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Abstract

Climate forcing is the major abiotic driver for forest ecosystem functioning and thus significantly affects the role of forests
within the global carbon cycle and related ecosystem services. Annual radial increments of trees are probably the most
valuable source of information to link tree growth and climate at long-term time scales, and have been used in a wide
variety of investigations worldwide. However, especially in mountainous areas, tree-ring studies have focused on extreme
environments where the climate sensitivity is perhaps greatest but are necessarily a biased representation of the forests
within a region. We used tree-ring analyses to study two of the most important tree species growing in the Alps: Norway
spruce (Picea abies) and silver fir (Abies alba). We developed tree-ring chronologies from 13 mesic mid-elevation sites (203
trees) and then compared them to monthly temperature and precipitation data for the period 1846–1995. Correlation
functions, principal component analysis and fuzzy C-means clustering were applied to 1) assess the climate/growth
relationships and their stationarity and consistency over time, and 2) extract common modes of variability in the species
responses to mean and extreme climate variability. Our results highlight a clear, time-stable, and species-specific response
to mean climate conditions. However, during the previous-year’s growing season, which shows the strongest correlations,
the primary difference between species is in their response to extreme events, not mean conditions. Mesic sites at mid-
altitude are commonly underrepresented in tree-ring research; we showed that strong climatic controls of growth may exist
even in those areas. Extreme climatic events may play a key role in defining the species-specific responses on climatic
sensitivity and, with a global change perspective, specific divergent responses are likely to occur even where current
conditions are less limited.
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Introduction

The growth and distribution of forests and the related roles of

forests within the terrestrial carbon cycle are closely intertwined

with climate forcing and variability at both short and long time-

scales [1]. Yet this relationship between climate and forests is not

homogeneous across geographical areas or among species. Indeed,

significant differences, at both physical and biological levels, have

been found across continents [2,3], regions [4,5], ecosystems, taxa

and seasons [6]. This variability is clearly associated with spatial

changes in environmental factors, but also associated with the

corresponding positive or negative plant-plant interactions that are

able to significantly shape the composition and dynamics of forest

communities [7,8].

Many studies have shown that some regions and species are

more sensitive to climate variations than others [9]. For example,

the altitudinal and latitudinal treeline is one key research area,

where there is i) high sensitivity to environmental changes, ii)

frequent presence of long-lived trees and iii) decreasing importance

of competition - in terms of its effect on adult growth - with

increasing limiting conditions [8,10]. This usually permits the

effective isolation, at various time scales, of the role of the most

stressful growth limiting factor (temperature) on plant growth

processes [10,11]. Similarly, for xeric habitats, water is the primary

limiting factor, and tree growth is more sensitive to corresponding

changes in hydrological cycle [12].

Annual radial growth increments of trees are probably the most

valuable source of environmental and ecological information for

long time periods. These have been used in a wide variety of

studies largely conducted in extra-tropical regions from typical

climate reconstructions [13] to changes in species’ and ecosystems’

climate sensitivity according to internal [14,15], external [16,17],

or geographical factors [18,19].

All of these investigations have added valuable insight into

species-specific climate/tree growth relationships and ecosystem

responses to climate variability over local to continental spatial

scales. However, most of the studies were carried out in marginal

areas where the expression of the limiting factors for tree species

probably reach the maximum, but at the cost of no longer being

representative of the broader forested region. In other words, the

role of forests within the global carbon cycle as well as the goods

and services they provide is usually reduced in many extreme
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environments, whereas this role is maximized where conditions are

less limiting such as, far from the treeline and at mid-latitude or

mid-elevation. Nonetheless, even at lower latitudes or lower

elevations, climate is still one of the most influential forcing factors

for tree growth and ecosystem functioning. This calls for a better

understanding of species and forest ecosystem behaviour in more

mesic and milder environments. Indeed, knowing long- and short-

term species responses to climate variability, where climate is not

regularly limiting, is becoming more important for understanding

the role of forests under various future change scenarios [3,20].

The Alps are one of the most studied areas worldwide and this

mountain range now has one of the best networks of high density

and high-quality tree-ring [17,21] and long-term meteorological

records [22]. Nonetheless, tree-ring research in the Alps has been

biased towards extreme habitats with an overrepresentation of

high-elevation or xeric sites. Here, we investigated whether trees

growing on mesic sites at lower elevations exhibited distinct

climate/growth relationships. Indeed, traditional models in tree

ecology and ecophysiology generally propose a convergent ten-

dency on the species’ growth responses to climate on more stressful

sites [10]. Our underlying hypothesis is that significant and

divergent species-specific growth responses occur also where

conditions are less limiting. We used two of the most representative

species of the montane belt of the Alps: Norway spruce (Picea abies

(L.) Karst.) and silver fir (Abies alba Mill.). By using a dense network

of tree-ring sites within a typical inner Alpine valley, we tryed to

test the species sensitivity to mean climate variability and extreme

climatic events, not at the limits of the species’ distributions but

well within the temperature and precipitation ranges where most

spruce and fir forests find their optimal growth conditions.

We adopted both classical and novel methodological ap-

proaches to explore the influences of mean and extreme climate

on tree growth. We first computed the climate-growth relation-

ships using correlation functions and then analyzed the common

climate response patterns with principal component analysis and

fuzzy C-means clustering.

Materials and Methods

Ethics Statement
All the field studies and sampling were carried out after

permissions had been obtained from the Valle D’Aosta regional

forests administration and the Gran Paradiso National Park, Italy.

Setting
Aosta Valley is located in the western Italian Alps. Due to the

inner setting within the Alps, the surrounding high peaks and its

east-west orientation, the climate is continental and among the

driest in the Alps. The mean annual precipitation and temperature

are 561 mm and 10.1uC, respectively (long-term mean 1841–2007

for temperature and 1921–2010 for precipitation at Aosta, 544 m

a.s.l., in the central valley) [22]. However, temperature and

precipitation distributions are closely related to elevation.

In this region silver fir represents only 3% of the regional tree

biomass. It grows mainly on north-facing slopes of the montane

belt where it often forms pure stands but also occurs mixed with

spruce and European larch (Larix decidua Mill.). Norway spruce is

one of the most important species, representing 32% of the

regional forest biomass and occurs in the montane and subalpine

belts growing in pure and mixed forests, mainly with larch at

higher elevation. In the western Italian Alps, silver fir is currently

under-represented compared to its potential distribution. Indeed,

many of the regional forests of the montane belt could potentially

be mixed with the occurrence of both fir and spruce. Past human

land-use has systematically selected for a few, preferred species

causing the progressive disappearance of others, mainly silver fir in

most of the sites. Alternatively, where human influence has not

been historically significant in the last couple of centuries, forests

are denser. This permits the presence of pure, or near-pure, stands

dominated by the shade-tolerant silver fir, which overtakes more

shade-intolerant species [23].

Seven Norway spruce and six silver fir sites were selected (Fig.1).

They were located from 45.82u to 45.54u N latitude, and from

6.93u to 7.89uE longitude, at an altitude between 1200 and

1900 m a.s.l. (Table 1). Sampled forests were naturally regener-

ated, uneven-aged stands, with the presence of old trees and

limited recent natural or human disturbances.

Tree-ring Data
A minimum of two cores per tree were collected at breast height

on the cross-slope sides of the trunk from at least 13 trees at each

site. We followed the classical dendroecological protocol, selecting

only healthy dominant or co-dominant trees with no visible scars

or signs of recent injuries in an attempt to enhance the climatic

information retained in the tree-ring sequences and reduce to

a minimum the possible effects of external influences such as

competition, crown suppression or small-scale disturbances.

Samples were prepared following standard procedures outlined

in Stokes and Smiley [24]. Tree-ring width was then measured to

10-mm resolution and finally assigned to calendar years. Each ring-

width series was first visually and then statistically checked for

crossdating and measurement errors using the program COFE-

CHA [25]. Finally, a total of 449 tree-ring series from 190 trees

were considered for growth/climate response analysis. Tree-ring

site chronologies were obtained from the crossdated ring-width

series using the program ARSTAN [26] that was specifically

developed for the removal of biologically induced age-trends [10]

and to process the disturbance pulses often present in tree-ring

series from closed-canopy forests [27]. Individual series were first

standardized by fitting a negative exponential curve to measured

data series and dividing observed by expected values. To

emphasize high-frequency variability these dimensionless indices

were then submitted to a second standardization procedure fitting

a cubic smoothing spline with 50% frequency cut-off at 20 years

and again computing the observed vs. expected ratio. Various

statistical parameters were calculated to compare the tree-ring

chronologies: i) mean sensitivity (MS), a measure of the relative

difference in ring widths between consecutive years, adopted to

assess the high-frequency variability of the series, ii) the first order

serial autocorrelation (AC), a measure of the influence of previous

year’s conditions on ring formation (Fritts, 1976), iii) the variance

explained by the first principal component (PC1), and iv) the mean

correlation between trees (rbar) and the ‘‘expressed population

signal’’ (EPS) to estimate the level of year-by-year growth

variations shared by trees in the same site. Higher values of PC1

and rbar indicate higher synchronization in the annual growth

patterns among sampled trees and better common signal strength

by the mean growth chronologies [10], while EPS is commonly

adopted as a criterion for assessing a mean chronology’s reliability

[28].

Climate Data
The HISTALP gridded dataset of monthly temperature and

precipitation series [22] was used as predictor variables for

growth/climate analyses over the 1846–1995 period. This dataset

is based on precipitation and temperature data from hundreds of

weather stations throughout the Greater Alpine Region, which

were subjected to homogeneity tests and relative adjustments, and

Norway Spruce and Silver Fir Climate Sensitivity
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then gridded on a 1u61u network and expressed as anomalies with

respect to the 20th century mean [29,30]. We selected the climate

data from the closest grid points to each study site.

Statistical Analysis
Relationships between climate parameters and each individual

and site chronology were analyzed using Pearson’s correlation

coefficient (CC) over the 1846–1995 period [10]. Climate

datasets included monthly data over a 17-month window from

May of the year prior to ring formation to September of the

current year. The statistical significance of the CCs was tested

using a bootstrap procedure with 10000 replications. Each

coefficient was considered significant (P,0.05) if the standard-

ized mean value was at least twice the standard deviation of its

10000 replications [31]. The stationarity and consistency of the

climate/growth responses were assessed by splitting the original

150-year period in three and performing the same analysis for

each 50-year sub-period.

Principal Component Analysis (PCA) [32] of the bootstrap CCs

was used to extract common modes of variability in climate/

Figure 1. Location of the study area. Geographical location of the study area and site distribution in the Aosta Valley, Italy.
doi:10.1371/journal.pone.0050755.g001

Table 1. Site location and descriptive statistics of the 13 tree-ring chronologies.

Code Species Lat Long
Altitude
(m)

First
year

Last
year

Series length
(years) NC NT AC MS PC1 rbar EPS

Max Mean Min

POUS PIAB 45.59 7.37 1900 1638 1995 358 186 96 26 13 0.73 0.17 45 0.38 0.85

LEVI PIAB 45.54 7.23 1900 1672 1995 324 199 87 30 15 0.80 0.15 53 0.49 0.93

ROUS PIAB 45.55 7.19 1900 1636 1995 360 238 145 30 15 0.75 0.15 48 0.44 0.92

CHAU PIAB 45.55 7.12 1900 1742 1995 254 207 111 30 15 0.83 0.15 55 0.51 0.93

LAJO PIAB 45.69 6.94 1750 1771 1997 227 150 76 32 15 0.81 0.14 44 0.33 0.78

COUR PIAB 45.80 6.98 1600 1703 1997 295 233 151 49 21 0.75 0.14 43 0.39 0.93

CITR PIAB 45.81 7.17 1800 1763 1998 236 204 155 36 16 0.74 0.14 44 0.40 0.91

ARPY ABAL 45.75 7.00 1700 1754 1998 245 191 141 43 19 0.85 0.14 58 0.56 0.96

COLJ ABAL 45.64 7.27 1500 1776 1998 223 161 114 38 15 0.82 0.16 59 0.48 0.82

FANA ABAL 45.82 7.34 1200 1755 1998 244 156 100 31 14 0.85 0.17 53 0.47 0.89

LVAR ABAL 45.77 7.40 1700 1804 1997 194 150 95 28 14 0.85 0.16 54 0.44 0.83

VALP ABAL 45.75 7.70 1500 1800 1998 199 158 92 39 17 0.84 0.20 48 0.42 0.90

VIEY ABAL 45.65 7.89 1700 1655 1998 344 236 112 37 16 0.75 0.20 60 0.57 0.95

Note: PIAB and ABAL are the species codes for Picea abies and Abies alba. NC and NT are cores and trees numbers, respectively. Chronology statistics include first-order
serial autocorrelation (AC), mean sensitivity (MS), the variance explained by the first principal component (PC1), mean interseries correlation (rbar) and expressed
population signal (Eps). All except AC are computed on the indexed tree-ring series and on the 1846–1995 common period. See Fig. 1 for site locations.
doi:10.1371/journal.pone.0050755.t001
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growth responses among the 13 sites. The principal components

were calculated on the covariance matrix of variables, as the 34

CCs had previously been standardized and so shared the same

unit measures and variance [31]. The number of non-trivial

principal components was determined applying a Monte Carlo

approach with 999 permutations [33]. As for the climate/growth

responses, PCA was performed on the whole 150-year period and

on the three 50-year sub-periods.

Finally, to better define the behaviour of the two species, we

selected the coldest and warmest years in the 1846–1995

meteorological record following the extreme event definition

outlined in the last two IPCC reports (below and above the 10th

and 90th percentile, respectively, Fig. 2) [34] for the two most

significant and time coherent months in the climate/growth

responses (July and August of the previous year, see Results). We

then analyzed, the site/species partition among the corresponding

calendar years within the indexed tree-ring chronologies by means

of fuzzy C-means (FCM) clustering [35]. That is, after having

detected the extreme climate events, we extracted the correspond-

ing calendar years from each indexed chronology, creating a new

dataset for each site with N=15–32 values (see Table S1). We then

applied the FCM to check for potential site/species partitions

among these datasets. FCM is an extension of classic K-means

clustering using the concepts of fuzzy logic [36,37]. In classical set

theory, as in the K-means clustering, an object can only be

considered a member or non-member of a given set. This

membership is usually indicated with a binary variable which takes

the value 1 if the object is a member of the set and 0 otherwise.

However, in ecology it is not always easy nor desirable to deal with

this exclusive partition for several reasons: the high level of

disturbance or noise commonly present in ecological data, the

common monotonic rather than step-like variability of environ-

mental factors with the associated species’ responses and the

complex relationships among patterns and processes at ecosystem

level. Fuzzy-set theory provides a mathematical approach that is

able to better cope with the complexity commonly found in

ecological datasets [35] by replacing the binary indicator variable

with continuous one, called membership, which can take any real

value in the interval [0, 1]. Given this potential, the fuzziness

principle is very appealing because it allows a description of some

of the uncertainties and ambiguities often found with ecological

data [38].

Results

Table 1 lists the locations and descriptive statistics of the 13 tree-

ring site chronologies. All of these statistics, except the rbar and

EPS, are significantly higher (P,0.05) for silver fir. Chronologies

span from 194 to 360 years in length and have a mean series

length ranging from 150 to 238 years. Mean sensitivity (MS) varies

from 0.14 to 0.20 while first order serial autocorrelation (AC)

ranges from 0.73 to 0.85. Common variance (PC1) and rbar range

from 43 to 60 (mean 51) and 0.33 to 0.57 (0.45), respectively,

confirming common variability and suggesting a likely significant

common climatic forcing. Only three of the 13 site chronologies

(two for silver fir and one for spruce), exhibit an EPS value slightly

lower than the commonly adopted threshold of 0.85.

Climate/growth responses for all the sites are summarized in

Fig. 3. Two distinct features are visible: i) the overall species-

specific response with almost all significant correlations clearly

separated according to taxon (e.g,. the significant positive

correlations with June and July temperatures in spruce contrasted

with the negative correlations with May temperatures in most of

the fir sites) and ii) the most significant correlations for the July and

August temperatures of the previous year, which are concurrently

the most important common climate forcing between species. Both

these emergent features in the climate/growth responses are

confirmed by the PCA. Furthermore, they have proven to be

stable and consistent throughout the last 150 years after splitting

the analyses into the 50-year sub-periods. Fig. 4 shows that the

stable partition between the species (just one silver fir site, ARPY,

behaves in a different way for the last 50-year sub-period) is

consistently related to the second PC axis that explains 12–24% of

the total variance. These biplots contain just the significant

months, making it possible to appreciate, along with the strength

of the climate/growth relationships, the site- and species-specific

sensitivity and its course over time. For example, the vector of

current year May temperatures for the 1896–1945 and 1946–1995

sub-periods and for the entire 150-year range, points in the

opposite direction with respect to the silver fir cluster, highlighting

a negative correlation. This fir relationship is at about 90u with

respect to the spruce cluster, suggesting no significant association

with this species. However, in the 1846–1895 sub-period the same

May vector points in the opposite direction for both species,

reflecting also for spruce the negative correlation always present

for silver fir.

The above results suggest a clear species-specific separation, yet

the two most significant responses (July and August temperatures

of the previous year) are similar. The wide range of responses

computed for the same months at the individual level are also

similar (Fig. S1). Analyses of the extreme years (Fig. 2) gives us

a different picture; in this case the FCM clustering (Fig. 5) indicates

a clear distinction between the two species. As mentioned,

applying FCM clustering the membership of each object (here

the site) can be spread between the clusters allowing any

intermediate value. This leads to few simple cases with a full

membership within one group (for example COLJ for July

extreme events) which means that, at this site fir responds in a very

different way than spruce, given that its membership is 100%

within the fir group. Conversely, there are also a few opposite

cases of a split membership shared equally (as for CHAU with the

coldest events in July and August), which means that at this site

spruce reacts in between the typical spruce and fir responses.

Overall, we observed a clear and significant separation between

the two taxa (Fig. 5 and Table S1), apart from the single case of the

coldest August temperatures of the previous year, where the results

did not converge. In the latter case, this means that in most of the

sites the two species react in a very similar way. Finally, most of the

partitions seem more evident and significant (Table S1) for the

warmest events rather than the coldest ones (Fig. 5).

Discussion

A careful site and tree selection to enhance tree-growth

responses to the environmental feature of interest and to maximize

age or length of record is the typical mode of sampling in most

traditional dendroecological investigations. This approach is

appropriate for many types of research in dendroecology

[10,39]. However, the consequences of this approach where the

objective is to analyse species responses to climate are a significant

overrepresentation of extreme sites and a tendency for different

species to converge in their climate/growth relationships within

the same site. Here, we show that useful and informative climate

information can be retrieved from tree-ring chronologies also on

non-extreme sites.

Tree-ring statistics for silver fir indicate a slightly higher year-

to-year variability and a greater similarity in the annual growth

patterns among sampled trees than spruce. These statistics

Norway Spruce and Silver Fir Climate Sensitivity
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Figure 2. Extreme July and August temperature. Scatter- and time-distribution of the July (J), August (A) and mean JA temperature anomaly for
the 1846–1995 period. Full dots represent the extreme values above the 90th and below the 10th percentile respectively. The scale of the Y axis is the
same for all the plots.
doi:10.1371/journal.pone.0050755.g002

Figure 3. Climate/growth relationships. Correlation functions between site tree-ring indexed chronologies and total monthly precipitation and
mean monthly temperatures for the previous (May to December) and current (January to September) growth year. Standardized coefficients were
obtained by dividing the mean correlations by their standard deviations after the bootstrap replications and express the significance of monthly
parameters. Values above |2| are significant at p,0.05 and are highlighted by black dots.
doi:10.1371/journal.pone.0050755.g003

Norway Spruce and Silver Fir Climate Sensitivity
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suggest that fir has a higher sensitivity than Norway spruce to

environmental (climate) variability and that overall stand growth

for fir is better represented by the mean growth chronologies.

This is consistent with many previous studies confirming the

better capacity of silver fir to record environmental inputs in its

tree-ring sequences compared to the more plastic responses of

Norway spruce throughout its broader distribution range

[40,41]. Even so, both species show a similar strength in their

sensitivity, likely due to climate variability, as confirmed by the

high level of the common variance accounted for by the first

principal component (PC1) (44–60%), which highlights that

climate can play an important role not only in extreme sites.

The key feature that emerges from our analyses of climate/

growth relationships in spruce and fir growing in mesic sites in the

Figure 4. Species-specific and time stability of the climate/growth relationships. Biplots of the principal component analysis (PCA)
calculated on the climate/growth responses expressed by the 34 monthly correlation functions coefficients for the entire period (1846–1995) and for
the three 50-year sub-periods. Sites belonging to the same species are the same colour. Vectors (lines) represent significant monthly climate factors;
the strength of the influence of the climatic parameter is reflected by vector length. Vectors pointing in roughly the direction of a tree-ring
chronology indicate a positive correlation, vectors pointing in the opposite direction mean a negative correlation, whereas vectors crossing at right
angles correspond to a near zero correlation. The percentage of variance expressed by the first two components is also represented. P or T in the first
letter of the vectors’ label indicate precipitation or temperature monthly factor, respectively. Vectors’ label ending with "1" denotes months in the
year prior to the growth year.
doi:10.1371/journal.pone.0050755.g004

Norway Spruce and Silver Fir Climate Sensitivity
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Alps is the consistent sensitivity of tree growth to climatic

conditions in the previous growing season. This has proven to

be a common fingerprint for silver fir throughout its distribution

area [42,43] but represents a novel outcome for Norway spruce:

no former studies have detected such a clear previous-year signal

for this species [40,41,44]. Indeed, while the silver fir behaviour is

consistent with its ‘‘drought-avoidance’’ strategy and its lower

water-use efficiency [45], spruce is generally recognized for its

lower sensitivity to extreme frosts and drought [46]. In our case,

this lagged climatic effect could be related to the seasonal

dynamics of carbohydrate accumulation and fine root elongation,

two essential processes for next season’s bud burst and tree-ring

formation for both species. Indeed, as the tree’s photosynthetic

capacity is highly dependent on bud number and size formed each

year, unfavourable conditions during the previous year can affect

ring formation by decreasing carbon assimilation in the following

growing season [41,47,48].

We inspected the tree-ring growth reaction and its partition to

extreme climatic events by sharpening the focus on this single

seasonal window (July and August temperature). This shows, with

mean monthly parameters, both the strongest and most similar

relationships between species. The significant and consistent

separation (Fig. 5) reveals different behaviour of the two species

that is completely disguised when looking only at the mean

climate/growth relationships. This outcome further stresses the

fundamental and often subtle role of extreme events in enhancing

the species-specific responses to climate under comparable growth

conditions, and response sensitivity to mean climate variability.

Indeed, a wealth of studies have demonstrated that extreme

events, although rare by definition, are among the most important

factors affecting forest ecosystems, triggering carbon balance

anomalies [49] and direct or mediated tree mortality [50,51].

Furthermore, for the future we might expect an increasing

distance between the climate sensitivities of the two species given

both their more pronounced separation in the responses during

the extreme warm events and the concurrent warming temper-

ature trend recorded in the Alps [22]. The likely increase in the

occurrence of those extreme events [52] further suggests a possible

shift in the competitive balance of these species, although at

present, it is not possible to forecast which species will gain

advantage.

The species-specific sensitivity to climate is not just a matter of

extremeweatherconditions,as italsoemergesclearlywhenobserving

the whole profile of the monthly responses. Here, based on results

from mesic sites, the PCA detected a significant separation between

the two conifers. This is in contrast to temperature- or drought-

limitedsiteswheredifferentspecies frequentlyshowacorrespondence

amongtheresponseprofiles,especially for thegrowingseasonmonths

[15,53] (but see fig. 2 on Briffa et al. [13] for amulti-species northern

hemisphere summary).Wehaveshownthat thepartitionbetweenthe

two species adds up to a fifth of the total common variance (12–24%,

thevarianceaccounted forby thesecondprincipal component)under

the same climate forcing and taking into account the different

ecophysiological traits [54,55]. This is enough to significantly

separate the response of the different taxa, though just a minor

fractionwith respect toPC1whichcanbe twoto five timeshigher (44–

60%).

These results are in line with previous findings of Kunstler et al.

[8] who trying to disentangle the effect of growth, competition and

climatic gradients on trees of different species in the neighbouring

French Alps and Jura mountains, highlighted that the decreasing

importance of competition with increasing stressful conditions

Figure 5. Species-specific sensitivity to extreme climate events. Results of the fuzzy C-means clustering computed with the indexed tree-ring
widths occurring in the same calendar years as the extreme climate events (see Fig. 2). All the analyses were performed with the warmest and coldest
years concurrently or with just one tail of the distribution at a time. The colour tone within the bars corresponds to the degree of membership of
each site/species to the clusters i.e., the darker and longer the blue within a bar, the stronger the site’s membership to the spruce cluster; the same is
true for red with silver fir. A site membership around 0.5 (e.g. CHAU with the coldest JA extreme events) means that at this site the species did not
show any clear species-specific sensitivity. The legend takes the place of the results for the coldest extremes of August, which are not shown given
that no significant partitions were obtained for that month. In the latter case, the responses to those extremes were very similar for both species at all
sites.
doi:10.1371/journal.pone.0050755.g005

Norway Spruce and Silver Fir Climate Sensitivity
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holds mainly for shade-intolerant species. Both spruce and fir,

although with slight differences, can be considered shade-tolerant

species [56] and this would explain the preeminent role of climatic

variability over competition on the tree-growth processes, even

though sample sites were far from being typical high elevation

stands.

Both of these features, the species-specific responses together

with the convergent previous-year climatic sensitivity, were rather

stable over time. Several studies in Europe have tested whether

climate/growth responses in the two species are stable over time,

and the majority reached the conclusion of a temporal instability

mainly centred in the last decades [43,44,57]. While some of the

differences reported in the literature may be related to the specific

site ecologies and geographical settings considered in the various

studies, the major drivers of these discrepancies are likely differing

sampling strategies and, above all, methodological approaches.

Indeed, for most northern and central European areas the

weakening of the climate signal appears to be predominantly

related to local anthropogenic forcing (e.g., SO2 emissions from

power plants and refineries [57]), whereas typical dieback

phenomena in the last decades of the 20th century almost never

touched the southern side of the Alps [58]. The methodological

approach, with running correlations vs. fixed-intervals and PCA,

can also lead to different results with their different sensitivities in

the trend vs. strength detection of the growth/climate relation-

ships.

It is nevertheless important to underline that several limitations

of our study may alter its potential to detect the responses to

climate of mid-elevation forest ecosystems. First, our investigation

covered just two conifers. Although Norway spruce is the most

important tree species in Europe and together with silver fir

represents a key component of the forest cover in the montane belt

of the Alps, further studies with different taxa and regions are

needed to generalize our findings. Second, we did not directly

consider the effect of topographic differences in temperature and

precipitation on local climate. In such a dissected landscape

a downscaled climatology would likely permit subtle differences to

be unmasked in the growth-climate analyses. Although the study

area can be considered rather small and homogeneous with

respect to the whole Alpine region, future investigations covering

larger regions could be more robust by coupling high-resolution

climatologies and digital elevation models [59]. Lastly, we followed

the classical dendroecological protocol, selecting sites, sampling

trees, and processing data with a likely enhanced climatic signal.

This neglects both an even cover of the studied area, immature

individuals, and those shaded by competitors or not healthy. This

likely provided a biased and artificially inflated picture of the

climate sensitivity of these two species, as portrayed in Fig. S1, and

suggests that this kind of artefact is not confined to climate-limited

environments but is probably a common trait inherent in the

classical dendroecological method [15]. On this matter, an

unbiased and more robust sampling approach would be desirable.

For example, collecting cores to fully assess the range of variation

of environmental factors and from most of the age/dimensional

classes, would provide a more comprehensive picture of both stand

and species sensitivity to those factors.

Our results represent a first step in this direction. Indeed, while

still adopting the classical dendroecological sampling protocol, we

selected mountain sites at lower elevations. Yet we detected the

importance of the species-specific climate sensitivity even within

the same regional context. This specificity shows in both the mean

and extreme monthly growth responses, with the latter more

subtly disentangling the distinct taxon-specific behaviour. The

traditional model of tree ecophysiology suggests that species-

specific growth responses to climate will begin to converge on

more stressful sites (i.e., higher elevation, higher latitude).

However, as we demonstrate here, the corollary is that at less

stressful sites more pronounced species-specific growth responses

occur. A clearer understanding of the nature of these responses

along stress gradients will allow for better estimates of long-term

growth and the outcomes of competitive interactions in native

mixed species forests. Future forest productivity estimates and

species reactions to climate change based on tree-ring growth data

should take into account a revised and more comprehensive

sampling strategy, data from modal sites, and relationships

obtained from mesic habitats. These sites and relationships are

so far underrepresented in tree-ring studies despite importance of

their spatial extent, and contribution to regional biomass in the

carbon cycle.
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