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Theta rhythms (4–12 Hz) in the hippocampus are thought to be associated with

cognitive functions such as memory processing and spatial navigation. Rhythmic

oscillations in the neural system can be induced by synchronization of neural populations,

while physiological mechanisms for the emergence, modulation, and regulation of

such rhythms are not fully understood. Conceptual reduced models are promising

in promoting current understandings toward neural synchronization because of high

computational efficiency, while they appear less straightforward in biological relevance.

In this study, we use a hybrid E-I network as a conceptual model of the hippocampus to

investigate the dynamics of synchronous theta oscillations. Specifically, experimentally

constrained Izhikevich neurons and preferential connections among neural groups

specific to hippocampal CA1 are incorporated to enhance the biological relevance

of the model network. Based on such a model, synaptic factors related to the

balance of network excitation and inhibition are the main focus of present study.

By careful parameter exploration, the distinct role of synaptic connections in theta

rhythm generation, facilitation of synchronization, and induction of burst activities are

clarified. It is revealed that theta rhythms can be present with AMPA mediated weak E-I

couplings, or with strong NMDA current. Moreover, counter-inhibition, namely inhibition

of inhibition, is found effective in modulating the degree of network synchronization, while

has little effect on regulating network frequency in both regimes. Under pathological

considerations where the effect of pyramidal sprouting is simulated, synchronized

burst patterns are observed to be induced by elevated recurrent excitation among

pyramidal cells. In the final part, we additionally perform a test on the robustness

of our results under heterogeneous parameters. Our simulation results may provide

insights into understanding how brain rhythms are generated and modulated, and

the proposed model may serve as a useful template in probing mechanisms of

hippocampal-related dynamics.
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1. INTRODUCTION

Rhythmic oscillations of neural ensembles play an important role
in information processing in the brain (Buzsaki, 2004). Studying
the underlying mechanisms of brain rhythms is considered
fundamental to understanding higher brain functions. The
hippocampus, as one of the most extensively studied mammalian
brain regions, is hypothesized to be the structural substrate for
many functional-related brain rhythms. Rhythmic oscillations
in the hippocampus can be physiological or pathological,
such as theta rhythms and epileptic seizures (Isomura et al.,
2008). Hippocampal theta oscillations (4–12 Hz) have long
been observed in animal experiments and are assumed to be
functionally linked to memory processing during REM sleep and
spatial navigation during exploratory behaviors (Huxter et al.,
2003). Such associations were also reported in human studies
(Lega et al., 2012). Extensive efforts have tried to link the role
of theta rhythm with higher brain function through empirical
data (Hasselmo, 2005; Korotkova et al., 2018). Therefore,
analyzing these rhythms can provide in-depth knowledge about
how the hippocampal-related systems work under normal and
pathological conditions, of which the mechanisms are still not
fully understood (Buzsáki, 2006).

Spiking neuronal networks can provide insights into how
oscillatory activities can occur through network emergent
behavior such as synchronization (Arenas et al., 2008). On a
mesoscopic level, rhythms occur through the synchronization of
groups of spiking neurons, as a result of interactions between
intrinsic neuronal properties and network connectivity under
both normal and pathological states. These neuronal networks
usually consist of excitatory and inhibitory neurons coupled by
chemical or electrical synapses, serving as a substructure for
network oscillations to occur. How rhythmic activities emerge
in a coupled E-I network has been a topic for a long time.
Conceptually, a principle for the generation of gamma rhythm
in E-I networks has been established, which is known as the
Pyramidal Interneuron Network Gamma (PING) mechanism
(Kopell et al., 2010). Several internal or external factors were
further linked to themodulation and regulation of PING network
dynamics (Rich et al., 2017; Gu et al., 2021). As for network
connectivity, many works simply treat the network topology in
some mathematical formats such as random graphs (Qin et al.,
2018). While this simplification is mainly necessitated by the
lack of data (De Schutter, 2008), it can simplify the analysis to
allow more hypotheses to be tested and may lead to some general
governing rules (Zhou et al., 2006).

Specific to hippocampal theta rhythm, a conductance-based
network consisting of multi-compartmental pyramidal and
GABAergic interneurons was capable of generating robust theta
rhythm as a result of interactions between PY and IN (Kiss
et al., 2006). Even at a higher level of biological realism, a full-
scale data-driven CA1 network aggregated by Hodgkin-Huxley
type of neurons was constructed and provided implications
of the role of inhibitory diversity in rhythm generation
(Bezaire et al., 2016). While biophysically-detailed models like
HH based networks are frequently employed to interpret
neurophysiological phenomena, the overlarge parameter space

and huge demand in computing resources will make model
exploration difficult, thus limiting the application value of
these models (Traub et al., 1993; Morgan and Soltesz, 2008).
As alternatives to these detailed models, phenomenological
oscillators can be used to mitigate the computation burden
of network simulation (Izhikevich, 2004). By summarizing
the complex ionic exchanges into one controlling parameter
and introducing a reset mechanism, the Izhikevich neuron
preserves the most important aspect of the upstroke dynamics
in HH neurons and can replicate many realistic computational
properties through proper parameter tuning while free of heavy
computation burden (Izhikevich, 2007). One limitation of these
models is lack of biological relevance. But this can partly be
compensated by additional biological constraints, as suggested
in Lytton et al. (2008). Previous works have been devoted to
quantifying the diverse phenotypes of hippocampal neurons
by fitting Izhikevich neurons with electrophysiological data
(Ferguson et al., 2013; Venkadesh et al., 2019). Investigations
of rhythmic behavior on such type of network were performed
in an experimentally constrained Izhikevich network composed
of hippocampal pyramidal and parvalbumin-positive neurons
(Ferguson et al., 2017), and specific intrinsic and synaptic
factors were identified to be most contributing to theta
rhythm generation.

Motivated by previous works of biological-relevant
phenomenological networks, this study aims to investigate the
rhythmic dynamics exhibited in a conceptual hippocampal CA1
network in the theta range with hybrid cells and connectivity.
Specifically, four populations of experimentally constrained
Izhikevich neurons acknowledged to be relevant in hippocampal
rhythmic activities are considered to enhance the biological
relevance of the model. The hybrid excitatory and inhibitory
network includes non-bursting and bursting Pyramidal cells
(PY), fast-spiking parvalbumin-positive basket cells (PV+),
and low-threshold spiking somatostatin-positive cells (SOM+).
Network topology is considered random with preferential
connectivity existing between PV+ and PY subpopulations.
This connectivity is inspired by recent neurobiological evidence
that a preferential connectivity pattern between PY and PV+
cell population is present, with pyramidal neurons from the
superficial and deep layers of hippocampus radial axis making
non-uniform connections to PV+ cells (Lee et al., 2014).

The network dynamics of interest in this study involves
theta-band synchronized spike and burst activities. Synaptic
couplings between different neural populations are explored to
clarify their contribution to these rhythmic activities. Parameter
regimes that support the emergence of theta oscillations
are identified through careful parameter exploration. The
explorations are performed under physio- and pathological
considerations, which leads to the observation of synchronized
spike and burst dynamics among the hybrid pyramidal neurons,
respectively. We use quantitative measures to characterize the
degree of synchronization and burst activities. For each type
of network dynamics, we focus on the crucial synaptic factors
responsible for network transition dynamics by regulating
or modulating theta-band synchronization. Finally, the
robustness of our results in respect to parameter heterogeneity
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is reconfirmed by replacing the identical parameters with
distributed values.

2. METHODS

Izhikevich neurons of four cell types are used to form a
hybrid E-I network, including PYNB, PYBT, PV+, and
SOM+. Though the network is constructed in a conceptual
way, some neurophysiological details regarding neuronal
intrinsic properties and network connectivity are considered
to enhance its biological relevance to realistic systems. As for
couplings, chemical synapses are explicitly modeled for neural
communication and are used to make random connections
between neural populations. The network consists of 800
excitatory and 200 inhibitory neurons with each excitatory
(inhibitory) subpopulation being equal in numbers. More details
on network structure are described as follows.

2.1. Cell-Type Specific Izhikevich Neuronal
Model
Themodified form of the Izhikevich neuronal model is employed
as its parameters can be tuned to approach neuron’s realistic
behavior. The two-dimensional phenomenological model is
given by the following equations (Izhikevich, 2007):

Cm
dv

dt
= k(v− vr)(v− vt)− u+ Isyn + Itonic

du

dt
= a(b(v− vt)− u)

if v = vpeak, then v = vmin, u = u+ d

(1)

where state variable v denotes the membrane potential and u is
the slow recovery process representing a summed effect of ionic
inward and outward currents across the membrane. Dynamics
shaping parameters k, a, b, and d together with electrophysiology-
related Cm, vt, vr, vmin, and vpeak are adapted from various
published resources for each cell type. Itonic is a constant current
identically applied to all PY cells, mimicking the incoming
excitatory drive from external sources and fixed at 70 pA to
ensure sufficient network driving force, while interneurons are
not driven by any external input. Isyn represents the sum of
synaptic currents from other neurons in the network, and is
discussed in the next section.

Parameters selected for each type of neuron aim to make
it display type-specific firing patterns (Figure 1). PY cells are
typically non-bursting ones, but bursting types do exist, and there
is evidence that PYs from the deep layer along the CA1 radial
axis are more prone to show burst dynamics than superficial
PYs do (Cembrowski and Spruston, 2019). Therefore, both
non-bursting and bursting PYs are included to be indicative
of various dynamics among CA1 pyramidal cells. The non-
bursting PY neuron is taken from Izhikevich’s book (Izhikevich,
2007), based on which the bursting PY is obtained with a slight
modification. For inhibitory neurons, peri-somatic PV+ cells
are typically of the GABAergic fast-spiking type and are the
main contributors of fast inhibition to corresponding principal

cells. Dendritic inhibitory SOM+ cells are mainly of the low-
threshold spiking type that is able to generate post-inhibitory
rebound spike in response to a hyperpolarized input (Liguz-
Lecznar et al., 2016). Parameters for PV+ and SOM+ were
picked from hippocampome.org (Venkadesh et al., 2019), a
database providing data-fitted Izhikevich models for various
phenotypes of hippocampal neurons. We modified them a bit
without changing the major dynamics to make the range of
firing rate agreeable to the frequency-input curve in published
literature (Ferguson, 2015).

2.2. Network Connectivity With Preferential
Connections
Network connectivity is assumed to be random, while
preferential connections exist between subpopulations of
PY and PV+ cells. Evidence is that fast-spiking PV+ cells provide
three times more synaptic current to deep-layer PYs than
superficial ones, while superficial PYs contrarily connect three
times more often to PV+ cells (Soltesz and Losonczy, 2018),
so that a biased loop between PY and PV+ subpopulations is
formed. We attribute this preferential connectivity to distinct
connection probabilities between the two groups (Figure 2).

Connections between other neural populations are
determined based on biological facts that: (a) peri-somatic
PV+ cells connect rather densely to principal neurons, (b)
recurrent connections among PYs are sparse in CA1, (c)
interactions between SOM+ and PY are weaker than that in PV-
PY circuit as SOM+ cells mainly make contacts at the dendrite,
and (d) counter-inhibition provided by PV+ cells was reported
to be significant in the hippocampus (Paz and Huguenard, 2015).

Synaptic interactions between neurons are described by the
Gradual Rise model (Börgers, 2017a):

Isyn = gsynspre(t)(vrev − vpost)

ds

dt
= q

1− s

τr
−

s

τd

dq

dt
=

1+ tanh(v/10)

2

1− q

τr,q
−

q

τd,q

(2)

where s and q are synaptic gating variables. Just similar as in real
biological systems, three types of chemical receptors including
AMPA, NMDA, and GABAa are considered. AMPA and GABAa
mediated activities typically respond fast to incoming signals
with small time constants, while that of NMDA usually act on a
much slower time scale. Specifically, for NMDA receptors, Isyn
is modeled in a slightly different formulation as suggested by
Izhikevich (Izhikevich, 2004):

INMDA = gNMDA
[(v+ 80)/60]2

1+ [(v+ 80)/60]2
spre(t)(vrev − vpost) (3)

The reversal potential vrev is assigned to be 0 mV for excitatory
AMPA and NMDA, and−70 mV for inhibitory GABAa.

Synaptic conductance g is the main parameter to be explored
in the following simulations. We consider g varying according
to the receptor type between pre- and post-synaptic populations.
For example, gAMPA represents the synaptic coupling strength
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FIGURE 1 | Exemplary firing pattern of each cell type in response to a tonic input = 225 pA. NB, non-bursting; BT, bursting; FS, fast-spiking; LTS, low-threshold

spiking.

FIGURE 2 | (A) Schematic of connectivity among different groups. Arrows and solid circles indicate excitatory and inhibitory effects, respectively. (B) The matrix of

connection probability. Preferential connections between subpopulations of PY and PV+ are highlighted by blue and red shadows.

from excitatory to inhibitory population mediated by AMPA
receptors, and is assumed to be identical for all connections
of the same type in most cases except for the last section of
results, where we perform additional tests on the influence of
parameter heterogeneity.

Values for the aforementioned parameters are summarized in
Tables 1, 2.

2.3. Measures
Network output is computed as the average membrane potential
of all pyramidal neurons (both PYNB and PYBT) to approximate
Local Field Potential (LFP). The simulated signal is evaluated in
terms of spectral and temporal aspects to inform its oscillatory
property. Since we mainly focus on global activity located in
the theta range, network dominant frequency is computed first
by finding the spectral peak of the fast Fourier transform of
the simulated LFP. The overall synchronization of pyramidal
neurons ismanifested by the degree of field potential fluctuations,
since a larger deflection of LFP will only be achieved when more

neurons fire almost simultaneously. To quantify this fluctuation
of network output, we adopt the statistical metric standard
deviation (SD) to reflect the oscillation in field potential. The
simulated LFP first needs to be normalized by subtracting its
time average to guarantee comparable metrics. SD is defined as
informed in probabilistic theory:

SD =

√

∑n
i=1(xi − x̄)2

n
(4)

where n denotes the total number of data points in the time
series. xi and x̄ refers to each sample point and average of data,
respectively. In this way, a higher level of network oscillation
corresponding to large-amplitude global activities will result in
a larger SD. When neurons fire almost randomly, in which
sense no rhythmic activity is formed so that the corresponding
SD will be small. In this study, we think an output with
SD<2.5 exhibits no rhythmic activity. Under an SD of such
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TABLE 1 | Neuronal parameters.

k a b d Cm vr vt vmin vpeak Itonic Source

PYNB 0.5 0.01 5 50 50 −60 −45 −50 40 70 Izhikevich, 2007

PYBT 0.5 0.01 5 60 60 −60 −45 −40 40 70 modified

PV+ 1.19 0.005 0.22 2 75 −57.63 −35.53 −48.7 21.72 0 Venkadesh et al., 2019

SOM+ 4.47 0.069 74.3 299 73 −60 −56.41 −58.16 7.99 0 Venkadesh et al., 2019

TABLE 2 | Synaptic parameters.

τr τd τr,q τd,q vrev gee gei gie gii

AMPA 0.5 3 0.1 0.17 0 var var - -

NMDA 5 150 0.1 1.01 0 0.1 var - -

GABAa 0.5 3 0.1 0.17 −70 - - var var

level, the network does not fire synchronously all the time
during the simulation, while the largest SD in all the simulations
is around 12. We have to say that since network dynamics
varies rather smoothly, the threshold is only used to make a
vague distinction between rhythmic and non-rhythmic activities.
Therefore, result interpretations have to be made a bit far from
these non-existing boundaries.

Under some parameter sets, the network will exhibit
synchronized burst dynamics. We adopt the coefficient of
variation (CV) to further differentiate the burst dynamics from
spike patterns under synchronization scenarios. The coefficient
of variation of a single neuron is given by:

CVi =
σISIi

ISIi
(5)

ISIi denotes the inter-spike-interval sequence of a specific neuron
i, and σISIi is its standard deviation. The value of CV is obtained
by average over all the pyramidal neurons.

CV =
1

N

N
∑

i=1

CVi (6)

When CV surpasses 0.5, we think the network produces a
bursting pattern as suggested in Börgers (2017b).

2.4. Simulation Settings
Each simulation was run for 5 s in total, and the last 3 s of activity
were saved to eliminate transients. Variable v was randomly
initialized around the resting membrane potential of each cell
type, and other variables were all started from zero. Numeric
simulations were implemented using the second-ordermid-point
method with a time step of 0.04 ms. All the simulating and
analyzing processes were done in MATLAB.

3. RESULTS

Synaptic couplings are studied for their roles in promoting
synchronous theta oscillations. The explorations are arranged

under physio- and pathological settings respectively. Both
synchronized spike and burst dynamics are observed in the
present study. We first coarsely identify the parameter regime
that supports network global activities to be located in the theta
band. Then, the distinct roles of couplings in regulating and
modulating network rhythms are investigated, by which means
we identify how varying parameters will lead to transitions of
network dynamics. In the final part, we perform additional tests
on the robustness of our results when parameter heterogeneity
is considered.

3.1. Explorations Under Physiological
Settings: Synchronized Spike Patterns
CA1 pyramidal neurons are reported to be sparsely connected
with each other (Witter, 2010). Therefore, under physiological
settings, we do not consider the effect of recurrent excitation on
network dynamics to reduce the number of degrees of freedom
of parameter space (by assuming gee = 1). Both computational
and experimental evidence has suggested the significance of
inhibitory effects on theta rhythm generation (Wulff et al.,
2009), which motivates us to focus on the inhibitory-related
parameters gei, gie, and gii, denoting the excitation and inhibition
between E-I groups, and counter-inhibition provided by PV+
cells, respectively. In the present study, gei refers to either gAMPA

or gNMDA according to the receptor types.
We first identify the conditions supporting the existence

of theta rhythms with gNMDA = 0.1. This is realized by a
coarse exploration of [gAMPA, gie, gii] in the range of [0.5,5].
Figure 3A shows the network frequency on the plane of gAMPA

and gie, with gii varying from 0.5 to 3.5 additionally. As gii
remains constant in each subplot, network frequency is mainly
controlled by the strength of reciprocal couplings between
excitatory and inhibitory populations (gAMPA and gie). It reveals
that a simultaneous elevation of reciprocal couplings between E-I
groups can produce faster activities, so that slow theta rhythms
are supported in the weak coupling regime (gAMPA, gie < 1).
Meanwhile, the frequency pattern is almost invariant with respect
to gii, as shown by the heatmaps of Figure 3A from left to right.
This invariance is more clearly illustrated in Figure 3C. The
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FIGURE 3 | Network frequency influenced by inhibitory-related synaptic parameters (gAMPA,gNMDA,gie, and gii). (A) Network frequency obtained by a coarse scanning

of [gAMPA, gie, gii] to determine the parameter range that constrains activities in the theta range with gNMDA = 0.1. (B) A similar exploration of [gNMDA, gie, gii] with

gAMPA = 1.5. (C) The frequency increases with varying gAMPA at distinct gii, and theta activities are found to be present with gAMPA < 1. (D) The frequency decreases

with varying gNMDA at distinct gii, and theta activities are found to be present with gNMDA > 0.2. The shaded area denotes the frequency band of theta.

largely overlapped lines suggest that network frequency is little
influenced by the variation of gii, while rises monotonically at
the increase of fast excitatory-inhibitory couplings. This indicates
that counter-inhibition provided by PV+ cells exhibits limited
impacts on regulating network activities.

As the slow NMDA current assumed in previous simulations
is a potential contributor to the observed theta oscillations,
we redo the above explorations without NMDA current. The

results are shown in Figure 4. It is clear that, as reciprocal
E-I couplings become stronger, the network exhibits a sudden
transition into rhythmic activities with the network frequency
beyond theta range. Such dynamic patterns are also weakly
influenced by gii (not shown). These results suggest that the
observed theta oscillations in the weak E-I coupling regime is
largely slowed down by the presence of NMDA current. To
further demonstrate the slowing role of NMDA, we additionally
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FIGURE 4 | Network frequency and SD on the gAMPA-gie plane without slow NMDA current. As gAMPA increases, the network exhibits a sudden transition into fast

oscillations beyond theta range.

perform an exploration of slow E-I couplings with gAMPA = 1.5.
The simulation results are presented in Figure 3B. It is found
that the slowing down effect of NMDA is obvious but becomes
less significant when gie becomes stronger, which probably means
an activation of E(AMPA)-I coupling that drives fast network
activities. Theta oscillations can be found with large gNMDA and
relatively small gie. Such a frequency pattern is also insensitive to
gii, as given by Figure 3D.

By coarse scanning of inhibitory-related synaptic parameters,
we notice that theta activities can be present in two regimes
of couplings: one is with AMPA mediated weak E-I coupling
(gAMPA, gie ∈ [0, 1]) and another is with strong NMDA current
(gNMDA ∈ [0.2, 0.5], gie ∈ [0.5, 2.5]). Network frequency in both
regimes is almost insensitive to the variation of gii. Therefore,
in the following simulations we will only focus on network
dynamics in these two regimes of theta-band activities.

Rhythmic oscillations require neurons to fire synchronously.
As has been mentioned in the Measures section, we adopt SD
to imply the degree of synchronization of network activities.
In the weak E-I coupling regime, a systematic measuring of
SD under different combinations of [gAMPA, gie, gii] is given by
Figure 5A. The dark blue region is assigned to represent non-
rhythmic activities where SD is less than 2.5, and is present
at areas of high gAMPA and low gie. Within each subplane, we
can observe that SD varies more dramatically along the vertical
than horizontal axis, which indicates that gie has a stronger
control on rhythm generation than gAMPA does. It is clear that an
increase of inhibition onto PY neurons can effectively facilitate
network synchronization.

As gii increases, we can see that the regime of non-rhythmic
activities (SD<2.5) expands. Moreover, the overall degree of
synchronization is lower. These results indicate that the decline of
counter-inhibition can largely facilitate network synchronization.
To visualize the synchronizing effect of gii more clearly, raster and
LFP fluctuations of four networks with different combinations

of gAMPA and gie are displayed in respect to varying gii, which
is given by Figures 6A–D. In each plot, the fluctuation of
LFP is mitigated by the increase of gii with decreasing SD
(denoted by red dots). Note that the output LFP is normalized
to zero to ensure comparable SDs (denoted by green dots). In
fact, a decrease in SD is caused by the weakening of network
synchronization which is manifested more clearly in the spike
raster above, where the synchronized firing pattern of PYs
gradually becomes more irregular. Under different parameter
sets, the degree of network synchronization to which modulated
by gii is different, but the role of gii in modulating network
dynamics is generally consistent.

Under the regime of strong NMDA, we notice that
network synchronization is quite significant across all parameter
combinations, while a similar role of gii in modulating the degree
of synchronization is also found (Figure 5B).

3.2. Explorations Under Pathological
Settings: Synchronized Burst Patterns
Pathological states such as epileptic seizures are thought to be
related to an unbalance of network excitation and inhibition.
CA1 pyramidal sprouting is one of the pathological changes
that can be observed in epileptic tissues, which may serve as
a source of network hyperexcitation (Lehmann et al., 2000). In
this section, we will examine the effect of pyramidal recurrent
excitation (gee) on network dynamics. In view of previous results,
we have noticed that E-I couplings in the weak regime tend to
influence network dynamics jointly rather than independently.
Therefore, for clarification purposes, in the following sections,
we will perform our simulations over the four particular E-I
couplings as in Figure 6.

We first investigate the transition of network dynamics
under various levels of gee, with other synaptic parameters
remaining constant. Apart from network synchronized spikes,
burst activities are observed when gee increases steply, as
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FIGURE 5 | The degree of network synchronization modulated by gii) in (A) the weak AMPA regime (gAMPA, gie ∈ [0, 1]) and (B) the strong NMDA regime

(gNMDA ∈ [0.2, 0.5], gie ∈ [0.5, 2.5]). The degree of synchronization is indicated by SDs of LFP. Activities thought to have no rhythms are marked in dark blue, of which

the SD is less than 2.5.

shown by the network states in Figures 7A–D. Network firing
patterns and sampled neuronal voltage traces from PYNB and
PYBT groups are displayed together to inform the transition
into network burst dynamics. Regardless of the initial states
of networks, an enhancement of recurrent excitation can
always lead the networks to burst synchronously, which is
realized by the burst synchronization of individual neurons.
To quantitatively capture the evolution of network dynamics,
we further use coefficient of variation (CV) to measure the
degree of burst activities. As suggested in Börgers (2017b), we
think a particular network exhibits burst activities when CV
is over 0.5. The evolution of CV as gee varying from 1 to 10
is depicted in Figure 7E. Consistent with the trend discussed
above, the level of CV as an indicator of bursting degree rises
and finally surpasses 0.5 somewhere as gee grows gradually.
The network with the weakest E-I couplings (gAMPA = 0.2,
gie = 0.2) experiences the most drastic change in CV in
response to the variation of gee, and can finally achieve the
highest level of burst synchronization. This is clearly reflected
in Figure 7A. Though a high level of burst activities always
occurs in a synchronized form in the network, the measure
of CV is essentially not an indicator for synchronization.
Therefore, the evolution of SD is computed as well to
additionally illustrate the degree of network synchronization.
As is expected, a monotonic increase in SD is observed as gee
increases under all parameter sets, which clarifies the role of
gee in promoting burst synchronization. Similar spike to burst
transition can also be observed in the strong NMDA regime
(not shown), while network dynamics is much less sensitive

to gee (synchronized burst patterns occur with gee over 50)
probably due to the already high level of excitation in network
E-I balance.

As suggested from Section 3.1, counter-inhibition is effective
in modulating network synchronization. Therefore, network
dynamics is further examined under various combinations
of both recurrent excitation and counter-inhibition. The
exploration of network dynamics is still performed under
the four conditions of E-I couplings, while distinct network
states are assigned according to computed SDs and CVs. The
corresponding network behavior is classified as burst, spike,
and no rhythm activities based on combinations of the two
metrics. We first use SDs to differentiate scenarios with or
without synchronization. As is mentioned before, synchronous
oscillatory activities are thought to be those with SD>2.5,
otherwise, they would be considered as non-rhythmic activities.
Among the synchronous scenarios, bursting patterns are further
differentiated from spike patterns when CV surpasses 0.5. The
results obtained under the four particular parameter sets are
given by Figures 8A–D, where each type of dynamics is marked
in a specific color. Several results are reconfirmed in Figure 8.
For example, areas thought to have no rhythmic activities are
present in conditions without enough inhibition onto excitatory
populations (Figures 8C,D). We can also see that the conclusion
drawn from Figure 7 is still applicable to Figure 8, that a larger
gee will favor the network to exhibit synchronized burst activities.
In addition, the transition into burst dynamics may get easier
under a higher level of counter-inhibition since the boundary
between spike and burst activities tilts toward a smaller gee as
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FIGURE 6 | The evolution of LFP fluctuations and sampled firing patterns as gii varies from 0.5 to 3.5. PYNBs and PYBT are indexed as 1–400 and 401–800,

respectively. The dynamic process is displayed under four different parameter sets: (A) gAMPA = 0.2, gie = 0.2, (B) gAMPA = 0.2, gie = 0.8, (C) gAMPA = 0.5, gie = 0.5,

and (D) gAMPA = 0.8, gie = 0.2.

gii increases. However, the role of gii in modulating network
dynamics is not that obvious as in Section 3.1. Facilitation of
synchronization mediated by the decline of gii can only be
observed when gee is weak enough. This is probably due to the
strong domination of gee in network E-I balance.

3.3. Robustness of Results in Respect to
Parameter Heterogeneity
The above results are obtained with the parameter g being
identical to all the connections of the same type. While in a more

biologically realistic setting, parameters are not identical but
distributed in a physiological range. It is not sure if the results still
remain unchanged when parameter heterogeneity is introduced.

To test the robustness of results in terms of parameter
heterogeneity, a uniform distribution of [(1 − σ )g, (1 + σ )g]
is used to generate the random coupling strength for each
connection, where σ is the percentage of deviation from
the original g.

Additional tests are performed in the same way as having
been stated in Sections 3.1 and 3.2. In Figure 9, we present the
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FIGURE 7 | Transition of network states with an enhancement of PY recurrent excitation. (A–D) Raster and sampled voltage traces from either of the PY groups. Red

and blue traces are sampled from one of the PYBT and PYNB neurons, respectively. The fixed parameter set for each subplot is (A) gAMPA = 0.2, gie = 0.2, (B)

gAMPA = 0.2, gie = 0.8, (C) gAMPA = 0.5, gie = 0.5, and (D) gAMPA = 0.8, gie = 0.2. (E), (F): The evolution of CV and SD under the four parameter sets as gee varies

form 1 to 10.

influence of heterogeneity under a specific parameter set for
clarification (gAMPA = 0.5, gie = 0.5). Figure 9A shows the
variation of gee on network activities (measured by frequency,
CV, and SD, respectively) under various levels of deviations. Six
levels of heterogeneity with σ ranging from 0.05 to 0.3 at a step
of 0.05 are superimposed on each subplot. It is obvious that

the distributed couplings have limited effect on these metrics,
and do not affect the evolution trend of network dynamics.
Similar observations can be obtained under a varying gii given
by Figure 9B. Tests performed under other parameter sets of
E-I couplings are not shown but the findings are all the same.
Therefore, it is safe to conclude that the simulation results
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FIGURE 8 | Different patterns of network dynamics mediated by recurrent excitation and counter-inhibition under three levels of E-I couplings. (A) gAMPA = gie = 0.2,

(B) gAMPA = 0.2, gie = 0.8, (C) gAMPA = gie = 0.5, (D) gAMPA = 0.8, gie = 0.2.

obtained from the above sections display a considerable level of
robustness which is amenable to parameter heterogeneity.

4. CONCLUSION AND DISCUSSION

In this study, we used a hybrid E-I network as a conceptual model
of the hippocampus. We mainly focused on the dynamics of
synchronous theta oscillations. Specifically, biological constraints
regarding cell-type specific properties and network connectivity
were considered to enhance the model’s biological relevance.
Both synchronous spike and burst patterns were observed in
our simulations. Through careful parameter exploration, the
distinct role of synaptic parameters in theta rhythm generation,
modulation of synchronization and induction of burst patterns
were identified. The main results are summarized as follows.

First, theta oscillations are found to be supported by either
weak E(AMPA)-I couplings or strong NMDA current in our
model. We further confirmed that the observed theta rhythm is
mainly supported by the presence of slow NMDA current. In
both regimes, counter-inhibition has little effect on regulating
network activities.

Second, the decline of counter-inhibition can facilitate
network synchronization in both regimes as indicated by an
increasing level of overall SD. Specifically, in the weak AMPA
regime, rhythmic oscillations are favored by a low level of
counter-inhibition together with strong inhibition from I to
E groups. Networks with SD<2.5 are thought to have no
rhythmic activities, which occur in the regimes of weak I-E
and strong E-I couplings. While in the strong NMDA regime,
network synchronization is dominated by NMDA mediated
excitatory connections.
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FIGURE 9 | The influence of parameter (A) gee and (B) gii on network activities under six levels of deviation in parameter distribution. Network oscillatory behaviors are

indicated in terms of frequency, CV and SD, respectively.

Finally, it is revealed that recurrent excitation among PYs is
remarkably effective in inducing burst synchronization in both
regimes. We performed the exploration under a pathological
setting to mimic pyramidal sprouting. The degree of burst
activities was quantified by the average coefficient of variation of
all PYs. SD was computed as well to confirm the enhancement
of network synchronization. In the weak AMPA regime, the
effect of gii on modulating network dynamics is mitigated by the
dominant role of gee in E/I balance. The above results were all
reconfirmed when parameter heterogeneity is introduced.

Computational models are increasingly employed to help
understand the mechanisms of brain activities (Sejnowski et al.,
1988). As brain activities span across multiple spatial and
temporal scales, computational models can also be at various
levels of complexity (Deco et al., 2008). Models of brain
rhythms can either be as biophysically realistic as a detailed
representation of physical structure (Bezaire et al., 2016), or
conceptually represented by coupled neuronal oscillators that
aim at revealing the essential mechanisms underlying observed
activities (Kopell, 2005). Most previous modeling studies of
theta rhythms use biophysically realistic models and focus on
contributions of cellular mechanisms based on the Hodgkin-
Huxley type of neurons (Rotstein et al., 2005; Kiss et al., 2006).
The coherence of interneurons is related to theta frequency firing.
A network consists of multi-compartment pyramidal, basket,
and oriens-lacunosum moleculare (OLM) cells can also generate

theta oscillations (Neymotin et al., 2011). However, since all
the computational models are low-dimensional representation of
high-dimensional reality, the necessity for them to be of that level
of complexity is doubted, and insights found from less-detailed
models may be more inefficient in unveiling the key mechanisms
underlying biological systems (Kopell, 2005).

Mesoscopic phenomenological network with neuronal and
synaptic interactions explicitly expressed is at a compromise of
modeling complexity and cost of computation resources, while
still enlightening in revealing the basic rules governing biological
systems. Therefore, we chose to construct the CA1 network
using the Izhikevich model as its dynamics can be experimentally
constrained and specified to realistic neurons (Izhikevich, 2007),
thus being a good conceptual representation of the hippocampal
structure. Though random topology is a simplified form for
network connectivity, the relative connection densities between
neural populations are decided based on neurophysiological
evidence found in hippocampal CA1. Specifically, PY neurons
of hybrid dynamics are considered, and preferential connections
are represented between PY and PV+ populations as revealed by
experimental findings (Lee et al., 2014). All these considerations
aim to enhance the biological relevance of the model.
Nevertheless, our network is not designed to reproduce detailed
biological data, so that network results are not interpreted specific
to structural entities, but in a more general way, such as the
relationship between E-I balance and network dynamic patterns.
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The proposed network has acted as a structural substrate
based on which network dynamics are explored. Physically,
rhythms can originate from synchronous phenomena that can
be represented by the synchronization of oscillators in physical
models. To link network synchronization with physiological
and pathological rhythmic oscillations in the hippocampus,
parameter exploration was performed in two different ways,
and this led to the observation of network dynamics of
synchronous spike and burst patterns. Similar to experimental
settings, network output is evaluated to inform network
dynamics. Complex network models that study synchronization
theoretically use the complex order parameter to quantify the
level of synchronization over all neurons (Arenas et al., 2008).
But in a hybrid network of two populations of PY neurons,
measures of phase synchronization cannot produce a good
indication of oscillatory behavior. Instead, we only focus on
the averaged activity and use its SD to imply the overall
degree of synchronization. SD is effective in implying network
synchronization as a larger fluctuation of LFP can only be
achieved when more neurons fire coherently. A similar strategy
is employed by previous studies that use the mean field potential
as a global parameter to represent the level of synchronization
(Qu et al., 2014). In the present study, a threshold is used
to distinguish between synchronous oscillatory behavior and
non-rhythmic activities. The choice of the threshold is mainly
based on visual inspections of network firing patterns. Among
the synchronous oscillatory scenarios determined by SD, in the
second part of the results, we further use CV to pick out the burst
firing patterns. The threshold of CV is chosen as suggested in
Börgers (2017b). We have to highlight that since network firing
patterns vary quite smoothly under different SDs or CVs, the
parameter boundaries as a result of thresholds are somewhat
arbitrary. Therefore, the interpretation of results is made not to
focus on the exact boundaries but the generic trend implicated by
the pattern.

Synaptic factors related to network E-I balance are the main
focus of this study. A previous study of hippocampal theta
rhythm has used experimentally constrained Izhikevich neurons
to clarify parameter regions that support theta rhythm generation
(Ferguson et al., 2017). The exploration on E-I couplings
shows similar scenarios for the existence of synchronous theta
oscillations as in our results, where theta rhythms are largely lost
when gAMPA is too small, and network frequency increases as
the reciprocal couplings between E-I groups become stronger.
This consistency in findings has revealed some general rules
of E-I networks for rhythm generation. As is shown in both
results, sufficient inhibition from I to E is necessary for the
network to synchronize. The indispensable role of fast inhibition
in theta rhythms is experimentally and computationally verified
(Wulff et al., 2009). In addition, simulations also demonstrate the
significance of NMDA current in regulating network frequency.
It has been reported that ablation of NMDA receptors on
PV+ interneurons could lead to diminished theta oscillations
in the hippocampus (Korotkova et al., 2010). In addition to
the effect of E-I couplings, our results have emphasized the
crucial role of counter-inhibition (gii) in favoring network

synchronization. Hippocampal PV+ cells are known to make
potent connections to other inhibitory interneurons, including
themselves. This special type of connection is a relatively rare
connectivity in neural systems (Paz and Huguenard, 2015).
Intuitively, a decline of gii will shift the network E/I balance
to a more inhibiting side. Once the inhibitory firings resume,
the effect of feedback inhibition becomes prominent so that
rhythmic firings among PYs are probably shaped to be more
regular. Meanwhile, burst synchronization can be induced
in experimental models of seizure-like activities, which are
mainly associated with recurrent excitatory interactions between
hippocampal pyramidal cells. Similar network dynamics is
initiated by increasing the corresponding parameter of gee, which
has demonstrated the explanatory power of our model network.
We noticed that the transition into burst dynamics can be
induced under a smaller gee as gii increases. Since an increase of
gii equals an elevation in network excitation, we may attribute
the occurrence of burst synchronization to hyperexcitation in
terms of E/I balance. Besides synaptic gains, other factors such
as synaptic time constants, sub-threshold oscillations, or post-
inhibitory rebound spiking in pyramidal neurons may also be
important for hippocampal theta oscillations (Stark et al., 2013),
which remain to be studied in future work.

The proposed network is just a simplified representation
for hippocampal oscillatory activities, in terms of both neuron
models and network connectivity. This is because analysis on
a biologically detailed whole-brain model to date is still far
from realization, while several global projects have indeed been
devoted to bridging the gap (Markram, 2012). In addition, our
network also differs from a pure theoretical framework in a way
that some biological facts are incorporated to interpret the results
in a more physiological-related context. Further improvements
can be achieved by containing more biological mechanisms of
interest, such as gap junction or synaptic plasticity that are
reported to be important in shaping network dynamics (Gigout
et al., 2006; Igarashi, 2015). From a theoretical perspective, a
detailed relationship between E/I balance and network dynamics
should be further examined. We hope that our network can
serve as a useful template for more hippocampal-related neural
mechanisms to be studied.
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