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mRNAsi-related metabolic risk
score model identifies poor
prognosis, immunoevasive
contexture, and low
chemotherapy response in
colorectal cancer patients
through machine learning
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Colorectal cancer (CRC) is one of the most fatal cancers of the digestive

system. Although cancer stem cells and metabolic reprogramming have an

important effect on tumor progression and drug resistance, their combined

effect on CRC prognosis remains unclear. Therefore, we generated a 21-gene

mRNA stemness index-related metabolic risk score model, which was

examined in The Cancer Genome Atlas and Gene Expression Omnibus

databases (1323 patients) and validated using the Zhongshan Hospital cohort

(200 patients). The high-risk group showed more immune infiltrations; higher

levels of immunosuppressive checkpoints, such as CD274, tumor mutation

burden, and resistance to chemotherapeutics; potentially better response to

immune therapy; worse prognosis; and advanced stage of tumor node

metastasis than the low-risk group. The combination of risk score and

clinical characteristics was effective in predicting overall survival. Zhongshan

cohort validated that high-risk score group correlated with malignant

progression, worse prognosis , infer ior adjuvant chemotherapy

responsiveness of CRC, and shaped an immunoevasive contexture. This tool

may provide amore accurate risk stratification in CRC and screening of patients

with CRC responsive to immunotherapy.

KEYWORDS

colorectal cancer, mRNAsi, stemness, risk score model, immunotherapy, metabolism,

immune evasion, Machine learning
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Introduction

Colorectal cancer (CRC) is one of the deadliest cancers of the

digestive system (1, 2). Although there is an increasing number

of potential therapeutic approaches for CRC, such as surgery,

chemotherapy, radiotherapy, and molecular targeted therapy,

the clinical prognosis remains unsatisfactory, especially for

patients with distant metastasis of CRC (3, 4). Therefore,

accurate medical treatment is essential for the eradication of

malignancy. At the same time, due to the high molecular

heterogeneity of CRC, most existing biomarkers lack strong

predictive accuracy (5). Hence, it has become an urgent

problem to find a powerful index to predict and evaluate the

clinical prognosis and therapeutic effect to achieve accurate

clinical intervention.

Cancer stem cells (CSCs) play a crucial part in the

progression, recurrence, and drug resistance of solid malignant

tumors (6). Furthermore, CSCs promoted immunosuppression,

immune escape, tumor metastasis, and therapeutic resistance by

interacting with immune cells (7). For example, in a co-

transplantation environment, CSCs can promote the

polar izat ion of CD14+ per ipheral monocytes into

immunosuppressive M2 macrophages and the generation of

tumorigenic myeloid cells, followed by the acceleration of

tumor growth in immunocompromised mice (8). CSCs also

drive the recruitment and polarization of TH17 cells and Treg

cells by secreting CCL1, CCL2, CCL5, and TGF-b, resulting in

an immunosuppressive environment (7). In recent years, the

mRNA expression-based stemness index (mRNAsi) developed

by a machine learning algorithm has been used to quantify the

stemness characteristics of tumors (9) such as esophageal cancer

(10), gastric cancer (11), hepatocellular carcinoma (12), and

glioma (13). However, the risk score model for stemness features

associated with immunological propert ies in CRC

remains uninvestigated.

Metabolic reprogramming, a hallmark of cancer, is another

important factor leading to antitumor immunity and immune

escape. For example, excessive glycolysis in tumor cells produces

a large amount of lactate, which leads to acidification of the

microenvironment and, consequently, inhibits the proliferation

and function of cytotoxic T cells. Other studies also showed that

inhibition of mTOR or the glycolysis pathway regulated T-cell

differentiation into naïve and memory phenotypes (14).

Furthermore, when CAR-T cells were expanded in vitro,

inhibition of AKT improved their metabolism and promoted

their differentiation to the memory phenotype, thus improving

the progression of acute lymphoblastic leukemia (15). Therefore,

further elucidation of the effects of tumor stemness and

metabolic characteristics on the immune microenvironment

may provide significant clinical benefits.

In this study, we generated a new risk prediction model using

mRNAsi and metabolism-related genes using CRC expression data
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retrieved from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases (n = 1323). We also

determined the association between the risk score and several

functional and clinical features of patients with CRC. Clinical

prognosis, tumor microenvironment and immunophenotype,

response to chemotherapy and immunotherapy, and genomic

variation between two risk score groups were evaluated

comprehensively. We then validated the mRNAsi-related

metabolic risk score model using the Zhongshan Hospital cohort

(n = 200). Our data aimed to provide new insights into the

screening of patients more likely to benefit from immunotherapy,

and to improve individualized treatments for CRC patients.
Methods

Data collection and processing

The expression profile data of colon adenocarcinoma

(COAD) and rectal adenocarcinoma (READ) of 591 patients,

and their clinicopathological annotation were retrieved from the

TCGA GDC website (https://portal.gdc.cancer.gov/). TPM

values were converted from FPKM. Furthermore, tumor

mutation burden (TMB) was obtained by analyzing the copy

number variation (CNV) and somatic mutation data using the

maftools package of R.

In addition, CRC gene expression data of GSE17536 (16–18)

and GSE39582 (19) and the clinicopathological features of the

patients were also downloaded from the GEO database.

GSE17536 included 177 CRC tissue samples, and GSE39582

included 555 CRC tissue samples. Subsequently, the TCGA and

GEO data were merged (n = 1323), and the limma (20) R

package and sva (21) R package were used to combine and

eliminate any batch effect.
Analysis of mRNAsi and differentially
expressed genes

Based on the relative expression data provided by Zheng et

al. (22), the mRNAsi of each sample was determined conforming

to the gene expression matrix by the single-sample gene-set

enrichment analysis (ssGSEA) method using the R-package

GSVA. According to the mRNAsi of each sample obtained,

combined with the survival status of the patients, the best cut-off

value of mRNAsi was set, and the patients with CRC were

distributed into the high-mRNAsi group and low-

mRNAsi group.

DEGs between the high-mRNAsi groups and low-mRNAsi

groups in patients with CRC were analyzed using the “limma” R

package. DEGs were defined as genes with Log2 (fold change) >

1.0 and P < 0.05. Metabolism-related gene sets were copied from
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the Molecular Signature Database (MSigDB) V7.0 (22). Finally,

the overlap between DEGs and metabolism-related genes

resulted in the identification of metabolism-related DEGs.
Weighted gene co-expression
network analysis

WGCNA was achieved using the WGCNA package in R,

which aims to determine the correlation between genes by

building important modules. First, a scale-free gene co-

expression network was constructed according to the weight of

the correlation coefficient, and a hierarchical clustering tree was

established depending on the adjacency matrix of the network.

The module significance (MS) was then calculated to judge the

correlation between the mRNAsi value and different modules.

The genes in each module were recorded and defined as module

characteristic genes. Modules with maximum and minimumMS

values were regarded as positive and negative modules,

respectively. After selecting the modules of interest according

to the MS values, all gene expressions in the modules were

identified as genes highly correlated with mRNAsi.
Construction of mRNAsi-related
metabolic risk score model

By integrating the results of metabolism-related DEG

analysis and WGCNA, mRNAsi-related metabolic genes were

finally obtained. Significantly differentially expressed mRNAsi-

related metabolic genes were included in the model,

dimensionality reduction analysis was performed using the

minimum absolute contraction and selection operator (least

absolute shrinkage and selection operator, LASSO) algorithm,

and the characteristic genes related to prognosis were obtained.

Using the normalized gene expression value weighted by the

penalty coefficient obtained by LASSO Cox analysis, a risk score

formula was established, and patients were divided into high-

risk group and low-risk group according to the median risk

score.

Risk score  =  o
i
Coefficient  hub geneið Þ �mRNA Expression  hub geneið Þ
Functional and pathway enrichment
analyses

Gene Ontology (GO) analysis is a widely used method for

functional enrichment studies and generates data related to

biological processes (BP), molecular functions (MF), and

cellular components (CC). Kyoto Encyclopedia of Genes and

Genomes (KEGG) is a database for systematic analysis of gene
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function, linking genome information with more orderly

biological function information. The clusterProfiler package of

R (23) was used for GO analysis and KEGG pathway enrichment

in the mRNAsi-related metabolic risk score model. FDR < 0.05

was regarded as significant.

To investigate differences in BP between different groups, we

employed gene-set enrichment analysis (GSEA) (22). The

“h.all.v7.2.symbols.gmt” gene set was copied from the MSigDB

for the GSEA. P < 0.05 was considered significant.
Molecular network analysis

The STRING database (https://cn.string-db.org) (24) was

used to construct a protein-protein interaction (PPI) network.

Genes with scores greater than 0.4 were chosen to build a

network model, which was visualized using Cytoscape (v3.7.2)

(25). Then, eight hub genes were selected using the CytoHubba

plug-in (26) in the Cytoscape software. Furthermore, we use the

GOSemSim package in R (27) to judge the GO semantic

similarity of the eight genes (28).

Information regarding miRNA-mRNA interactions from the

miRTarBase database was downloaded before analyzing the

basic statistics. Based on the core mRNA obtained by PPI

analysis, the miRTarBase database was used to predict the

miRNAs that may be regulated and to further predict the

related lncRNAs. Cytoscape software was used to visually

display the results of ceRNA analysis.
Analysis of tumor immune
infiltrating cells

An ssGSEA algorithm was deployed to measure the relative

number of tumor-infiltrating immune cells in patients with CRC

(29). The enrichment score calculated by ssGSEA using the

GSVA R package (30) indicates the in level of each immune cell

type in each sample. In addition, depending on the gene

expression profile, the ESTIMATE R package (31) was used to

quantify the level of immune infiltration of tumor samples, and

the immune score of each tumor sample was obtained. The

differences in the immune infiltration characteristics of CRC

patients between the high-risk score group and low-risk score

groups were evaluated.
Analysis of drug sensitivity and
immunotherapy response

The Genomics of Drug Sensitivity in Cancer (GDSC)

(https://www.cancerrxgene.org/) is an open database for

molecular therapy and mutation exploration in cancer. The

pRRophetic package of R (32) was used to download the cell
frontiersin.org
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line gene mutation data and the IC50 values of different

anticancer drugs from GDSC (33) and to analyze the

correlation between patients with high and low-risk scores and

different anticancer drug sensitivities.

In addition, we used online tumor immune dysfunction and

exclusion (TIDE) scores (34) to examine immunotherapy

sensitivity and compare the scores of tumor immunotherapy

markers, such as CD8 and CD274, between the high-risk score

groups and the low-risk scoring groups. The response of

immune-checkpoint blockade was predicted.
CNV analysis

To analyze the changes in copy number in different risk

score groups of patients with TCGA-CRC, we used the

TCGAbiolinks package of R to obtain the masked copy

number segment data of the patients. The downloaded CNV

fragments were analyzed using GISTIC 2.0, with default settings

in GenePattern5. Finally, the analysis results of GISTIC 2.0 were

visualized through the maftools package of R.
Establishment of a prognostic model

Univariate and multivariate Cox analyses were used to

predict the overall survival (OS) of patients with CRC. The

clinicopathological features were then incorporated into the risk

score model to construct a clinical predictive nomogram. To

quantify the differential performance of the nomogram, Harrell’s

consistency index (C-index) was estimated. A calibration curve

was produced and the capability of the nomogram

was evaluated.
Patients and CRC tissue samples

The Zhongshan Hospital cohort included 200 patients who

underwent CRC surgery between January 2008 and December

2014. The patients’ baseline characteristics included sex, age,

adjuvant chemotherapy, tumor location, tumor histology, tumor

differentiation, nerve invasion, surgicalmargin positivity, and stage

of tumor node metastasis (TNM). Tumor staging was performed

according to the 7th edition of the American Joint Commission on

Cancer (AJCC) TNM Classification (35). Conforming to the

National Comprehensive Cancer Network guidelines and patient

wishes, patientswith stage III-IVTNMwere treatedwithACTafter

surgery. OS was described as the time from the date of diagnosis to

death or last follow-up. Disease-free survival (DFS) was described

as the time from the date of diagnosis to relapse or last follow-up.

The follow-up period ended on December 31, 2020. Clinical data

validation was approved by the ethics committee of the Zhongshan

Hospital (B2022-068R2).
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RNA separation and quantitative reverse
transcription PCR

The mRNA expression of 21 mRNAsi-related metabolic

genes was measured by qRT-PCR in Zhongshan cohort. Total

RNA was obtained using the TRIzol reagent (Invitrogen,

Waltham, MA, USA). cDNA was obtained by reverse

transcription using the PrimeScript RT kit (Takara). The

expression of candidate genes and the housekeeping gene

GAPDH was evaluated by quantitative reverse transcription

PCR using the ABI 7900HT real-time PCR system (Applied

Biosystems, Carlsbad, CA, USA). Relative transcription levels

were calculated using the DDCt method (36). The primer

sequences used are listed in Supplementary Table 7.
Immunohistochemical staining

We randomly selected 20 cases from 200 Zhongshan

patients for IHC, including 10 cases in high risk group and 10

cases in low risk group. Paraffin-embedded tissues were stained

with antibodies. The staining score was decided by two

experienced pathologists at the Zhongshan Hospital. Six high-

power fields (HPFs, ×200 magnification) were randomly

counted by two independent pathologists (each with three

fields), and the densities of CD8+T cells, Foxp3+Tregs,

CD19+B cells, CD11c dendritic cells, immunosuppressive

checkpoints (PD-1, PD-L1) and effector molecules (GZMB,

PRF1) were recorded. Immunohistochemistry antibodies are

listed in Supplementary Table 8.
Statistical analysis

All data processing and analyses were accomplished using

the R software (version 3.6.2) and SPSS (version 25; IBM,

Armonk, USA). For the comparison of two groups of

continuous variables, the statistical significance of normally

distributed variables was calculated using an independent t-

test, and the difference between non-normally distributed

variables was measured using the Mann–Whitney U test. Chi-

square test or Fisher’s exact test was used to analyze the

significant differences between the two groups of classified

variables. The survival package in R was conducted for

survival analysis. The receiver-operating characteristic (ROC)

curve was drawn by the pROC package of R (37) and the area

under the curve (AUC) was calculated to evaluate the

performance of the risk score model. Univariate and

multivariate Cox analyses were used to determine independent

prognostic factors. All statistical P values were bilateral, and *P <

0 .05 , **P < 0.01 , ***P < 0.001 were regarded as

statistically significant.
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Results

Relationship between colorectal
cancer stemness characteristics
and clinical features

A flowchart of this study is shown in Figure 1A. To explore

the role of mRNAsi on the progression of CRC, including COAD

and READ, the gene expression matrices of GSE17536 and

GSE39582 datasets and TCGA database were downloaded

(Supplementary Figures 1A, B). The data from the two

databases were then merged (n = 1323) and cleaned from any

batch effect (Supplementary Figures 1C, D).

First, to explore the correlation between mRNAsi and

clinical characteristics, we determined CRC mRNAsi using the

ssGSEA algorithm. Then, according to the optimal mRNAsi cut-

off value, the patients with CRC were separated into high-
Frontiers in Immunology 05
mRNAsi and low-mRNAsi groups. The relationship between

CRC stemness characteristics and clinical characteristics is

shown in Figures 1B-E. No significant correlation between

mRNAsi and age (P = 0.56) or gender (P = 0.54) was observed

(Figures 1B, C). However, higher mRNAsi were associated with

staging of TNM (stage 2 vs. stage 3, P = 0.025; stage 2 vs. stage 4,

P = 0.02; Figure 1D). Furthermore, patients with high mRNAsi

showed a significant increase in OS compared to those with low

mRNAsi (log-rank P < 0.001, Figure 1E).
Identification of mRNAsi-related
metabolic genes in patients with CRC

To determine the role of the mRNAsi in metabolic processes

in CRC, DEGs between the high-mRNAsi and low-mRNAsi

groups were identified and intersected with a metabolic gene set
A

B D EC

FIGURE 1

Study flow chart and the relationship between colorectal cancer (CRC) stemness characteristics and clinical features. (A). Flow chart for
construction and validation of mRNAsi-related metabolic risk score model in CRC. TCGA, The Cancer Genome Atlas; GEO, Gene Expression
Omnibus databases; mRNAsi, mRNA expression-based stemness index; DEGs, differentially expressed genes; WGCNA, weighted gene co-
expression network analysis; GO: gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene-set enrichment analysis; PPI,
protein-protein interaction; ceRNA, competing endogenous RNAs; SNP, single nucleotide polymorphism; TMB, tumor mutation burden; MSI,
microsatellite instability; CNV, copy number variation; TNM, tumor node metastasis; ACT, adjuvant chemotherapy. (B–E). Relationship between
CRC stemness characteristics and clinical features. Analysis of the correlation of mRNAsi with age (B), gender (C), TNM stage (D) and overall
survival (E) in patients with CRC.
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(2752 genes). One hundred and twenty-six genes were obtained

and labeled as metabolism-related DEGs, of which 108 genes

were significantly upregulated, and 18 genes were significantly

downregulated (Figures 2A, B and Supplementary Figure 3A).

WGCNA was used to identify modules closely related to

mRNAsi-related genes. A total of 22 co-expression modules

were identified, with the black module showing the strongest

correlation with mRNAsi in CRC (Figures 2C, D). All genes in

the black module were intersected with the metabolism-related

DEGs, and 83 mRNAsi-related metabolic genes were obtained

for further analysis, as shown in the Venn diagram (Figures 2E, F

and Supplementary Figure 3B).
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Construction of mRNAsi-related
metabolic risk score model

To quantitatively evaluate the predictive value of identified

mRNAsi-related metabolic genes in the clinical prognosis of

CRC, we constructed a risk score model based on these genes.

First, the expression characteristics of the 83 mRNAsi-related

metabolic genes were included in the LASSO Cox analysis and

21 genes with the optimal predictive value were selected

(Figures 3A, B). Simultaneously, a risk score formula was

established based on the normalized expression of important
A B

D

E F

C

FIGURE 2

Identification of mRNAsi-related metabolic genes in patients with CRC. (A–B). Volcano plot and heatmap showing the expression of
metabolism-related DEGs in patients with CRC. (C). Genes with similar expression patterns were merged in the same module to create a
hierarchical cluster tree. (D). Correlations and significant differences between different gene modules and mRNAsi and P values are displayed in
the module. (E). All genes in the black module, which were more closely related to mRNAsi, were overlapped with metabolism-related genes
and 83 candidate genes were obtained, which were defined as mRNAsi-related metabolic genes. (F). The heatmap shows the expression of 83
significantly differentially expressed mRNAsi-related metabolic genes in the CRC and normal tissues.
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characteristic genes weighted by the penalty coefficient

calculated by LASSO Cox analysis, and a risk score for each

sample was calculated. An example of the formula used to

calculate the risk score is given below.

Risk score = −0:1053ð Þ � PTGES3 + −0:1874ð Þ � PAICS +

−0:0133ð Þ � GNPNAT1+

0:02893ð Þ � PGM3 + 0:08862ð Þ �MTHFD2 + −0:0043ð Þ �
DCK + 0:06428ð Þ �MTAP+

0:22468ð Þ � SLC25A36 + 0:00308ð Þ � GBE1 + −0:0679ð Þ �
RRM2 + 0:0029ð Þ � KCTD3

+ −0:0436ð Þ � ACADSB + −0:0339ð Þ � ABCD3 + −0:0137ð Þ �
BCKDHB + −0:0525ð Þ�

PHOSPHO2 + −0:1185ð Þ � FUT4 + 0:00089ð Þ � EDEM3 +

−0:0684ð Þ � NEU4 + 0:6165ð Þ
�SLC16A1 + −0:0162ð Þ � ELOVL7 + 0:04312ð Þ � SLC6A8
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Then we performed the time-dependent ROC curve analysis

and found that the model had appropriate accuracy in predicting

OS in patients with CRC, and the AUC of 1-year, 2-year and 3-

year OS was 0.647, 0.644, and 0.672, respectively (Figure 3C).

Kaplan–Meier analysis showed a reduction in OS in patients

with high-risk scores (log-rank P < 0.001; Figure 3D). In

addition, there was a significant negative correlation between

mRNAsi and risk scores (Rho = -0.2, P < 0.001, Figure 3E). The

distribution of the risk score, survival status, and expression

pattern of characteristic genes is shown in Figure 3F.

GSEA, GO, KEGG analyses of DEGs
between high-risk and low-risk patients
in mRNAsi-related metabolic risk
score model

To analyze the impact of mRNAsi-related metabolic risk

score models on the occurrence and development of CRC, we
A B

D

E

F

C

FIGURE 3

Construction and evaluation of the mRNAsi-related metabolic risk score model. (A, B). LASSO Cox analysis identified 21 genes most associated
with OS in the TCGA dataset. (C). Time-dependent ROC curve analysis of risk score. (D). The effect of the risk score assessed by Kaplan–Meier
curve on the overall survival rate of patients with CRC. (E). Spearman rank correlation analysis was used to analyze the relationship between
mRNAsi and risk score. (F). The risk score distribution, survival status, and heatmap of characteristic gene expression in patients with CRC.
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used the median LASSO Cox risk score of CRC cases from

TCGA dataset and divided the CRC cases into high-risk and

low- risk score groups. There were 242 DEGs between high-risk

and low-risk patients (Log2 (fold change) > 1.0 and P < 0.05), of

which 195 were significantly upregulated, and 47 were

significantly downregulated (Figures 4A, B). The correlation

between the risk score with the clinical characteristics of CRC

patients in the TCGA and GEO database is shown in

Supplementary Table 1. The functional annotation of the GO

showed the DEGs were closely related to several BP, including

the organization of the extracellular matrix, the organization of

the extracellular structure and ossification, as well as several MF

such as extracellular matrix structural constituent,

glycosaminoglycan binding, and extracellular matrix structural

constituent conferring tensile strength (Figure 4C,
Frontiers in Immunology 08
Supplementary Table 2). KEGG analysis indicated that DEGs

were particularly involved in focal adhesion, phagosome, protein

digestion and absorption, complement and coagulation

cascades, and ECM-receptor interaction pathways (Figure 4D

and Supplementary Table 3). Two pathways, protein digestion

and absorption (P = 2.82E-08) and phagosome pathways (P =

2.96E-07), which were highly related to the mRNAsi-related

metabolic risk score model, are shown in Figures 4E, F.

Furthermore, GSEA showed that ascorbate and aldarate

metabolism (NES = -1.89, P = 0.002), citrate cycle (TCA

cycle) (NES = -2.28, P = 0.002), glyoxylate and dicarboxylate

metabolism pathways (NES = -2.03, P = 0.002), propanoate

metabolism (NES = -2.07, P = 0.002), arginine and proline

metabolism (NES = -1.94, P = 0.002), pyruvate metabolism

(NES = - 2 . 1 8 , P = 0 . 0 0 2 ) , h a l lma r k o x i d a t i v e
A B

D

E F

C

FIGURE 4

DEG analysis and functional enrichment analysis based on the mRNAsi-related metabolic risk score model. (A, B). Volcano plot and heatmap
showing the expression pattern of DEGs in two groups of patients with CRC. (C, D). Biological processes (BP) and KEGG pathway analysis of
DEGs in two groups of patients with CRC. (E, F). The two pathways are closely related to the mRNAsi-related metabolic risk score model:
protein digestion and absorption, and the phagosome pathway.
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phosphorylation (NES = -2.86, P < 0.001), and hallmark

fatty acid metabolism (NES = -1.93, P < 0.001), were

abundant in low-risk patients, whereas hallmark hypoxia

was significantly enriched in high-risk patients (NES = 2.04,

P < 0 . 0 0 1 ) , ( S upp l emen t a r y F i g u r e s 2A– I a nd

Supplementary Table 4).
Construction of PPI network and related
regulation network

We used the STRING database to establish the PPI network

between DEGs, and imported the interaction between genes into

Cytoscape software to obtain Figure 5A, in which the

upregulated genes were represented in red and the

downregulated genes were represented in blue.

The hub genes were analyzed using Cytoscape software

(Figure 5B). GO semantic similarity analysis showed that the

CALD1 gene played an important role in the hub genes

(Figure 5C). Subsequently, we conducted correlation analysis

between hub genes and mRNAsi, and found a significant co-

expression pattern between hub genes, whereas the relationship of

each hub gene andmRNAsi was not consistent (Figure 5D). Finally,

based on information about miRNA-mRNA interaction

downloaded from the miRTarBase database; the hub genes
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obtained via the PPI network were used to construct the ceRNA

network of miRNA-mRNA–lncRNA interaction (Figure 5E).
Immune contexture difference between
high-risk and low-risk patients

We then evaluated the immune contexture heterogeneity

between the high and low-risk score groups. As shown in

Figure 6, the immune and stromal scores of the high-risk

score group were significantly higher than those in the low-

risk score group (both P < 0.001, Figures 6A, B). In addition, to

evaluate the degree of immune cell infiltration in tumor tissue,

we used the ssGSEA algorithm and obtained the relative

enrichment scores of 28 subtypes of immune cells between the

two groups, as shown in the heatmap in Figure 6C. The

correlation analysis showed that the infiltration levels of most

immune cells were positively correlated (Figure 6D). Further

analysis revealed that infiltration of CD4+T cells, CD8+ T cells, B

cells, dendritic cells, eosinophils, mast cells, macrophages,

myeloid-derived suppressor cells (MDSCs), natural killer cells,

regulatory T cells, and T helper cells was higher in the high-risk

score group (Figure 6E). In addition, in this study the expression

of HLA family members and several immunotherapy-related

target genes, such as CD274 (PD-L1), CTLA-4, and LAG-3, was
A B

D EC

FIGURE 5

Construction of the protein-protein interaction network (PPI) and the ceRNA network. (A). The results of PPI analysis were introduced into
Cytoscape software for analysis, in which red represents upregulated genes, blue represents downregulated genes, and color depth and node
size were positively correlated with log fold change (FC). (B). The CytoHubba algorithm was used to identify and extract the top eight genes
from the PPI network as the hub genes. (C). GO semantic similarity analysis of importance of the eight hub genes. (D). Circle diagram of the
correlation between the hub gene and mRNAsi. (E). Construction of the ceRNA interaction network based on hub genes.
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elevated in the tumor environment of the high-risk group

compared with the low-risk group (Figures 6F, G).
Sensitivity to chemotherapy and
immunotherapy in high-risk and low-risk
patients with CRC

To analyze the differences in the sensitivity of patients with

CRC to different drugs and small-molecule drugs based on the

risk score, we downloaded the CRC cell line gene mutation data

and the half-maximal inhibitory concentration (IC50) values of

several anticancer drugs from the GDSC database. In GDSC,

IC50 values for patients with CRC were predicted based on the

responses of cell lines to 138 chemotherapeutic agents and small-

molecule anticancer agents. This suggested that patients in the
Frontiers in Immunology 10
high-risk score group were less susceptible to multiple

chemotherapeutic and small-molecule anticancer drugs,

including Metformin, PF.4708671, Sorafenib, Mitomycin,

Methotrexate, and gemcitabine (Figure 7A, all P < 0.05).

Because of the important role of immune-checkpoint

inhibitor (ICI) therapy in tumors, we examined the sensitivity

of two groups of patients with CRC to ICI therapy using the

TIDE algorithm, which models two mechanisms of immune-

evasion: T-cell dysfunction and reduced T-cell infiltration, to

predict the immunotherapy response. As shown in Figure 7B,

although no significant differences in the scores for two immune

markers CD8 and CD274 between the high-risk and low-risk

score groups was observed, the TIDE score in the high-risk score

group was lower than that in the low-risk score group,

suggesting a better response to the ICI therapy in the high-risk

score group than in the low-risk score group.
A B

D

E

F G

C

FIGURE 6

Relationship between mRNAsi-related metabolic risk score groups and infiltration of different immune cell subtypes. (A, B). Differential analysis
of immune scores and stromal scores between the high- and low-risk score group of patients with CRC. (C). The heatmap showed the
infiltration levels of 28 immune cell subtypes in CRC samples from TCGA and GEO datasets. (D). Correlation heatmap showed the correlation
between different levels of immune cell infiltration. (E). Analysis of the difference of 28 levels of immune cell infiltration between two groups (F).
Multiple HLA family members, and (G) immunotherapy-related targets in high and low-risk score groups of patients with CRC. Differences were
considered significant at *P < 0.05, **P < 0.01, ***P < 0.001, compared to the low-risk group. ns, not significant.
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Analysis of genomic variation between
high and low-risk score patients

Research has suggested that genomic variation affects tumor

response to immunotherapy (38). Furthermore, we evaluated the

differences in genomic variation in patients with CRC in the high

and low-risk groups, including single nucleotide polymorphism

(SNP), TMB, microsatellite instability (MSI), and CNV.

Difference in the level of the top SNP between the two

groups was detected (Figure 8A). Furthermore, the TMB in the

high-risk score group was higher than in the low-risk score

group; however, no significant differences in MSI between the

two groups were detected (Figures 8B, C). In addition, compared

with the high-risk score group, the low-risk score group showed

a significant increase in CNV, mainly characterized by deletion

events (Figures 8D, E).
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Construction and validation of clinical
prediction nomogram based on mRNAsi-
related metabolic risk score model

Next, we evaluated the association between mRNAsi-

associated metabolic risk scores and clinicopathological

characteristics in patients with CRC. The results showed no

significant correlation between the risk scores and the age and

gender of the patients (Figures 9A, B). However, high-risk scores

were associated with lower mRNAsi and an advanced TNM state

(Figures 9C, D).

In addition, univariate and multivariate Cox analyses

showed that a high mRNAsi-related metabolic risk score was

an independent predictor of prognosis in patients with CRC

(Figure 9E and Supplementary Table 5). The mRNAsi-related

metabolic risk score was then combined with different
A

B

FIGURE 7

Analysis of sensitivity differences between high-risk and low-risk patients to different chemotherapeutic agents, small-molecule anticancer
agents, and immunotherapy. (A). Difference in sensitivity between high-risk and low-risk patients to 138 small-molecule anticancer agents and
chemotherapeutic agents. (B). Differences in TIDE score, immune exclusive, scores of immunotherapy targets, CD8 and CD274 in high-risk and
low-risk score groups. Differences were considered significant at *P < 0.05, **P < 0.01, compared to the low-risk group. ns, not significant.
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clinicopathological features to create a nomogram to predict OS

in patients with CRC (Figure 9F). Then we preformed C-index to

evaluate the differentiation of nomogram and found it has high

discriminative ability (mean: 0.751 [range: 0.700–0.802]). In

addition, the calibration curve showed that the 1-, 2-, and 3-

year OS estimated by the nomogrammatched with the actual OS

values of the patients (Figure 9G).
High-risk score group correlated with
malignant progression, worse prognosis,
inferior adjuvant chemotherapy
responsiveness of CRC

To further determine the clinical significance of the risk

score model in CRC, we evaluated the correlation between the

high and low-risk score groups and the clinicopathological

characteristics of patients with CRC in the Zhongshan

Hospital cohort. The mRNA expression of 21 mRNAsi-related

metabolic genes was measured by qRT-PCR. The median
Frontiers in Immunology 12
expression level of risk score was used as the cutoff value.

Patients were divided into high and low-risk score groups. The

high-risk score group was positively correlated with right-sided

colon, poorer differentiation, ucoid adenocarcinoma and signet-

ring cell carcinoma, nerve invasion, surgical margin positivity,

and higher TNM stage (all P < 0.001, Supplementary Table 6).

These findings suggest the gene set defining the high-risk score

group is potentially involved in tumor progression.

To investigate the association between the risk score model

and long-term outcomes of patients with CRC, Kaplan–Meier

analysis was performed. The high-risk score group predicted

worse survival of patients with CRC in the Zhongshan Hospital

cohort (OS: P < 0.001, log-rank = 13.102; DFS: P < 0.001, log-

rank = 26.309; Figures 10A, B). These results indicate that the

high-risk score was related to a worse outcome for patients

with CRC.

In addition, we evaluated the interaction between the risk

score model and therapeutic responsiveness to adjuvant

chemotherapy (ACT) for TNM stage III-IV patients with

CRC. In this study, ACT could improve patient survival in the
A
B

D E

C

FIGURE 8

Analysis of genomic variation between high-risk and low-risk patients. (A). Mutation profiles of common tumor-related genes in patients in
high and low-risk score groups (Left: high-risk score group, right: low-risk score group). (B, C). The difference of microsatellite instability
(MSI) and tumor mutation burden (TMB) between two groups. (D, E). Copy number variation in patients between two groups. Red indicates
the amplified genes, and blue indicates the deleted genes. Differences were considered significant at *P < 0.05, compared with low-risk
group. ns, not significant.
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low-risk score group (OS: P = 0.043, log rank =4.094, Figure 10C;

DFS: P = 0.005, log rank = 7.860, Figure 10D) but had no

significant benefit in the high-risk score group (OS: P = 0.209,

log rank = 1.579, Figure 10E; DFS: P = 0.413, log rank = 0.670,

Figure 10F). Therefore, these results suggest that the high-risk

score group might have impaired therapeutic responsiveness to

ACT in TNM stage III-IV CRC.
High-risk score group shaped
immunoevasive contexture

To explore the underlying mechanism, we performed IHC

staining of tumor-infiltrating immune cells in CRC tissues

obtained from the Zhongshan Hospital cohort. The number of

CD8+T cells (P=0.0080), CD19+B cells (P=0.0013), Foxp3+Tregs

(P<0.001), and CD11c dendritic cells (P=0.0028) was more
Frontiers in Immunology 13
abundant in the high-risk group (Figures 11A–H). But

the ratio of Foxp3+Treg cells to CD8+T cells also

increased markedly in the high-risk score group (P=0.029)

(Figure 11I), suggesting a more immunosuppressive tumor

microenvironment with increased Treg cell infiltration. We

further investigated whether the high-risk score group could

affect CD8+T-cell function. The results indicated that CD8+T

cells in the high-risk score group showed an exhausted T-cell

phenotype with increased expression of immunosuppressive

checkpoints, programmed cell death protein 1 (PD-1)

(P=0.0027) and programmed cell death-ligand 1 (PD-L1)

(P=0.0013), and decreased expression of CD8+T-cell effector

molecules, granzyme B (GZMB)(P=0.0028) and perforin (PRF1)

(P=0.0020), compared to the low-risk score group (Figures 11J-

Q). Taken together, these data suggest that the high-risk score

group may orchestrate an immunoevasive contexture and direct

CD8+T-cell dysfunction in CRC.
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C

FIGURE 9

Analysis of the predictive ability of mRNAsi-related metabolic risk score model for the prognosis of patients with CRC. (A–D). Analysis of
correlation between mRNAsi-related metabolic risk scores and clinicopathological features of patients with CRC. (E). Multivariate Cox regression
analysis of HR and P values of risk score, combined with clinicopathological features. (F). mRNAsi-related metabolic risk score combined with
clinicopathological features to construct a clinical predictive model. (G). The calibration curve of the nomogram showed that the risk score
model had a good predictive ability for the overall survival rate of 1-, 2- and 3-year OS in patients. Differences were considered significant at *P
< 0.05, ***P < 0.001, compared to the reference.
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Discussion

Tumor recurrence and drug resistance have always been

obstacles to the treatment of CRC. Studies have shown that CSCs

and metabolic reprogramming promote immunosuppression,

immune escape, and therapeutic resistance by interacting with
Frontiers in Immunology 14
immune cells (39, 40). Therefore, by integrating differential

expression analysis between high and low mRNAsi,

metabolism-related genes, co-expression network analysis, and

LASSO Cox regression analysis, 21 mRNAsi-related metabolic

genes with the highest prognostic value were identified and used

to construct the risk score model. After validation first in the
A B
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C

FIGURE 10

High-risk score group determines poor prognosis and impairs the ACT responsiveness of patients with CRC in Zhongshan cohort. (A, B). Overall
survival (OS) and disease-free survival (DFS) curves between high and low-risk score group in Zhongshan Hospital cohort. (C, D). The OS and
DFS curves for TNM stage III-IV patients with CRC in low-risk score group with or without ACT treatment. (E, F). The OS and DFS curves for
TNM stage III-IV patients with CRC in high-risk score group with or without ACT treatment.
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FIGURE 11

High-risk score group drives immunoevasive contexture and damages CD8+ T-cell function in CRC in Zhongshan cohort. (A–D). Representative
immunohistochemical (IHC) staining of four significant tumor-infiltrating immune cell subtypes between high and low-risk score groups,
including CD8+ T cells, CD19+ B cells, Foxp3+ Tregs, CD11c dendritic cells. (E–I). Comparison of CD8+ T cells, CD19+ B cells, Foxp3+ Tregs,
CD11c dendritic cells and the ratio of Foxp3+ Tregs to CD8+ T cells between two groups. (J–M). Expression of immunosuppressive checkpoints
(PD-1, PD-L1) and effector molecules (GZMB, PRF1) between two groups. (N–Q). Representative IHC staining of immunosuppressive
checkpoints (PD-1, PD-L1) and effector molecules (GZMB, PRF1) between two groups. n = 10 in each group, scale bar: 250um. Differences were
considered significant at *P < 0.05, **P < 0.01, ***P < 0.001, compared to the low-risk group.
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data retrieved from the TCGA and GEO databases, and then in

the Zhongshan Hospital cohort, the CRC samples in the high-

risk score group exhibited poor clinical outcome, increased

immune-evasion, reduced sensitivity to chemotherapy, whereas

potentially better response to immunotherapy, and higher

genomic variation. This risk score model could be a tool to

screen for patients with worse prognosis and inferior

chemotherapy response, optimizing targeted treatment for

CRC patients.

According to the GO functional enrichment results, most of

these genes were clustered in functional groups related to the

extracellular matrix (ECM). The ECM, as the main component

of the tumor microenvironment, is considered to play a leading

role in the progression of various cancers, including CRC, and

promotes the invasion and metastasis of cancer (41–43). In

addition, Ortensi et al. have demonstrated that the stemness

characteristic of cancer tissue contributes to glioma invasiveness,

which is closely related to the ECM (44). KEGG analysis also

showed these genes were significantly abundant in

inflammation, immunity, adhesion, invasion, and other

processes. These results suggest that mRNAsi-related

metabolic genes are involved in CRC metastasis and invasion.

Furthermore, GSEA revealed that hallmark hypoxia was

significantly enriched in the high-risk score group. Our study

and other studies have shown that hypoxia may promote

glycolysis in CRC cells by activating the HIF-1a signaling

pathway, thus promoting the proliferation and metastasis of

CRC cells (45, 46). Hypoxia reduced the sensitivity of CRC to 5-

fluorouracil chemotherapy (47). This suggests that mRNAsi-

related metabolic genes participate in hypoxia-related pathways,

leading to a poor prognosis and chemotherapy resistance

in CRC.

Hub genes were obtained by PPI network construction and

Cytoscape software analysis. GO semantic similarity analysis

showed a key role for the CALD1 gene. Li et al. found that

CALD1 upregulated the expression of PD-L1 through the JAK/

STAT signaling pathway and promoted malignant progression

of bladder cancer (48). Several bioinformatics analyses and

cellular studies have shown that CALD promoted the

proliferation, metastasis, and invasion of CRC cells and is

related to a reduction in OS (49). However, the exact

mechanism of CALD involvement in CRC remains to

be clarified.

Considering that the risk score model was derived from the

stemness index and metabolism-related genes, which were

significantly associated with antitumor immunity (13, 50), we

further investigated the immune contexture heterogeneity

between the high-risk and low-risk score groups. Tumor-

infiltrating immune cell analysis showed that the high-risk

score group had greater infiltration of CD8+ T cells, CD4+ T

cells, B cells, Treg cells, dendritic cells, macrophages, MDSCs,

neutrophils, regulatory T cells, and T helper cells, which is

consistent with infiltrating immune cells from colorectal
Frontiers in Immunology 16
cancer in a highly inflammatory state (51). Meanwhile,

Zhongshan cohort validated that CD8+T cells, CD19+B cells,

Foxp3+Tregs, and CD11c dendritic cells was more abundant in

the high-risk group. But an increase in the ratio of Foxp3+Treg

cells to CD8+T cells in high-risk group, which leads to an

immunosuppressive microenvironment. Treg cells promote

tumorigenesis and development by inhibiting adaptive anti-

tumor immunity, which is the key mechanism of tumor

immune escape (52). The ratio of Foxp3+Treg cells to CD8+T

cells as is a better variable because they are more representative

of the biological characteristics of infiltrating immune cells (53).

The immune microenvironment of tumor is closely related to

clinical outcome and drug resistance (54). Further

immunostaining experiments confirmed CD8+T-cell

dysfunction with decreased levels of cytotoxic molecules

(GZMB and PRF1) and increased the expression of immune

checkpoints (PD-1 and PD L1) in the high-risk score group,

resulting in a highly exhausted state and impaired immune

function. The effect of tumor on immune cells can lead to T

cell anergy or dysfunction, which promotes tumor escape and

therapeutic drug resistance (55). Our results suggested that high-

risk group induced an immunoevasive contexture and impaired

antitumor immunity, which explains the poor clinical prognosis.

Immunotherapy is a novel cancer treatment approach.

Although the effect is significant, only a fraction of the

patients responds to the treatment (56, 57). In the TCGA and

GEO databases, patients with CRC with high-risk scores had

higher expression of immunotherapeutic molecules (such as PD-

L1, CTLA4, HAVCR2 and LAG3), suggesting that CRC with

high-risk scores may be more likely to be affected by the

immune-checkpoint pathway, inhibit the antitumor immune

response, and lead to deterioration of prognosis. Similarly, the

TIDE algorithm predicted that patients with high-risk scores

were more sensitive to ICI therapy. In the Zhongshan Hospital

cohort, we confirmed that CD8+T cells in high-risk score

patients showed an exhausted T-cell phenotype with increased

expression of the immunosuppressive checkpoint, PD-1 and

PD-L1, compared with low-risk score patients. These findings

also suggest that CRC patients with high-risk scores may

clinically benefit from immunotherapy. The TMB score of

patients with the high-risk score group is higher, suggesting

that PD-1 blocking therapy has a certain curative effect on these

patients (13). Low TMB is an important reason for patient

resistance to immunotherapy (58). This provides a new

approach for stratifying this subgroup of patients with CRC to

identify those who may achieve a superior response

to immunotherapy.

Because of the close relationship of the stemness index and

chemotherapeutic drug resistance in cancer, we analyzed the

predictive ability of the risk score to chemotherapeutic drug

sensitivity and found that patients with high-risk scores were less

susceptible to a variety of small molecular anticancer drugs and

chemotherapeutic medicines in TCGA and GEO databases. In
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the Zhongshan Hospital cohort, our findings suggest that the

high-risk score group might have impaired therapeutic

responsiveness to ACT in TNM stage III-IV CRC. Some

studies have shown that in CRC, tumor stem cells lead to

chemotherapy resistance by inhibiting antiapoptotic gene

expression and reducing mitochondrial transcription initiation

(59, 60). Due to the heterogeneity of CRC, the response of

patients to chemotherapy is different, even at the same stage

(61). This further suggests that patients with high-risk scores are

potentially more suitable for immunotherapy than for

traditional chemotherapy. However, the exact correlation

between the risk score and the response to anticancer

treatment needs to be further explored in a larger CRC cohort.

Finally, to improve clinical application, mRNAsi-related

metabolic risk scores were combined with different

clinicopathological characteristics to construct a prognostic

nomogram and verify the predictive ability of the nomogram in

TCGA and GEO datasets. In the Zhongshan Hospital cohort, a

high-risk score was related to malignant progression and worse

clinical outcomes in patients with CRC. This risk score model

contains 21 important prognostic genes and has never been

reported to identify the immunoevasive subgroup of patients with

CRC in previous publications related to the CRC stemness index

(62). Furthermore, this risk score model could help molecular

typing and screening of differential subgroups to optimize

personalized treatment and facilitate clinical translation.

Our study bears limitations. First, the mechanism of crosstalk

between mRNAsi and metabolic reprogramming remains unclear,

and further experimental studies are needed. Second, the clinical

data of patients receiving immunotherapy in this study were

limited, and the robust ability of the risk score model to predict

immunotherapy responsiveness needs to be verified in a future

larger immunotherapycohort. Finally, although thenewmodel and

nomogram could accurately forecast the survival of patients with

CRCin theTCGAandGEOdatabases and theZhongshanHospital

cohort, more cell experiments, animalmodels, and clinical samples

are needed toverify the value of thismRNAsi-relatedmetabolic risk

score model before developing immunotherapy strategies for

subgroups of patients with CRC.

In this study, we proposed and validated a new risk score

model according to 21 mRNAsi-related metabolic genes. The

high-risk score group had a poorer clinical prognosis, inferior

sensitivity to chemotherapy, a potentially better response to

immunotherapy, and an immunoevasive environment, which

sheds light on more accurate risk stratification and divides

subgroups of patients with CRC for immunotherapy.
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GSEA of DEGs in high and low-risk score groups of patients with CRC. (A–I).
GSEA analysis of DEGs in high and low-risk score groups of patients withCRC.
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(A). The heatmap showing the expression of metabolism-related DEGs in

patients with CRC. (B). The heatmap shows the expression of 83
significantly differentially expressed mRNAsi-related metabolic genes in

the CRC and normal tissues.
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