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Abstract. Esophageal squamous cell carcinoma (ESCC) is a 
common malignancy worldwide. The disease has a poor prog-
nosis and a low 5-year survival rate. Therefore, it is necessary 
to identify new strategies to optimize the treatment of ESCC. 
Vaccinia‑related kinase (VRK1) and barrier‑to‑autointegra‑
tion factor 1 (BANF1) are overexpressed in ESCC. In the 
present study, the roles of VRK1 and BANF1 were explored in 
the development of ESCC. In the present study, the effects of 
small interfering (si)RNA‑induced downregulation of VRK1 
on BANF1 expression were investigated as well as the effects 
on proliferative and migratory activity of ESCC cells. Western 
blot analysis indicated that the protein expression levels of 
BANF1 were decreased following siRNA depletion of VRK1. 
Furthermore, the depletion of VRK1 expression inhibited 
the proliferation and migration of ESCC cell lines, and flow 
cytometry analysis indicated that the depletion of VRK1 trig-
gered cell cycle arrest mainly in the S phase. These results 
suggested that VRK1 and BANF1 may have pivotal roles in the 
progression of ESCC.

Introduction

Esophageal cancer is one of the most common malignant 
tumors and ranks as the sixth leading cause of global 
mortalities, and the third leading cause of death in China (1,2). 
Esophageal carcinoma mainly includes esophageal squamous 
cell carcinoma (ESCC) and esophageal adenocarcinoma; 
ESCC is the predominant subtype of esophageal cancer in 
developing countries accounting for >90% of all esophageal 
cancer subtypes in China  (3). In 2018, the global cancer 

observatory reported 572,034 new cases of esophageal 
cancer and 508,585 deaths from esophageal cancer between 
males and females combined (2). Despite recent advances in 
surgical and therapeutic techniques, such as chemotherapy 
and radiotherapy, extensive metastasis has led to a poor 5-year 
survival rate of ~15‑25% (4). Therefore, there is an urgent need 
to explore the underlying molecular mechanisms that can be 
used to improve the diagnosis and treatment of ESCC.

Vaccinia‑related kinase (VRK) is a member of the serine/
threonine kinase family in mammals, which performs pivotal 
functions by regulating a variety of cellular and physiological 
activities through phosphorylation reactions  (5). VRK1 
encodes a protein of 396 amino acids in length and was 
originally discovered from a cDNA library enriched in human 
fetal‑specific liver genes (6). VRK1 is localized to the cell 
nuclei and is one of the three subtypes of VRK; it has exhibited 
important roles in cell cycle progression, transcriptional acti-
vation, chromosome condensation, DNA repair and histone 
modification (5,7). An increasing number of studies have found 
that VRK1 expression regulates the proliferation and survival 
of cells in normal or malignant tissues (7‑9). During embryonic 
development of hematopoiesis, the development of the mouse 
liver is accompanied with high expression of VRK1. Similarly, 
high expression of VRK1 has been demonstrated in regener-
ated liver and liver cancer, which suggests that its expression 
is associated with the increase of the number of cells in the 
early hematopoietic process (10). In addition, VRK1 is highly 
expressed in high‑proliferating cells, such as those found in the 
testis, thymus and fetal liver (6). Notably, a previous study has 
shown that VRK1 induces the G1/S transition by promoting the 
expression of cyclin D1 (CCND1) at the G1/S phase (11). VRK1 
expression has been shown to be upregulated in several types 
of cancer, including glioma, lung carcinomas, hepatocellular 
carcinoma, breast carcinomas and head and neck squamous 
cell carcinoma (9,12‑14).

Barrier‑to‑autointegration factor 1 (BANF1) is encoded 
by the BANF1 gene and is a small, highly conserved 
DNA‑binding protein of 10 kDa in size that is located in the 
cytoplasm and nuclei of cells (15). BANF1 serves a crucial role 
in mitotic nuclear recombination, regulation of the stability 
of the pre‑integration complex of retroviruses and in the 
regulation of transcriptional function (16). Margalit et al (15) 
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reported a linkage of genomic DNA with the nuclear envelope 
in the interphase of mitosis through interactions with the 
nuclear envelope components (lamin) and BANF1 protein. 
Previous studies have also reported that phosphorylation 
regulates the DNA binding activity of BANF1 and its subcel-
lular localization and dimerization (17,18). It is important to 
note that Ser‑4 is a major phosphorylation site of BANF1 
during both the interphase and the mitotic phase (19). The 
phosphorylation of Ser‑4 abrogates the interaction of BANF1 
with DNA and reduces its interaction with the LEM domain 
and thereby disrupts the connection between the DNA and 
the nuclear envelope, which in turn maintains the normal 
process of the cell cycle (18). Previous studies (7,20,21) have 
shown that VRK1 can catalyze the phosphorylation of BANF1, 
which is a high affinity substrate for VRK1 protein kinase (22). 
Nichols et  al  (22) demonstrated that VRK1 regulated the 
interaction between BANF1 and DNA by phosphorylation 
of the N‑terminus of BANF1. VRK1 participated directly 
in the regulation of the binding of chromatin to membrane 
proteins and BANF1 by facilitating the phosphorylation of 
the latter (7,17). Results from the aforementioned studies led 
to the aim of the present study, which was to investigate the 
interaction of VRK1 and BANF1 and its association with the 
physiology of ESCC cancer cells.

VRK1 and BANF1 expression levels were found to be 
elevated in ESCC tissues compared with the corresponding 
levels noted in adjacent non‑tumor tissues. In addition, the 
expression levels of VRK1 and BANF1 were significantly 
associated with the clinical characteristics of patients with 
esophageal cancer (23). In the present study, the ESCC cell 
lines EC109 and EC1 were used to examine the interaction 
between VRK1 and BANF1 in ESCC. Small interfering (si) 
RNA was utilized to downregulate the expression of VRK1 
and the changes in the expression levels of BANF1 were inves-
tigated in ESCC cells. In addition, changes in proliferation and 
migration of ESCC cells were assessed to explore the potential 
of this protein in targeted therapy of ESCC. Taken collectively, 
the evidence in the present study indicated that VRK1 and 
BANF1 may have pivotal roles during ESCC development and 
progression, and represent potential targets for novel ESCC 
treatments.

Materials and methods

Cell lines and cell culture. The human ESCC cell lines EC109 
and EC1 were purchased from Sangon Biotech Co., Ltd. 
The cell lines were cultured and maintained in RPMI‑1640 
(Sangon Biotech Co., Ltd.) supplemented with 10% fetal 
bovine serum (Sangon Biotech Co., Ltd) at 37˚C in the pres-
ence of 5% CO2.

Cell transfection. The siRNA sequences targeting VRK1 were 
constructed by Guangzhou RiboBio Co., Ltd. A total of three 
siRNA sequences were designed against VRK1, and the effi-
cacy of transfection was assessed using western blot analysis. 
The candidate VRK1 siRNA sequences were as follows: 
VRK1‑176 (5'‑GCA​GUU​GGA​GAG​AUA​AUA​ATT‑3'), 
VRK1‑571 (5'‑GCA​GCU​AAG​CUU​AAG​AAU​UTT‑3') and 
VRK1‑862 (5'‑CCA​AUG​GCU​UAC​UGG​CCA​UTT‑3'). The 
negative control siRNA (siNC) sequence was 5'‑UUC​UCC​

GAA​CGU​GUC​ACG​UTT‑3'. Downregulation of VRK1 by 
siRNA in EC109 and EC1 cells was performed using the 
riboFECT™ CP Reagent (Guangzhou RiboBio Co. Ltd.,) 
according to the manufacturer's instructions. Cells underwent 
transfection when in the logarithmic growth phase. EC109 
and EC1 cells were cultured in 6‑well plates at a density of 
4x105  cells/well at  37˚C, in the presence of 5% CO2. The 
transfection was performed at 37˚C for 24 h when the conflu-
ency of the cells was ~30‑50%. The concentration of siRNAs 
transfected was 50  nM. Subsequent experimentation was 
performed 24 h after transfection.

Western blot analysis. The protein expression levels of VRK1 
and BANF1 were detected by western blotting in ESCC cells 
following siRNA transfection. Transfected EC109 and EC1 
cells were collected following transfection which lasted 24 h 
and washed three times with ice‑cold PBS. The proteins were 
extracted using RIPA lysis buffer (Wuhan Boster Biological 
Technology, Ltd.) with PMSF (Boster) and the extracts were 
centrifuged at 4˚C, at 12,000 x g for 15 min. The total protein 
concentration was determined using the BCA Protein Assay 
kit (Boster). Following denaturation of the proteins by boiling 
for 10 min, equal amount of protein samples (25 µg) were sepa-
rated by 10% SDS‑PAGE (Boster) and subsequently transferred 
to PVDF membranes (Boster). Subsequently, the membranes 
were blocked with TBS + Tween 20 (TBST; 0.1% Tween‑20) 
containing 5% non‑fat milk (Boster) at room temperature 
for 1 h and subsequently incubated with primary antibodies 
against VRK1 (1:1,000; cat. no. ab211358; Abcam), BANF1 
(1:1,000; cat. no. ab231331; Abcam) and GAPDH (1:1,000; 
cat. no. ab9485; Abcam) overnight at 4˚C. The membranes 
were rinsed with TBST 3‑5 times and incubated with horse-
radish peroxidase‑conjugated secondary antibodies (1:1,000; 
cat. no. bs‑40295G‑HRP; BIOSS) for 1 h at room temperature. 
Following an additional rinse with TBST, the protein bands 
were visualized using the eECL Western Blot Kit (Beyotime 
Institute of Biotechnology) and a UVP gel imaging scanning 
analyzer (GENE). Protein expression analysis was performed 
using Image J software v1.8.0 (National Institute of Health) to 
calculate the relative protein expression. GAPDH was used to 
normalize protein expression.

Cell proliferation assay. EC109 and EC1 cell proliferation was 
examined by the Cell Counting Kit‑8 (CCK‑8; Sangon Biotech) 
assay. A total of 2x103 cells/well were seeded in 96‑well plates. 
In the following 3 days, 10 µl CCK‑8 reagent was added in 
100 µl fresh medium after culturing for 12, 24, 36, 48, 60 
and 72 h and the cells were incubated at 37˚C for 2 h. The 
absorbance was measured at 450 nm to calculate the number 
of viable cells. All the assays were repeated three times.

Flow cytometry and cell cycle analysis. Cells were harvested 
by trypsinization without EDTA and collected by centrifuga-
tion at 400 x g in 37˚C for 5 min. The cells were resuspended 
and washed twice with pre‑cooled PBS to obtain a single‑cell 
suspension. The cells were fixed overnight at 4˚C with 500 µl 
70% alcohol. The cell suspension concentration was estimated 
at 1x106 cells/ml. Cell cycle analysis was performed using 
propidium iodide staining following treatment with RNaseA 
(cat. no. R1030; Beijing Solarbio Science & Technology Co., 
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Ltd.) to remove contaminating RNA. The contents of DNA 
in each phase (G0/G1, S and G2/M) were detected using a 
FACSAria flow cytometer (BD Biosciences) and ModFit LT 
software v.4.0 (Verity Software House, Inc.).

Transwell migration assays. The Transwell migration assay 
was performed to detect the changes of the migratory ability 
of ESCC cells following transfection with siRNAs. The migra-
tion assay was performed by a Transwell system (8.0 µm pore 
size; 24‑well insert). The cells were seeded at a density of 
5x104 cells in FBS‑free DMEM (Sangon Biotech Co., Ltd) to 
the permeable membrane of the insert in the upper chamber. 
The lower chamber was filled with 600 µl DMEM containing 
10% FBS (Sangon Biotech Co., Ltd). Following incubation for 
24 h at 37˚C, the cells left on the upper surface of the insert 
were carefully removed with a cotton swab and the migrated 
tumor cells on the lower surface were stained by crystal violet 
for cell number determination.

Statistical analysis. All experimental data were analyzed using 
the SPSS software package, v21.0 (IBM Corp.). The GraphPad 
Prism software (v6.0; GraphPad Software, Inc.) was used for 

graph preparation. Data were analyzed by Student's t‑test, χ2 
or ANOVA for multiple groups followed by a Bonferroni's 
post hoc test. The results are expressed as the mean ± standard 
deviation, and P<0.05 was considered to indicate a statistically 
significant difference.

Results

Depletion of VRK1 results in downregulation of BANF1 
expression. A total of three siRNA sequences including 
VRK1‑176, VRK1‑571 and VRK1‑862 were specifically 
designed and synthesized for transfection into EC109 and EC1 
cells, respectively. Following culture for 24 h, siVRK1‑571 
exhibited the highest reduction efficiency of VRK1 protein 
expression and was selected as the siRNA to be used in the 
subsequent experiments (Fig.  1A). Western blot analysis 
indicated no significant difference in VRK1 protein expression 
between the blank control group and the siNC‑transfected 
group of the EC109 and EC1 cell lines (Fig. 1C). However, 
the expression levels of VRK1 in the siVRK1‑571 interfer-
ence group were significantly lower compared with those in 
the siNC group, with a decrease of 62.40 and 52.14% in the 

Figure 1. BANF1 expression is reduced following inhibition of the expression of VRK1 in ESCC cell lines EC109 and EC1. (A) Expression of VRK1 following 
transfection with gene‑specific siRNAs, including VRK1‑176, VRK1‑571 and VRK1‑862 in ESCC cell lines EC109 and EC1. In order to select a siRNA with stable 
transfection effect and eliminate the interference of other factors, 2 siRNAs (VRK1‑176 and VRK1‑571) were selected for a preliminary experiment. As the status 
of ESCC cells transfected with siRNA‑176 was unstable, VRK1‑571 was selected. (B) Expression of BANF1 was reduced after the expression of VRK1 was inhib-
ited, as shown by western blot. (C) Semi‑quantification analysis of the expression of VRK1 and BANF1 after transfection with VRK1‑siRNA571 from (B). (D)
Semi‑quantification analysis of the expression of BANF1 after transfection with VRK1-siRNA571 from (B). #P<0.05. BANF1, barrier‑to‑autointegration factor 1; 
con, non‑transfected control; ESCC, esophageal squamous cell carcinoma; NC, negative control; siRNA, small interfering RNA; VRK1, vaccinia‑related kinase.
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EC109 and EC1 cell lines, respectively (P<0.05). These results 
demonstrated that the expression of VRK1 was downregulated 
by siRNA specifically and effectively.

Furthermore, western blot analysis demonstrated that the 
protein expression levels of BANF1 in siVRK1‑571‑transfected 
cells were significantly lower compared with those of the 
siNC‑transfected control group, with a decrease of 24.51 
and 52.87% in the EC109 and EC1 cell lines, respectively 
(P<0.05; Fig. 1B and C). In contrast to these findings, BANF1 
protein expression levels did not reveal a significant difference 
between the blank and the negative control groups.

Depletion of VRK1 suppresses the proliferation of ESCC cells. 
CCK‑8 cell proliferation analysis was conducted on the EC109 
and EC1 cell lines to investigate the effects of VRK1 on the 
proliferation of ESCC cells. Following 12 h of transfection, 
the cells proliferated less effectively and the inhibition rate of 
EC109 and EC1 cells reached the maximum effect at 48 and 
60 h after transfection, respectively  (P<0.05; Fig. 2). The results 
demonstrated that downregulation of VRK1 significantly inhib-
ited the proliferative ability of EC109 and EC1 cells.

Depletion of VRK1 triggers cell cycle arrest in ESCC cells. To 
further verify the effect of VRK1 on ESCC cell proliferation, 
VRK1 was depleted and the effects on cell cycle of ESCC cells 
were examined using flow cytometry. Flow cytometric analysis 
of EC109 cells indicated that depletion of VRK1 led to a signif-
icantly increased population of cells in the S phase compared 
with that noted in the negative control group (P=0.003; Fig. 3). 
The percentage of cells treated with siVRK1‑571 at the G0/G1 
and G2/M phases was significantly lower compared with that 
noted in the siNC group (PG0/G1=0.005; PG2/M=0.001). Similarly, 
in EC1 cells, the percentage of cells treated with siVRK1‑571 
at the G2/M phase was significantly lower compared with 
that in the negative control group (P=0.022). The percentage 
of cells treated with siVRK1‑571 at the S phase of the cell 
cycle was higher than that noted in the negative control group 
(P=0.023; Fig. 3). The results further demonstrated that deple-
tion of VRK1 induced cell cycle arrest at the S phase, which in 
turn resulted in inhibition of cell proliferation of ESCC cells.

Depletion of VRK1 inhibits ESCC cell migration. Metastasis 
is a critical problem during cancer therapy. Therefore, the 
Transwell assay was used to assess whether loss of VRK1 could 
affect tumor migratory activity. The results demonstrated that 
siRNA‑based depletion of VRK1 significantly reduced the 
number of migrating cells compared with that noted in the 
blank control (CON) and the negative control (siNC) groups 
(Fig. 4). These results indicated that VRK1 may serve an essen-
tial role in the migration of ESCC.

Discussion

Previous reports suggested that VRK1 has a pivotal role in 
the regulation of a variety of cellular physiological activities; 
in various cancers, the expression levels of VRK1 have been 
significantly associated with cancer progression and prog-
nosis (9,12,13,24). In addition, BANF1 has been proven to be 
a valuable member in regulating the reassembly of the nuclear 
envelope and maintaining appropriate nuclear architecture 
during mitosis (15). Certain studies (20,21) have suggested that 
BANF1 is an efficient substrate for VRK1 as VRK1 phosphory-
lates the N‑terminus of BANF1 (22). These findings suggested 
that VRK1 and BANF1 were closely associated with cell cycle 
regulation, which led to the hypothesis that the expression 
of BANF1 and VRK1 may contribute to the development of 
ESCC. This hypothesis was examined in the present study to 
provide additional information with regard to the molecular 
mechanisms of action during ESCC pathogenesis.

In a previous study conducted by our group, the mRNA 
and protein expression levels of VRK1 and BANF1 were 
higher in tumor tissues compared with those noted in the 
adjacent non‑cancerous tissues, as determined by RT‑qPCR 
and immunohistochemical analyses (23). Furthermore, the 
expression levels of VRK1 and BANF1 were associated with 
the tumor, node, metastasis (TNM) stage and the differentia-
tion degree of ESCC patients (23). In the present study, VRK1 
expression was depleted by siRNA in ESCC cell lines and, 
consequently, the expression levels of BANF1 were signifi-
cantly downregulated. In addition, in the present study it was 
demonstrated that the proliferative activity of EC109 and EC1 

Figure 2. Proliferation of ESCC cells detected via CCK‑8 assay. Growth curves of (A) EC109 and (B) EC1 cells transfected with either siNC or siRNA571. 
#P<0.05 vs. siNC. NC, negative control; siRNA, small interfering RNA.
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cells were significantly reduced following inhibition of VRK1 
expression. Flow cytometric analysis further revealed that 
the cell cycle was inhibited mainly at the S phase. Moreover, 
Transwell assays indicated that VRK1 depletion significantly 
suppressed the migratory ability of ESCC cells. In conclusion, 
depletion of VRK1 resulted in the downregulation of BANF1 
and suppressed the proliferation and migration of ESCC cells.

A growing body of evidence indicates that VRK1 has an 
important role in the development of tumors. In hepatocel-
lular carcinoma, the expression levels of VRK1 in cancer 
tissues were higher than those noted in normal and adjacent 
tissues (12). In breast cancer, although high expression levels 
of VRK1 exhibited a protective effect on DNA damage, they 
also led to poorer disease prognosis (25). Therefore, VRK1 
may represent a potential prognostic indicator for breast 
cancer (24,25). Further experiments in mammary epithelial 
cells demonstrated that depletion of VRK1 inhibits their 
proliferation and metastasis in vitro and in vivo (8). VRK1 
has also been suggested as a proliferative marker in head and 
neck squamous cell carcinoma and as a potential drug target 
in breast cancer and lung adenocarcinomas (9,14,25). In addi-
tion, VRK1 has an important role in the stress response of 
DNA damage induced by ionizing radiation and ultraviolet 
radiation (26,27). In the present study, the increased VRK1 
levels in ESCC were consistent with the results noted in other 
types of cancer, such as hepatocellular carcinoma and breast 
cancer (12,13). Therefore, the data suggested that VRK1 may 
contribute to the progression of the ESCC. In the present 
study, the CCK‑8 cell proliferation assay demonstrated 
that the proliferative activity was decreased in EC109 and 
EC1 cells following depletion of the expression of VRK1. 
Moreover, Transwell experiments indicated that the migra-
tory ability of ESCC cells was also reduced. Given that the 
reduction of VRK1 expression could inhibit the proliferation 
and migration of ESCC cells, it is hypothesized that VRK1 

could represent a potent new target for the treatment of 
esophageal cancer.

BANF1 has been shown to bind to double‑stranded DNA 
at the LEM domain of transcriptional regulators and at the 
histone H3 protein, which is localized in the nucleus (16). 
Previous findings suggested that lamin, LEM‑domain proteins 
and BANF1 performed essential functions in chromatin 
organization and cell division (28). Lamin‑A/C, lamin‑asso‑
ciated polypeptide 2α and BANF1 proteins constitute protein 
complexes that regulate mitotic spindle assembly and local-
ization during mitosis (29). In addition, BANF1 was directly 
involved in the formation of the nuclear envelope (NE). These 
results revealed the essential role of BANF1 in regulating the 
mitotic process and normal cell cycle progression. Moreover, 
BANF1 has been reported to be a novel biomarker for gastric 
cancer (30). In one of our previous studies, it was shown that 
BANF1 was highly expressed in ESCC and that its expression 
was associated with the TNM stage and the tumor differentia-
tion degree of ESCC patients (23). The data suggested that the 
highly expressed levels of BANF1 may lead to an abnormal 
mitotic process of ESCC cells through regulation of the inter-
action of DNA with perinuclear proteins and the assembly and 
localization of the spindle filaments.

Notably, BANF1 has also been established as a high‑affinity 
substrate of VRK1. In addition, it has been shown that depletion 
of VRK1 affects the interaction between BANF1 and DNA, 
thereby affecting nuclear membrane structure and mitotic 
chromosomal dynamics (31). Together, these studies suggested 
that VRK1 and BANF1 were closely associated with the regula-
tion of normal mitosis. The essential role of VRK1 and BANF1 
in regulating the mitotic nuclear reassembly indicates that the 
abnormal expression of these two proteins in ESCC may affect 
the normal cellular functions, such as nuclear organization and 
cell cycle progression. Based on the high expression of VRK1 
and BANF1 in ESCC, the present study demonstrated that the 

Figure 3. Cell cycle assay. Cell cycle distribution of EC109 and EC1 cells was determined by flow cytometry. (A) EC109‑siRNA571, (B) EC109‑siNC, (C) EC1‑ 
siRNA571 and (D) EC1‑siNC, (E) Cell cycle percentage histogram of the G2/M, S and G0/G1 phases of EC109 and EC1 cells. #P<0.05 and ##P<0.01 vs. siNC. 
NC, negative control; si, small interfering RNA; VRK1, vaccinia‑related kinase 1.
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BANF1 protein was downregulated following depletion of the 
expression of VRK1 in ESCC cells. These findings indicated a 
putative interaction between VRK1 and BANF1 in promoting 
the development of ESCC.

The present study data indicated that the depletion of 
VRK1 and the subsequent downregulation of BANF1 resulted 
in changes in the cell cycle distribution, which mainly mani-
fested as arrest of the cell cycle at the S phase. The results 
indicated that the depletion of VRK1 may affect cell prolifera-
tion by blocking cell cycle progression. These results support 
previous studies (9,11,12). Previous research in head and neck 
squamous cell carcinoma suggested that VRK1 plays a role 
in cell cycle regulation and may be a new control mechanism 
of cell cycle, particularly late in G1‑S phase (9). In addition, 
Valbuena et al (11) demonstrated that the elimination of VRK1 
by siRNA results in a G1 block in cell division. As a member 
of the novel VRK protein family, VRK1 can phosphorylate the 
Thr‑18 region of p53, a vital tumor suppressor protein (32). 
The region that becomes phosphorylated comprises the 
MDM‑2 binding domain and is required for maintaining p53 
stability (33). VRK1 has been shown to be a key regulator of p53 
and to control cell proliferation. A study by Waters et al (34) 
further revealed that VRK1 promoted germ cell proliferation 
by preventing p53 from triggering abnormal cell cycle arrest. 
An additional study reported a newly formed autoregulatory 
loop between p53 and VRK1 (35). Therefore, VRK1 has been 
regarded as an upstream regulator of p53, which participates 
in the integration of various cell signals by p53 (36). In addi-
tion, VRK1 can phosphorylate other transcription factors, 
such as c‑Jun and ATF, which play essential roles in cell cycle 
regulation (37,38). Valbuena et al (11) demonstrated that the 
loss of VRK1 led to the block of the cell cycle. Similar find-
ings were presented in the current report highlighting that 

the downregulation of VRK1 triggered cell cycle arrest at 
the G1 phase. In addition, VRK1 is a regulator of cyclin D1 
(CCND1) expression in the DNA replication period  (39). 
VRK1 is also known to phosphorylate histone H3 to regulate 
chromatin condensation  (40,41). Collectively, these results 
suggest that further study of the interaction between VRK1 
and transcription factors such as p53 may be a meaningful 
direction for exploring the mechanism of cell cycle regula-
tion in ESCC. However, further experiments are required to 
confirm this assumption. BANF1 was also reported to perform 
crucial functions in both the mitotic phase and the cell cycle 
interphase (42). The reduction or loss of BANF1 expression 
caused the aberrant cell cycle progression or phenotype. For 
example, BANF1‑null Drosophila flies present various cell 
phenotypes that involve cell cycle arrest, chromatin clumping, 
abnormal lamin distribution and nuclear lamina structure (43). 
These findings indicated that the depletion of BANF1 could 
affect cell cycle progression. In the present study, BANF1 
expression was decreased following depletion of the expres-
sion of VRK1. Therefore, it was hypothesized that VRK1 may 
regulate abnormal cell proliferation by affecting BANF1 
expression, which may be a possible mechanism in the process 
of esophageal cancer development.

In conclusion, results from the present study indicated 
that downregulation of VRK1 suppressed the proliferative 
and migratory ability of ESCC cells in vitro and suggested 
that VRK1 may serve as a therapeutic target in the treatment 
of ESCC. Furthermore, VRK1 depletion suppressed BANF1 
expression. Taken collectively, the aforementioned findings 
suggested a potential connection between VRK1 and BANF1 
in the development of ESCC. The results presented may be 
used to further examine the interaction between VRK1 and 
BANF1 in the progression of ESCC.

Figure 4. Transwell migration assays. (A) Migratory abilities of EC109 and EC1 cells following transfection and cell culture for 12 h. Comparison of the 
migratory abilities of (B) EC109 and (C) EC1 cells among different groups; magnification x200. #P<0.05. siNC, siRNA negative control; siRNA571, siRNA 
targeting VRK1‑571.
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