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ABSTRACT

A broad range of complex phenotypes are related to
dysfunctions in brain (hereafter referred to as brain-
related traits), including various mental and behav-
ioral disorders and diseases of the nervous sys-
tem. These traits in general share overlapping symp-
toms, pathogenesis, and genetic components. Here,
we present Brain Catalog (https://ngdc.cncb.ac.cn/
braincatalog), a comprehensive database aiming to
delineate the genetic components of more than 500
GWAS summary statistics datasets for brain-related
traits from multiple aspects. First, Brain Catalog pro-
vides results of candidate causal variants, causal
genes, and functional tissues and cell types for each
trait identified by multiple methods using compre-
hensive annotation datasets (58 QTL datasets span-
ning 6 types of QTLs). Second, Brain Catalog es-
timates the SNP-based heritability, the partitioning
heritability based on functional annotations, and ge-
netic correlations among traits. Finally, through bidi-
rectional Mendelian randomization analyses, Brain
Catalog presents inference of risk factors that are
likely causal to each trait. In conclusion, Brain Cat-
alog presents a one-stop shop for the genetic com-
ponents of brain-related traits, potentially serving as
a valuable resource for worldwide researchers to ad-
vance the understanding of how GWAS signals may
contribute to the biological etiology of brain-related
traits.

INTRODUCTION

Brain-related traits, including brain-related disorders, dis-
eases and risk factors, broadly affect the common health
around the world, imposing heavy burdens on patients, fam-
ilies, and the health system. Many complex phenotypes are
related to dysfunctions in the brain, including psychiatric
disorders, neurodevelopmental disorders, cognitive disor-
ders, substance use disorders, behavioral habits, psychoso-
cial and personality traits, and neurodegenerative diseases,
among others. According to the International Classification
of Diseases (ICD) system, most of these traits can be catego-
rized as mental and behavioral disorders or diseases of the
nervous system. In general, they share overlapping symp-
toms, pathogenesis, and common genetic risks. In this work,
we generally referred to them as brain-related traits. Char-
acterization of the genetic landscape and the manifesting
tissues and cell types can provide unique insights into the
underlying pathophysiological processes and the complex
relationships among them.

So far, many large-scale genome-wide association studies
(GWAS) have been successfully conducted, reporting hun-
dreds of thousands of susceptibility loci associated with var-
ious brain-related traits (1–5). There are many resources
available online hosting GWAS summary statistics for vari-
ous traits and diseases, such as NHGRI-EBI GWAS Cata-
log (6), GWASdb (7), GRASP (8), PhenoScanner (9), MR-
Base (10) and GWAS ATLAS (11). However, GWAS results
are not readily available to pinpoint causal variants, causal
genes, or the underlying mechanisms. Nearly 90% of trait-
associated variants are located in non-coding regions (12)
and are known to play regulatory roles. The complex link-
age disequilibrium (LD) structure further complicates the
identification of causal variants and genes. Thus, secondary
analyses integrating multi-omics data are often necessary to
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deeply investigate the roles of genetic variants and the target
genes they regulate.

Recently, multiple molecular quantitative trait loci
(xQTL) have been generated from various platforms and
studies (13) for gene expression (eQTL), gene splicing
(sQTL), DNA methylation (mQTL), chromatin accessibil-
ity (caQTL), H3K27 histone acetylation (haQTL) and pro-
tein abundance (pQTL), providing valuable resources to
prioritize causal variants and causal genes across tissues
and cell types. However, a comprehensive, systematic re-
source to yield knowledge from SNPs to genes, functional
tissues or cells, and putative risk factors has been lack-
ing, especially for brain-related traits. Due to the complex
comorbidity and shared genetic components among many
medical and psychiatric disorders, it is of special interest to
compare across many types of brain-related traits and in-
vestigate the shared and unique causal variants and genes,
and the involved tissues and brain cell types. Prioritizing
causal variants and identifying their targeting genes is a
daunting job that involves integrating multi-omics datasets
across multiple tissues and cell types. There have already
been works attempting to systematically fine-map candidate
susceptibility genes for published GWAS summary statis-
tics, such as CAUSALdb (14) and webTWAS (15). How-
ever, for brain-related traits, a resource has been lacking
in integrating all relevant functional annotation and multi-
omics datasets and implementing different methods to infer
loci, genes, tissues, and cell types that mediate the genetic
mechanisms of disease and the relationships with other dis-
eases or risk factors.

In this study, we developed a comprehensive resource,
the Brain Catalog, available at https://ngdc.cncb.ac.cn/
braincatalog. Brain Catalog curated the majority of pub-
lished GWAS summary statistics for brain-related traits
from multiple consortia and studies. It presents inference
of causal variants, causal genes, functional tissues or cell
types, and potential risk factors from variant-, gene- and
trait-levels with multiple functional annotation tracks.

MATERIALS AND METHODS

GWAS summary statistics data curation

We downloaded GWAS summary statistics for brain-
related traits that were publicly available from online re-
sources. The types of traits that were considered in the cur-
rent version were mainly searched using the terms from
two groups as defined by ICD-10: Chapter V Mental and
behavioral disorders (F00–F99) and Chapter VI Diseases
of the nervous system (G00–G99). Other traits were col-
lected based on literature citations, experiences, and ex-
pertise knowledge such as the brain imaging data. So far,
we have collected a total of 517 GWAS summary statistics
datasets that can be categorized into two groups according
to the phenotype definition: one with canonical phenotype
measurements such as binary, categorical or continuous
phenotypes (termed the non-image group) and the other
with image-based phenotypes. For the non-image group of
phenotypes, we downloaded data mainly from Psychiatric
Genomics Consortium (PGC) (16), NHGRI-EBI GWAS
Catalog (6), Neale Lab UKBB v3 (17), Complex Trait
Genetics (CTGlab) (https://ctg.cncr.nl/), the International

Multiple Sclerosis Genetics Consortium (IMSGC) (18), the
MEGASTROKE (19), the International Cannabis Consor-
tium (ICC) (20,21), the GWAS & Sequencing Consortium
of Alcohol and Nicotine Use (GSCAN) (22), the Social Sci-
ences Genetic Association Consortium (SSGAC) (23,24),
the Centre for Cognitive Ageing and Cognitive Epidemi-
ology (CCACE) (25), the Genetics of Personality Consor-
tium (GPC) (26) and The Sleep Disorder Knowledge Portal
(SDKP) (27). For human brain imaging traits, we down-
loaded GWAS summary statistics data from Biostatistics
and Imaging Genomics analysis lab (BIG-KP) (28) and the
Enhancing NeuroImaging Genetics through Meta-Analysis
(ENIGMA) (29). Redundant datasets were removed. For
each dataset, we extracted the sample size, ancestry, and
other basic information. Considering that the majority of
the reference panels and xQTL annotations used for post-
GWAS analyses were from European ancestry, we only in-
cluded the GWAS data from European ancestry in the cur-
rent version of Brain Catalog.

Quality control of GWAS summary statistics

The downloaded GWAS summary statistics data were saved
in various formats depending on the platforms or prepro-
cessing procedures. We implemented a series of quality
control steps to reformat the raw data. Firstly, all GWAS
datasets were converted to GRCh37 (hg19) coordinates.
Secondly, alleles of each variant were mapped to the 1000
Genomes Project (1KGP) reference panel to keep consis-
tency. In cases where the effect size (beta) is missing, we
imputed beta by using other statistical data such as the
standard error (SE), z-score, and P-value. For a small sub-
set (36 cases, 6.96%) of the downloaded data, only the P-
values were available and there was no possible way to im-
pute other statistics such as the effect size and SE and thus,
we only applied a part of the methods wherever applica-
ble. Thirdly, allele frequency was filled in using the Eu-
ropean population from 1KGP (phase 3). If an imputa-
tion score (INFO) was available, variants with INFO <0.9
were excluded. Finally, we performed other quality con-
trols using MungeSumstats (30) based on dbSNP144 (31),
such as inferring missing SNP ID, chromosome (CHR),
or base pair position (BP), removing non-biallelic SNPs,
and harmonizing GWAS summary statistics to the reference
genome.

xQTL resources

We collected a total of 58 xQTL datasets belonging to
six different types of QTL annotation data, especially for
brain and blood. These included 27 expression QTL (eQTL)
datasets, 22 sQTL (splicing QTL) datasets, 5 mQTL (methy-
lation) datasets, 2 pQTL (protein QTL) datasets, 1 caQTL
(chromatin accessibility) dataset and 1 haQTL (H3K27 hi-
stone acetylation) dataset. We included only the cis-xQTL
for the following analyses. More details of these datasets,
such as the origin tissues, QTL types, and sources, are pre-
sented in Supplementary Table S1. Notably, due to the lim-
ited resources, we did not include trans-QTL datasets in the
current version of Brain Catalog.

https://ngdc.cncb.ac.cn/braincatalog
https://ctg.cncr.nl/
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SNP-based heritability, functional partition of heritabil-
ity and genetic correlation

Three types of analyses were conducted for heritability es-
timation by using two methods, i.e. LD score regression
(LDSC, v1.0.1) (32) and Linkage-Disequilibrium Adjusted
Kinships (LDAK, v5.2) (33). For these analyses, all GWAS
summary statistics were filtered using HapMap3 SNPs and
required to have frequency (FRQ) >0.01. Large-effect loci
(e.g. those in the MHC region) were excluded from all analy-
ses. First, we estimated the SNP-based heritability for each
trait by using LDSC and BLD-LDAK. Second, the heri-
tability enrichment of a category of SNPs is estimated us-
ing LDAK. We used 26 binary categorical annotations for
SNPs, including super-enhancers, conserved regions, and so
on. Third, genetic correlations were estimated by using both
LDSC and LDAK (the BLD-Thin model). To provide a re-
liable estimation of genetic correlations, the traits were re-
quired to have (i) SNP-based heritability between 0 and 1,
(ii) P-value <0.05, (iii) heritability (H2) z-score >1.5, (iv)
mean chi-square >1.02 and (v) the intercept between 0.9
and 1.1.

Cell and tissue functional enrichment

We used two methods to identify functional tissues or cell
types for the traits in the Brain Catalog: GARFIELD v2
(34) and stratified LD score regression (S-LDSC) (35).
GARFIELD assessed whether trait-related variants, as de-
fined using different significance thresholds, were enriched
in different regulatory or functional annotations using a lo-
gistic regression mode. GARFIELD provided 1005 anno-
tated features collected from ENCODE, GENCODE and
the Roadmap Epigenomics project. These features included
genic annotations, histone modifications, chromatin status,
transcription factor binding sites, and open chromatin data
(such as FAIRE, and DNase I hypersensitive site hotspots)
and were obtained using 424 cell types and 55 tissues. We
also used S-LDSC and single cell ATAC-seq (scATAC-seq)
data from the human cortex (36) to evaluate whether these
brain-related traits were enriched in cell-type specific open
chromatin regions.

Fine-mapping with multiple annotation tracks

To perform fine-mapping on brain-related traits, we first ex-
tracted genome-wide significant SNPs (P-value < 5 × 10−8)
as index SNPs. For each index SNP, we defined a genetic
locus as a ±500 kb window centered around it, with low-
frequency SNPs (i.e. FRQ < 0.01) filtered in the region.
Next, statistical fine-mapping was conducted for each locus
using four strategies including ABF, FINEMAP, SuSiE and
PolyFun + SuSiE, all of which have been integrated in the
R package echolocatoR (37). By estimating the posterior
probability (PP) of each SNP being a causal SNP, these
fine-mapping methods generate the following key SNP sets:
(i) 95% credible sets (CS95%) for each causal signal by each
method, (ii) union credible set of SNPs (UCS), which was
defined as the union of all method-specific CS95% and (iii)
consensus SNPs defined as those identified by at least two
methods. We set the (maximum) number of causal SNPs to
five for all fine-mapping tools, except for ABF with only

one assumed causal SNP. Additionally, all loci were an-
notated with multiple cell type-specific epigenomic anno-
tations from Nott et al. (38), Corces et al. (39) and eX-
ploring Genomic Relations (XGR) (40) including cell type-
specific epigenomic peaks (scATAC, ATAC, H3K27ac,
H3K4me), cell type-specific regulatory regions (enhancers,
promoters), cell type-specific interactome anchors (prox-
imity ligation-assisted ChIP-Seq), bulk brain epigenomic
peaks (ATAC), and bulk brain interactome anchors
(HiChIP FitHiChIP).

Prioritizing causal variants and causal genes with xQTL

We prioritized causal variants and causal genes by combin-
ing GWAS summary statistics with six cis-xQTLs (eQTL,
sQTL, mQTL, pQTL, haQTL, caQTL) from multiple tis-
sues using three methods, which were transcriptome-wide
association analysis (TWAS) (41–43), Bayesian colocal-
ization analysis (COLOC) (44), and summary data-based
mendelian randomization analysis (SMR) (45). Specifi-
cally, for the TWAS method, we utilized three widely-
applied methods to avoid missing of candidate risk
genes: S-PrediXcan, unified test for molecular signatures
(UTMOST), and joint-tissue imputation (JTI). We used
the prediction models trained on GTEx v8 available at
the PredictDB website (http://predictdb.org) and GitHub
(https://github.com/gamazonlab/MR-JTI). For colocaliza-
tion analysis, we used the R package coloc (44) to assess
the probability of the same variant being responsible be-
tween brain-related traits and xQTLs. The recommended
combination thresholds (PP4 ≥ 0.75 and PP4/PP3 ≥ 3)
were employed to define a causal role for the tested gene.
Finally, SMR was performed to test the association be-
tween an exposure (here a quantitative trait such as gene
expression) and an outcome (brain-related trait) based on
the Mendelian randomization framework using a genetic
variant as the instrument variable (IV). We also applied the
HEIDI test to distinguish pleiotropy from linkage with a
threshold of 0.05. The Benjamini-Hochberg method correc-
tion was used in each TWAS or SMR analysis to control the
false discovery rate (FDR < 0.05).

Risk factors

Mendelian randomization (MR) analyses were performed
to assess the causal effect between exposures and out-
come traits using the R package TwoSampleMR (10). For
each exposure, significant SNPs (defined as those with
P < 5 × 10−8, P < 1 × 10−6, or P < 1 × 10−5 whichever
applicable depending on the power of the original GWAS)
served as the Instrument Variables (IVs). Then, we per-
formed a clumping procedure using the 1KGP European
samples as LD reference panel and requiring r2 < 0.05 in
a 1000-kb window. Finally, we applied six different MR
methods for a comprehensive investigation: Wald ratio, MR
Egger, Weighted median, Inverse variance weighted, Simple
mode and Weighted mode. A series of sensitivity analyses
were also carried out, including the heterogeneity test, hor-
izontal pleiotropy test and leave-one-out analysis.

http://predictdb.org
https://github.com/gamazonlab/MR-JTI
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Database design and updates

Brain Catalog is hosted by a virtual machine with Cen-
tOS 7.9. The backend RESTful web service was constructed
with Java Spring Boot (https://spring.io/projects/spring-
boot) framework and MySQL (https://www.mysql.com) as
the database engine. The web frontend interface was devel-
oped using the React (https://reactjs.org) and UMI (https:
//umijs.org) frameworks, which are scalable enterprise-class
frontend frameworks containing a complete life cycle plu-
gin system that can be extended to execute more complex
functionality. Ant Design (https://ant.design) is used as the
UI library that contains a set of high-quality components
for building rich, interactive user interfaces. In addition, the
interactive visual charts were implemented by using differ-
ent libraries such as HighCharts (https://www.highcharts.
com), ECharts (https://echarts.apache.org), PlotlyJS (https:
//plotly.com/javascript) and UpSet.js (https://upset.js.org).

All analyses have been implemented by customized
scripts to enable automatic and efficient processing of
large-scale datasets. Considering the rapid development of
GWAS data, where new releases with large sample sizes and
novel discoveries are expected in the coming years, we will
conduct regular updates of the database every six months.
New GWAS data will be searched and processed on a regu-
lar basis and the corresponding analysis results will be up-
dated in the database every half a year. In addition to the
updates of GWAS data, new annotation datasets such as
various QTL data will also be included to expand the anal-
ysis categories and to provide candidate causal variants and
factors for each trait.

DATABASE CONTENT AND USAGE

Schematic overview

Brain Catalog currently contains 517 brain-related traits
from various consortia and studies, 58 xQTL datasets be-
longing to six types of QTL mapping covering 21 tis-
sues, 436 cell type annotation data, and results from 22
post-GWAS methods. The traits covered as many as pos-
sible traits that were generally related to the brain, includ-
ing psychiatric disorders, neurodegenerative diseases, brain
imaging, behavioral habits, substance use disorders, cogni-
tive function, personality traits, psychosocial characteris-
tics, and others. We conducted a series of post-GWAS anal-
yses to delineate the genetic components of each trait and
the genetic correlations among traits. Briefly, at the genetic
variant level, we applied GARFIELD and S-LDSC to eval-
uate the enrichment of associated-trait loci in functional an-
notations across multiple tissues and cell types. We also pri-
oritized causal variants and causal genes using nine widely-
used methods (four fine-mapping, three TWAS, SMR and
COLOC) and six types of xQTLs focusing on brain and
blood. This part of the analyses can provide insights into the
regulatory mechanisms as to how a candidate genetic vari-
ant may mediate the quantitative trait changes (such as gene
expression changes) and eventually contribute to the disease
outcome. At the heritability level, we estimated SNP-based
heritability, functional partition of heritability enrichment,
and cross-trait genetic correlation using both LDSC and
LDAK. Finally, we performed the 2SMR analysis to esti-

mate the causal effect among all traits using six methods,
followed by sensitivity analyses. Although in literature, risk
factors, such as smoking, sleeping duration, and alcohol
consumption, are often used as the exposure variable and
disorders as the outcome such as schizophrenia, Parkinson’s
disease and autism, we systematically conducted 2SMR to
pair-wise traits in our database without distinguishing risk
factors and disorders. Thus, the results presented in Brain
Catalog have well-controlled biases likely introduced by a
priori selection. A schematic overview of Brain Catalog is
illustrated in Figure 1.

Web interface

Brain Catalog provides a user-friendly interface for users to
access information by searching, browsing, and download-
ing. The search function allows users to quickly search by
using keywords for traits, SNPs, or genes of interest (Fig-
ure 2A). The browse menu provides quick access to all ma-
jor categories of analysis, such as the heritability analysis,
two sample MR, SMR, colocalization, and fine-mapping.
Brain Catalog organizes the results by traits and further
categorized the contents by five analysis themes (11 mod-
ules) including (i) tissues or cell type functional enrichment,
(ii) heritability estimation, heritability enrichment and ge-
netic correlation, (iii) fine-mapping with multiple annota-
tion tracks, (iv) prioritizing causal genes with xQTLs, (v)
MR analysis of putative risk factor (Figure 2C). Thus, the
best strategy is to start with the trait overview which dis-
plays summaries of all 517 brain-related traits, such as trait
names, type of phenotypes, sample sizes, and basic informa-
tion of each study (Figure 2A), and then select the trait of
interest to access the overall analysis modules (Figure 2B,
C).

Almost all units provide interactive analysis, online visu-
alization, and download options. For example, for the her-
itability analyses, we used a barplot to show the estimated
SNP heritability by both LDSC and LDAK, a dot plot ac-
companied with a table to show the heritability enrichment
results, and a trait-trait network to show the genetic corre-
lations. All figures and tables are interactive and users can
select one or more traits of interest to have a zoom-in visual-
ization (Figure 2D). For the analyses where multiple meth-
ods were implemented, such as the TWAS analyses (involv-
ing three methods) and the COLOC/SMR analyses (involv-
ing 58 QTL datasets), we use an UpSet plot and a Venn di-
agram to show the overlapping results, a heatmap to show
the SMR results for each xQTL in the corresponding tis-
sue, and a local Manhattan plot to show the colocalization
results for each locus (Figure 2E).

Amyotrophic lateral sclerosis (ALS) as an example applica-
tion

Below we used the ALS GWAS data reported by van Rhee-
nen et al. (46) as an example to demonstrate the usage of
Brain Catalog.

SNP-base heritability, heritability enrichment and genetic
correlation. By using two methods, SNP-based heritabil-
ity for ALS was estimated to be 3.8% (SE = 0.0044,

https://spring.io/projects/spring-boot
https://www.mysql.com
https://reactjs.org
https://umijs.org
https://ant.design
https://www.highcharts.com
https://echarts.apache.org
https://plotly.com/javascript
https://upset.js.org
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Figure 1. Schematic overview of the Brain Catalog. It consists of four main components. (1) Data resources: brain-related traits collection from different
consortia and studies. (2) Characterization: cell and tissue functional enrichment, SNP-based heritability, heritability enrichment, and genetic correlation.
(3) Prioritization of causal variants and causal genes: fine-mapping with multiple annotation tracks and identify causal genes with six xQTLs. (4) Risk
factors: MR estimation of the causal effect between brain-related traits using six methods.
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Figure 2. Screenshots of web pages for the Brain Catalog. (A) The home page allows for quick research for traits, SNPs, genes, or analysis topics. (B) An
overview table for all traits is provided in the browse menu. (C) Results of multiple analyses for the dataset AD Marioni 2018. The red boxes highlight the
analysis modules available for selection. (D) Interactive figures and tables in the heritability module to show the results from multiple analysis methods.
(E) Results of colocalization with xQTL. The color and size of the grid are proportional to the probability and intensity of colocation signals. A local
Manhattan plot is also provided for visualization.

P = 3.9 × 10−18) by LDSC and 8.2% (SE = 0.0076,
P = 1.02 × 10−26) by LDAK, respectively (Supplementary
Figure S1A), consistent with previous studies (47). Using
26 binary category annotations, partitioned LDAK heri-
tability analysis showed significant enrichment for SNPs lo-
cated in 9 different categories, especially for super-enhancer
(Enrichment OR = 1.98, P = 1.38 × 10−7) (Supplemen-
tary Table S2). Moreover, genetic correlation analysis by
both LDSC and LDAK suggested that ALS shared genetic
pathogenicity with multiple diseases and traits, including
Alzheimer’s disease (LDSC: rg = 0.45, P = 1.4 × 10−3;
LDAK: rg = 0.46, P = 2.27 × 10−6), educational attain-
ment (LDSC: rg = −0.17, P = 2.73 × 10−6; LDAK: rg =
−0.17, P = 2.63 × 10−6), and alcohol use disorder (LDSC:

rg = 0.22, P = 6 × 10−4; LDAK: rg = 0.17, P = 0.01) (Sup-
plementary Figure S1B).

Functional enrichment and annotation. Functional en-
richment analysis was conducted using S-LDSC and
GARFIELD for ALS-associated loci defined using five dif-
ferent thresholds: P-value < 1 × 10−8, P-value < 1 × 10−7,
P-value < 1 × 10−6, P-value < 1 × 10−5 and P-
value < 1 × 10−4. Using GARFIELD, we found the
largest fold enrichment in the urothelium (OR = 10.79, P-
value = 4.94 × 10−6) for the locus set defined using P-
value < 1 × 10−7, which may be related to the comorbidi-
ties such as urinary infections or incontinence that caused
death in ALS patients (48,49) (Figure 3A). Notably, S-



Nucleic Acids Research, 2023, Vol. 51, Database issue D841

Figure 3. The post-GWAS analysis for ALS. (A) Enrichment results by GARFIELD of ALS-associated variants in DNase I Hypersensitive sites hotspot
regions from ENCODE and Roadmap Epigenomics data. The radial plot shows the enrichment (OR) in each of the 424 cell types sorted by tissue on
the outside edge of the circle. The size of the tissue label was proportional to the number of cell types. Enrichment analysis was performed using five
significance thresholds (1 × 10−8, 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4), which were shown by different colors. The dots on the inner side of the outer
circle represented the significance level of enrichment analysis for thresholds 1 × 10−5, 1 × 10−6, 1 × 10−7 and 1 × 10−8 in the direction from outside to
inside. (B) Fine-mapping of the C9orf72 locus. The regional Manhattan plot was shown in the top panel. The top SNP was labeled as a diamond, and
the color indicated LD (r2) between each SNP and the top SNP. Below the Manhattan plot, we show four tracks for four fine-mapping methods (labeled
on the right of the panel: ABF, FINEMAP, SuSiE, and PolyFun + SuSiE,) and a track (labeled as ‘mean’ on the right of the panel) showing the mean
PPs of all four methods. In all these tracks, the y-axis showed the PP value of SNPs (ranging between 0–1). The union credible set of SNPs (UCS) were
labeled in green and consensus SNPs were labeled in gold. Three epigenetic annotation tracks were shown at the bottom. (C) The summary of significant
genes identified by SMR with xQTLs. (D) The summary of colocalized genes by COLOC with xQTLs. (E) Colocalization of the G2E3 locus with eQTL in
the prefrontal cortex (PsychENCODE). The color indicated the LD degree between the candidate causal SNP (in this case, rs2045180, labeled as a purple
diamond) and other SNPs. (F) MR results between several risk factors and ALS as an outcome. The width of the line represented the effect size of the
exposure on ALS. Detailed results are available in Supplementary Table S7.
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LDSC analysis did not identify significantly enriched func-
tional cells for ALS, further demonstrating the necessity to
use multiple methods for each type of analysis.

Fine-mapping with multiple annotation tracks. By applying
four fine-mapping methods (ABF, FINEMAP, SuSiE and
PolyFun + SuSiE) for 13 risk loci in ALS (P < 5 × 10−8),
we identified 5 consensus SNPs, each identified by at
least two methods. They were rs116900480 in the lo-
cus rs116900480 ATP23 (mean posterior probability or
PP = 0.95), rs12608932 in rs12608932 UNC13A (mean
PP = 0.92), rs143956135 in rs2453555 C9orf72 (mean
PP = 0.75), rs73440960 in rs535957039 LINGO2 (mean
PP = 0.75), rs75087725 in rs75087725 CFAP410 (mean
PP = 0.99) (Supplementary Table S3). Further COLOC
analyses showed rs73440960 was colocalized with sQTL
in brain caudate basal ganglia with its nearest gene
C9orf72 but no significant colocalization signal was found
with any xQTL for the other consensus SNPs. Interest-
ingly, in the rs2453555 C9orf72 locus, although the can-
didate consensus SNP was determined as rs143956135, a
nearby SNP, rs2453555, was also reported by one method
(PolyFun + SuSiE) with a high posterior probability
(PP = 0.9). Furthermore, COLOC analysis revealed that
rs2453555 showed significant colocalization signals with
eQTL (PP4 = 0.81, PP4/PP3 = 5.8) or sQTL in brain
(PP4 = 0.97, PP4/PP3 = 30.7) (Figure 3B, Supplemen-
tary Table S6), which was in line with our previous study
(50).

Prioritizing causal variants and causal genes with xQTLs.
By using three TWAS methods (S-PrediXcan, UT-
MOST and JTI), we identified a total of 102 genes
significantly associated with ALS by at least two methods
(FDR < 0.05), of which 19 were reported in recent GWAS
and post-GWAS studies (46,50,51) (Supplementary Table
S4), leaving a large number of newly identified candidate
genes for ALS. By using the SMR analysis, we tested the
exposure measurements from six types of cis-xQTLs and
identified a total of 84 genes with significant evidence that
likely mediated the genetic associations (FDR < 0.05 and
HEIDI > 0.05). As expected, the maximum number of
genes (n = 43) were found with eQTL datasets (Supplemen-
tary Table S5). A novel finding of particular interest was the
gene SCFD1, which was identified by five kinds of xQTLs
(Figure 3C, Supplementary Table S5), suggesting SCFD1
was likely involved in multiple functions underlying ALS
pathogenesis.

Colocalization analysis was conducted for each of the
significant ALS-associated SNPs (P < 5 × 10−8) using 58
xQTL datasets, respectively. In total, we identified 21 can-
didate genes with significant evidence in at least one tis-
sue (PP4 > 0.75 and PP4/PP3 > 3) (Figure 3D, Supple-
mentary Table S6). The largest number of signals (n = 16)
was found with mQTL datasets (Supplementary Table S6).
The strongest signal was identified for the gene G2E3
(PP4 = 0.99 and PP4/PP3 = 400.5) in the prefrontal cortex
eQTL dataset (Figure 3E, Supplementary Table S6). Inter-
estingly, consistent with the finding in SMR, SCFD1 was
colocalized in five kinds of xQTLs, further highlighting its
importance (Figure 3D, Supplementary Table S6).

Risk factors causally related to ALS. A comprehensive
MR analysis with ALS as the outcome showed that several
exposures were identified as causal risk factors for ALS by
at least one method with weak effect sizes (MR P < 0.05,
horizontal pleiotropy P-value > 0.05), including extreme
BMI, alcohol consumption, sleeping, neuroticism, physi-
cal activity, educational attainment, smoking, well-being,
and brain imaging (Figure 3F, Supplementary Table S7).
Among these factors, neuroticism, educational attainment,
well-being, and physical activity time showed a negative ef-
fect on ALS, which was consistent with previous reports
(46,52). A positive effect of alcohol consumption on ALS
was identified in our analyses, but previous studies had re-
ported both positive effects and negative effects for alco-
hol consumption (53). Several results suggested that hip-
pocampal volume and dentate gyrus volume had a neg-
ative effect on ALS (Supplementary Table S7). Interest-
ingly, in neuroimaging traits, eight amplitude traits (node)
reflecting regional spontaneous neuronal activity and two
functional connectivity traits (edge) quantifying the interre-
gional coactivity showed a positive effect on ALS, and two
functional connectivity traits showed a negative effect on
ALS (Supplementary Table S7). These results highlighted a
complex mechanism for the relationship between brain im-
ages and ALS.

DISCUSSION AND FUTURE DIRECTIONS

We developed Brain Catalog, a comprehensive resource
aiming at delineating the genetic components underly-
ing brain-related traits from various aspects. Brain Cata-
log integrated GWAS summary statistics and multi-omics
datasets by using multiple cutting-edge analytical ap-
proaches. The rich results from these analyses provided
unique insights into the underlying disease mechanisms as
well as genetic correlations among traits. To the best of
our knowledge, Brain Catalog is currently the largest and
most comprehensive database for brain-related traits cover-
ing both disorders/diseases and risk factors, allowing cross-
methods, cross-QTLs, and cross-traits comparison.

Although brain-related traits may refer to a wide range of
phenotypes, we focus on those with reported genetic com-
ponents and have been studied by GWAS. Currently, the
traits included in Brain Catalog nearly all belonged to the
mental and behavioral disorders and diseases of the nervous
system. For each trait, Brain Catalog provides quite com-
prehensive information to allow in-depth single-trait anal-
ysis and cross-trait analysis. First, it implements multiple
methods to prioritize causal variants and causal genes with
a wide range of xQTLs. Second, it provides an estimation of
SNP heritability, functional partition of heritability enrich-
ment, and cross-trait genetic correlation. Third, it provides
the risk factor landscape for each brain-related trait. These
results collectively formed a valuable resource for the ge-
netic landscape of most traits and also enabled cross-trait
integration to study comorbidity and shared heritability.

Although the current version of Brain Catalog includes
very comprehensive datasets and annotations, there are sev-
eral limitations that need to be addressed in future studies.
First, given that all analyses were based on GWAS sum-
mary statistics, we were not able to assess the possible over-
lapping of samples among studies, which could reduce the
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power of the analysis and introduce potential biases, espe-
cially for the genetic correlation and MR analyses. In addi-
tion, the reference panel we used, i.e. 1KGP, may not reflect
the actual LD pattern of the corresponding populations, al-
though replication between different studies could help to
reduce biases. For example, we collected 5 GWAS summary
statistics for schizophrenia from different studies. Results
from these datasets would provide cross-study validation of
each other. Second, the current version of our database only
contains European populations and thus, the results may
not be generalizable to other populations. Third, although
we selected 21 major tissues for SMR and COLOC, other
possible pathogenic tissues were not included. Finally, due
to the limited resources of trans-xQTLs, we only included
cis-QTL datasets in our analysis, which may miss causal
variants or causal genes that function in trans. In future,
more xQTL datasets, especially those based on single-cell
data, will be integrated to fully prioritize causal variants and
causal genes to provide more functional information.

In conclusion, Brain Catalog provides a one-stop shop
for the genetic landscape of brain-related traits. We expect it
to serve the broad research area to explore the genetic mech-
anisms underlying diseases.
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