 0.018
� 0.047 0.628 � 0.039 0.634 � 0.059
� 0.033 0.678 � 0.044 0.674 � 0.051
� 0.006 0.369 � 0.013 0.413 � 0.017
� 0.010 0.648 � 0.024 0.659 � 0.021
� 0.022 0.693 � 0.037 0.684 � 0.024
� 0.023 0.640 � 0.026 0.646 � 0.034
� 0.009 0.670 � 0.010 0.651 � 0.020

© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 Scoring power of scoring functions on two subsets of the CSAR NRC-HiQ benchmark indicated by (A) Pearson correlation coefficient (Rp)
and (B) Spearman correlation coefficient (Rs).

Table 8 Ranking powers in terms of Spearman correlation coefficient (Rs) across eight targets on the Merck FEP benchmark. The standard
deviations for three repetitions are omitted for the clarity of presentation

Method hif2a (42)
p3
(40) eg5 (28) cdk8 (33) shp2 (26) syk (44) cmet (24) tnks2 (27) Average (264)

AD4 0.376 0.530 −0.397 0.629 0.609 0.544 0.324 0.558 0.397
Vina 0.493 0.546 −0.520 0.849 0.569 0.519 −0.257 0.538 0.342
Vinardo 0.371 0.515 −0.475 0.782 0.490 0.379 −0.359 0.305 0.251
DLin_F9XGB 0.480 0.603 −0.099 0.826 0.640 0.103 0.077 0.458 0.386
X-Score 0.224 0.430 −0.316 0.406 −0.030 0.689 0.531 0.669 0.325
Pafnucy 0.224 0.430 −0.316 0.406 −0.030 0.689 0.531 0.669 0.325
Glide SP 0.445 0.480 −0.111 0.345 0.542 −0.006 0.378 0.316 0.299
Glide XP 0.410 0.513 0.017 0.617 0.490 0.124 0.165 0.582 0.365
Prime-MM/GBSA_0.0 0.282 0.554 −0.002 0.649 0.585 0.108 0.499 0.158 0.354
Prime-MM/GBSA_5.0 0.316 0.562 0.178 0.572 0.489 0.006 0.583 0.067 0.347
GT_0.0 0.317 0.544 0.116 0.665 0.537 0.074 0.693 0.512 0.432
GT__0.5 0.357 0.450 0.210 0.671 0.608 0.230 0.693 0.540 0.470
GT__1.0 0.352 0.480 0.221 0.635 0.711 −0.006 0.617 0.555 0.446
GT_0.5 0.459 0.590 0.204 0.682 0.445 0.099 0.772 0.580 0.479
GT_1.0 0.437 0.571 0.275 0.675 0.338 0.144 0.677 0.578 0.462
GatedGCN_0.0 0.398 0.533 0.132 0.685 0.575 0.106 0.610 0.464 0.438
GatedGCN__0.5 0.493 0.560 0.213 0.691 0.517 0.169 0.690 0.634 0.496
GatedGCN__1.0 0.519 0.578 0.206 0.712 0.609 0.214 0.727 0.586 0.519
GatedGCN_0.5 0.395 0.580 0.221 0.679 0.490 0.121 0.746 0.610 0.480
GatedGCN_1.0 0.455 0.635 0.293 0.693 0.489 −0.001 0.773 0.598 0.492
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each target and their predicted scores by GatedGCN__1.0 and
GatedGCN_0.0 as well as the experimentally-determined
inhibitory constants (Ki) were also presented. It could be
observed that GatedGCN__1.0 gave a higher contribution of
the acetonitrile moiety (8.08) than the carbonitrile moiety (3.36)
for JAK1 and a higher contribution of the purine moiety (19.70)
than the 4-(triuoromethyl)-imidazole moiety (11.85) for COMT,
while the scores of their common substructures were similar
(67.67 vs. 66.52; 48.97 vs. 49.05), which was in well accordance
© 2023 The Author(s). Published by the Royal Society of Chemistry
with the change of their Ki values. The scores generated by
GatedGCN_0.0 could also substantially describe the activity
change for COMT (33.78 vs. 18.40; 91.47 vs. 87.63), but failed to
make accurate predictions for JAK1 (8.48 vs. 3.62, 92.78 vs.
99.15). Additionally, no obvious difference was observed for the
scores produced by GatedGCN_0.0 with varying Ki values,
further verifying our previous nding that this score might be
better to binding pose prediction/ranking rather than binding
affinity prediction/ranking. In contrast, the introduction of the
Chem. Sci., 2023, 14, 8129–8146 | 8143



Fig. 7 Two case studies of Janus Kinase 1 (JAK1) and catechol-O-methyltransferase (COMT) for model interpretation, where two representative
analogues with the atomic contributions and bindingmodes displayed. The blue and yellow circles indicate common and different substructures,
respectively. The score of each substructure predicted by GatedGCN_ft_1.0 is shown in bold, while the corresponding score for GatedGCN_0.0
is embedded in bracket.

Chemical Science Edge Article
affinity term improved the capability of binding affinity
prediction/ranking, suggesting its potential application pros-
pect in the stage of hit/lead optimization.

Conclusions

In this work, we propose a generalized protein–ligand scoring
framework extended from our recently-developed RTMScore,
where an adjustable affinity term is included into the training of
MDN in order to further t the predicted outcomes with the
experimental data. The trade-off between theMDN term and the
affinity term enables our models to achieve balanced scoring,
docking, ranking, and screening powers on multiple bench-
mark datasets. Specically, our models can well retain the
outstanding docking and screening powers of RTMScore, and
remarkably improve the scoring and ranking powers, which are
comparable or even superior to all the tested baselines. We
further emphatically explore the impacts of several important
settings for model performance. The results indicate that using
GT for representation learning, giving a weight of 0.5 for the
affinity term, and training the models from a specic set of
initial parameters can yield higher docking and screening
performance, and in contrast, using GatedGCN for feature
extraction, setting the weight of the affinity term to 1.0, and
training the models from scratch, tend to obtain superior
scoring and ranking powers. These ndings suggest that it is
8144 | Chem. Sci., 2023, 14, 8129–8146
hard to train a perfect model that preforms the best in all the
tasks. Hence, we consider the model constructed here as an
integrated framework for docking applications, among which
GT__0.5 that exhibits a relatively more balanced performance
in all the four tasks may be more suitable embedded into
a docking program for synthetical use. Besides, a model like
GT_0.0 or the original RTMScore may serve as a rescoring tool
for docking and screening, and GatedGCN__1.0 and
GatedGCN_1.0 could be employed for scoring or ranking. We
believe our framework could serve as a reliable tool for
structure-based drug design, and our innovative parameteriza-
tion strategy could also provide valuable insights into the
development of novel MLSFs with balanced scoring, docking,
ranking and screening powers.
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The PDBbind dataset and CASF-2016 benchmark are available
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PDBbind-CrossDocked-Core are available at https://
drugdesign.unistra.fr/LIT-PCBA/, https://www.csardock.org/,
https://github.com/MCompChem/fep-benchmark, and https://
www.zenodo.org/record/5525936, respectively. The codes and
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github.com/sc8668/GenScore.
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