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Abstract: Molecular imaging allows a noninvasive assessment of biochemical and biological processes
in living subjects. Treatment strategies for malignant lymphoma depend on histology and tumor
stage. For the last two decades, molecular imaging has been the mainstay diagnostic test for the
staging of malignant lymphoma and the assessment of response to treatment. This technology
enhances our understanding of disease and drug activity during preclinical and clinical drug
development. Here, we review molecular imaging applications in drug development, with an
emphasis on oncology. Monitoring and assessing the efficacy of anti-cancer therapies in preclinical
or clinical models are essential and the multimodal molecular imaging approach may represent
a new stage for pharmacologic development in cancer. Monitoring the progress of lymphoma
therapy with imaging modalities will help patients. Identifying and addressing key challenges
is essential for successful integration of molecular imaging into the drug development process.
In this review, we highlight the general usefulness of molecular imaging in drug development and
radionuclide-based reporter genes. Further, we discuss the different molecular imaging modalities
for lymphoma therapy and their preclinical and clinical applications.
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1. Introduction

The drug development process is a lengthy, high-risk, and costly endeavor. Although the specifics
and duration of the process for drug development can be quite variable, in general, approval of a
new drug from the beginning takes more than ten years [1]. Moreover, as a result of a dramatic
increase in the required investment and a relatively constant rate of the introduction of novel drugs
over the past 30 years, only few agents in the investigational new drugs (IND) category per year enter
the market [1,2]. Fundamental research on disease pathophysiology is providing new drug targets
and modifying agents that can inhibit or downregulate their function [3,4]. In 2013, only less than
1% of medicines among more than 5000 medicines in development were successfully approved by
the Food and Drug Administration (FDA) [5]. In the selection and establishment of the target for
diseases it is important to assess different drug discovery (Figure 1) approaches, so as to finally enable
the clinical use of the drug. Molecular imaging has emerged as a new technology for both research
and clinical drug development [3,6]. Hence, it is expected that an investment in molecular imaging
technology will enhance drug development [7]. In drug development, before a drug enters a clinical
development program, in particular when targeting chronic diseases with late clinical endpoints, it is
important to identify reliable biomarkers that allow the validation of the drug’s mechanism of action
on humans and the monitoring of drug efficacy [8]. Biomarkers may serve as alternatives for a clinical
endpoint. Intensive research, including investigations at the level of gene transcription and translation,
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or metabolic alterations of the drug, is being conducted into delineating potential biomarkers for drug
efficiency and safety [9].
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Figure 1. Processes in drug discovery and development. Although many drug candidates are 
evaluated in preclinical studies, very few compounds proceed to clinical trials and about one 
compound receives approval for administration and use in clinics. The selection of promising drug 
candidates in the early phase is critical for successful drug development. Molecular imaging 
contributes at various stages of the drug discovery and development processes. 

Radionuclides used in the drug development process and in imaging modalities can themselves 
act as drugs by the cytotoxic effect of radiation emitted from the radionuclides [10]. The most 
remarkable characteristics of therapeutic β- or α-emitter radiopharmaceuticals comprise protection 
of the surrounding tissue from damage due to their short emission range. Radioimmunetherapy (RIT) 
is a targeted radionuclide therapy using a monoclonal antibody (mAb) tagged with therapeutic 
radionuclides to damage the target lesion [11]. Some radiopharmaceuticals are well established 
therapeutic options for certain diseases (such as thyroid cancers, osseous metastasis of prostate cancer) 
and have been successfully applied in thyroid clinics for more than 70 years, however, RIT is a 
relatively new therapeutic technology and only a few approved radioimmunotherapeutics are 
available in the market. 

Lymphoma is a type of cancer that originates in the lymph system and part of the immune 
system, and can be divided into two categories: Non-Hodgkin’s lymphoma (NHL) and Hodgkin’s 
disease (HD) cover about 3–6% of all malignancies, which in the Western world is around the fifth 
most common type of cancer [12,13]. NHL and many examples of HD are possibly curable with 
proper chemotherapy or radiotherapy, and recurrence also can be treated with second-line treatment 
strategies [14]. Treatment guidelines are needed and accurate staging and response assessment is 
essential for decision-making. In that respect, molecular imaging is one of the essential tools for early 
diagnosis, initial staging, risk stratification, therapy response monitoring, and tumor recurrence 
detection [15]. Molecular imaging research is also contributing to the understanding of lymphoma 
pathogenesis and is helping to extend more effective care to patients. In this article, we first review 
the basis of molecular imaging modalities and contributions to drug discovery and development. 
Radionuclide-based therapies and clinical applications of the imaging modalities for lymphoma are 
also discussed. 

2. Molecular Imaging for Drug Discovery 

Molecular imaging can be defined as a “noninvasive visualization, characterization, and 
quantification of molecular and biochemical events that occur at the cellular or subcellular level 
within intact living organisms”. This approach generally exploits specific molecular probes, as well 
as intrinsic tissue characteristics from the source of image contrast, and provides an insight for 
understanding integrative biology, disease characterization, earlier detection, and evaluation of 
treatment [16]. Furthermore, it offers the possibility of repetitive, uniform, noninvasive, and 
comparatively automated studies of living subjects by identical or alternating imaging assays with 
different time intervals, and attaching statistics in longitudinal studies, also essential to reduce the 

Figure 1. Processes in drug discovery and development. Although many drug candidates are evaluated
in preclinical studies, very few compounds proceed to clinical trials and about one compound receives
approval for administration and use in clinics. The selection of promising drug candidates in the early
phase is critical for successful drug development. Molecular imaging contributes at various stages of
the drug discovery and development processes.

Radionuclides used in the drug development process and in imaging modalities can themselves
act as drugs by the cytotoxic effect of radiation emitted from the radionuclides [10]. The most
remarkable characteristics of therapeutic β- or α-emitter radiopharmaceuticals comprise protection
of the surrounding tissue from damage due to their short emission range. Radioimmunetherapy
(RIT) is a targeted radionuclide therapy using a monoclonal antibody (mAb) tagged with therapeutic
radionuclides to damage the target lesion [11]. Some radiopharmaceuticals are well established
therapeutic options for certain diseases (such as thyroid cancers, osseous metastasis of prostate
cancer) and have been successfully applied in thyroid clinics for more than 70 years, however, RIT
is a relatively new therapeutic technology and only a few approved radioimmunotherapeutics are
available in the market.

Lymphoma is a type of cancer that originates in the lymph system and part of the immune system,
and can be divided into two categories: Non-Hodgkin’s lymphoma (NHL) and Hodgkin’s disease (HD)
cover about 3–6% of all malignancies, which in the Western world is around the fifth most common
type of cancer [12,13]. NHL and many examples of HD are possibly curable with proper chemotherapy
or radiotherapy, and recurrence also can be treated with second-line treatment strategies [14]. Treatment
guidelines are needed and accurate staging and response assessment is essential for decision-making.
In that respect, molecular imaging is one of the essential tools for early diagnosis, initial staging, risk
stratification, therapy response monitoring, and tumor recurrence detection [15]. Molecular imaging
research is also contributing to the understanding of lymphoma pathogenesis and is helping to extend
more effective care to patients. In this article, we first review the basis of molecular imaging modalities
and contributions to drug discovery and development. Radionuclide-based therapies and clinical
applications of the imaging modalities for lymphoma are also discussed.

2. Molecular Imaging for Drug Discovery

Molecular imaging can be defined as a “noninvasive visualization, characterization, and
quantification of molecular and biochemical events that occur at the cellular or subcellular level
within intact living organisms”. This approach generally exploits specific molecular probes, as
well as intrinsic tissue characteristics from the source of image contrast, and provides an insight
for understanding integrative biology, disease characterization, earlier detection, and evaluation
of treatment [16]. Furthermore, it offers the possibility of repetitive, uniform, noninvasive, and
comparatively automated studies of living subjects by identical or alternating imaging assays with
different time intervals, and attaching statistics in longitudinal studies, also essential to reduce the
number of animals and experimental costs [1,16]. Classically, when imaging for in vivo methods
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depends on gross anatomy it is referred as conventional imaging. With the introduction of imaging
agents, it became possible to image physiological parameters in living subjects a called as functional
imaging [17]. Molecular imaging, best example of function imaging, can be used to visualize drug
targets and to monitor kinetics of administered drugs. For the newer molecular imaging tools
to be useful, they have to possess high sensitivity, high spatio-temporal resolution. Still, limited
target-specific molecular probes are available, so, more target-specific molecular probes must be
developed to enhance values of molecular imaging for drug discovery and development [17,18].
Characteristics of molecular imaging modalities is shown in Table 1.

Table 1. Characteristics of molecular imaging modalities.

Imaging
Modality Type of Signals Spatial

Resolution
Probes/Needed

Amount

Sensitivity
(1/(Probe), In Vivo

Concentration)

Radiation
Hazard

Clinical
Translation

Ultrasound High frequency
sound waves 30–500 µm Microbubbles

µg-mg 10−9–10−12 moles No Good

MR Radio waves 50–250 µm
Gadolinium,
iron oxides
µg-mg

10−4–10−7 moles No Good

Nuclear
(SPECT or PET) γ rays 0.3–2 mm Radioisotopes

ng 10−12 moles Yes Good

Optical
(Bioluminescence
or Fluorescence)

Visible light or
near infrared 1–5 mm

D-luciferin,
coelentrazine,
fluorophore

ng-µg

~10−17 moles No Limited

MR: Magnetic resonance, SPECT: Single-photon emission computed tomography, PET: positron emission tomography.

The advantage of molecular imaging techniques over conventional anatomical imaging is to study
the biological properties in vivo with enough temporal and spatial resolutions without invasiveness.
Various diagnostic imaging techniques are routine in clinical radiology, and they have an equivalent
importance in the experimental research setting as well. Prior to clinical application, the temporal and
spatial biodistribution of imaging probes or drugs and their diagnostic and therapeutic efficiencies
should be assessed. Molecular imaging provides this data in preclinical settings, especially in animal
models (in vivo). Increased availability of genetically engineered laboratory mice allows for better
simulation of the clinical conditions. It is also important that the imaging techniques used to have
high spatial resolution (10–100 µm to mm) and high sensitivity (millimolar to nanomolar) for small
animals [1].

Each imaging modality (optical, nuclear, ultrasound, and magnetic resonance imaging (MRI)) has
its own advantages and disadvantages (Figure 2). The important characteristics of each molecular
imaging modality are listed in Table 1. Molecular imaging can be achieved with imaging technologies,
such as optical imaging, nuclear imaging (e.g., single-photon emission computed tomography (SPECT);
positron emission tomography (PET), MRI, and ultrasound imaging techniques, and it plays an
important role for the “bench-to-bedside” translational approach [4,16,19,20].

Imaging technologies use the interaction of different forms of energy in tissues to image the body
noninvasively. MRI and computed tomography (CT) depend solely on energy-tissue interactions,
whereas others, such as PET or optical imaging, require the administration of radionuclides or
optical probes. Imaging modality can be chosen mainly based on questions to be addressed for
drug development, and the application of multimodal imaging might be good option because different
imaging techniques are, in general, complementary rather than competitive. MRI has widely being
used in pharmaceutical researches owing to its excellent soft tissue contrast properties. In addition,
it yields valuable physiological information, even if very limited compared to nuclear or optical
imagings. CT is the classical anatomical imaging method and is well suited for morphology-based
studies. Nuclear imaging techniques, SPECT and PET, offer very high sensitivity required to evaluate
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drug distribution and pharmacokinetics, and to image specific molecular events. Depending on the
ligands and radionuclides used, a myriad of molecular process can potentially be assessed.
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Newer optical imaging techniques, such as fluorescence and Bioluminescence imaging (BLI), are of
particular value for mapping specific molecular events and noninvasively tracking cells in living mice.
They are also cheap, fast, and do not require radionuclides. A number of noninvasive technologies
have been developed and actively used for clinical purposes, but have recently been miniatured to
allow imaging of small animal with high resolution, which can be used to evaluate novel therapeutics
in small animal models. Some imaging modalities fulfill the “bench-to-bedside” model, and can be
applied in mice, other rodents, primates, and ultimately used in clinical trials [3,17]. Among the
different molecular imaging techniques, optical imaging based on bioluminescence and fluorescence
has the highest sensitivity. In addition to the benefit of the exceptionally high signal to noise levels,
optical molecular imaging provides multiplex imaging employing various probes having different
optical spectrum, and needs the lowest cost for the instrument installation [16,21,22]. These benefits
render optical imaging as the most prevalent technique for preclinical studies. An important drawback
of this technique, however, is the absorption and scattering of light signals on their route to the detector
system, making the visualization of the inner organs of an animal difficult and precluding further
clinical applications [23]. To overcome these limitations, efforts have been made to generate reporters
that emit photons at a longer wavelength, for example red light, which is transmitted through tissues
more efficiently [21,23].

Furthermore, a quantitative three-dimensional (3D) image of optical imaging signals provides
more accurate biological information compared with its planar counterpart. The 3D image is
generated based on advanced mathematical algorithms that resolve photon scattering deep within
tissue and localize the position of the source [24,25]. Nuclear imaging techniques, such as PET and
SPECT (with nanomolar blood concentrations of injected radiotracers), provide the required 3D
distribution of the administered tracer and possess high sensitivity and resolution with good tissue
penetration depth. They have the potential to detect molecular and cellular changes that accompany
diseases [23,26]. These advantages permit clinical and experimental applications of these imaging
techniques. The assessment of treatment response is possible with quantitative nuclear imaging, and
metabolic rates of diseased and normal organs can be measured with kinetic modeling [6].

MRI is a technique which uses a magnetic field and radio waves to generate detailed images
of the organs and tissues within a body. MRI simultaneously provides molecular and anatomical
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information without a radiation hazard [16,27]. Diffusion-weighted imaging (DWI) exploits the
variability of Brownian motion and provides information about the diffusion of water molecules in
tissues. The main application of perfusion-weighted imaging comprises the evaluation of ischemic
conditions and also measurements of cerebral hemodynamics at the microcirculation level. Magnetic
resonance (MR) spectroscopy provides a defined spectrum that allows tissues to be interrogated for the
presence and concentration of various metabolites, such as creatine, N-acetylaspartate, and choline [28].
These functional MR techniques have provided much information on physiological, biological, and
metabolic structures, and high resolution anatomical information [28,29]. However, despite high
tissue contrast and anatomical resolution, MRI is several orders of magnitude less sensitive than
optical or nuclear imaging in obtaining molecular information [29]. This lower sensitivity requires the
concentrations of the lesion-targeting molecular probes to exceed tracer levels. More effort needs to be
directed toward the development of strategies to improve the sensitivity of MRI, such as dedicated
coils, higher magnetic field strength, conditional MRI contrast agents, or activatable probes [4,7,30,31].

The molecular imaging approach could provide pharmaceutical research with solutions with
high specificity, high sensitivity, and high temporal and spatial resolution. However, each molecular
imaging technology has unique strengths and limitations, and it is not possible for a single modality
to be ideal for all the possible applications [31]. Multimodality imaging tools combine technologies,
such as CT, PET, and MRI, which have been emerging to overcome the drawbacks of single modality
imaging, especially in vivo [22,23]. PET/MR and hybrid PET/CT were introduced in the late 1990s,
and the success of the latter precludes the use of the PET system on its own [26]. The hybrid
PET/MR approach rectifies the weaknesses of standalone PET and MRI, and is applied in clinical
practice and preclinical research, having the advantage of no additional radiation and high tissue
contrast compared to the combined PET/CT method [32,33]. Conventional MRI or functional MR
spectroscopy can be incorporated into hybrid technologies and, thus, PET/MR is expected to play an
increasing role in and make huge impact on translational research and preclinical drug discovery and
development [34]. Furthermore, further developments concerning combined whole-body PET/MR
scanning are underway in clinics [26,34].

3. Radionuclide-Based Molecular Imaging

The success of radionuclide imaging for the discovery and development of new drugs, either
measured in in vitro samples or detected externally from a tissue sample or a patient, relies on the use
of adequate radionuclides [35]. The development of powerful radiopharmaceuticals requires careful
consideration of radionuclide selection. Γ- or positron-emitting radionuclides can be used for labeling
of diagnostic radiopharmaceuticals, while, in contrast β- or α-emitting radionuclides will be better
for therapeutic radiopharmaceuticals. The decay properties of the attached radionuclide need to be
balanced with in vivo targeting and clearance of the carrier molecule [36]. Selection of radiolabeling
techniques should be determined by the structure of the probe molecules, and biological characteristics
of the molecules must be maintained after the labeling.

Noninvasive molecular imaging with reporter genes in the field of biomedical imaging which
holds abundant promises for therapy response and also diagnosis. Reporter gene-based imaging
comprises one type of “molecular imaging”, a recently-coined term that is used to describe visualization
of normal and abnormal processes at a cellular or molecular/genetic level, in both space and time [37].
Genes selected as reporters either confer easily identifiable and measurable characteristics onto the
cells expressing them, or are selectable markers [38,39]. In the classical biological approach, high
numbers of experimental animals are required to conduct in vivo experiments and tissue samples
are needed to monitor time point changes. In the noninvasive imaging reporter gene technology, the
transgene expression reading obtained at each time point from the same subject provides detailed
information. Certain reporter genes encode a protein that could be a therapeutic target, which can be
indirectly visualized by trapping their imaging probes. There are a number of approaches for reporter
gene imaging, including optical, radionuclide and MR imagings [40–43]. Radionuclide-based reporter
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genes are generally categorized into three groups based on the interaction between reporter proteins
and their respective probes; these are enzyme, receptor genes, or transporter [39]. First, a reporter
gene that encodes an enzyme that is capable of trapping a specific tracer by action (for example,
phosphorylation) of the enzyme; Second, a reporter gene that encodes for an intracellular and/or
extracellular receptor, which is capable of binding a specific tracer; Lastly, a reporter gene that encodes
a transmembrane transporter, which is capable of transporting a specific tracer into the cells. A main
disadvantage of the reporter gene system is that a reporter gene first needs to be introduced into the
cells under consideration through delivery vectors (for example, viral vectors or liposomes) [1].

The imaging reporter gene enables noninvasive assessment of transgene expression in in vitro and
in vivo studies. Radionuclide-based reporter gene imaging has excellent sensitivity, high resolution,
and extremely good tissue penetration depth [39], and the imaging can be achieved with different
imaging modalities, such as MR, optical, radionuclide, and ultrasound-based techniques, X-ray, and
so on [44–47]. So far, the radionuclide-based reporter gene method is currently the only clinically
available imaging modality for transgene expression [48].

The radionuclide-based reporter gene system is useful for diagnostic and/or therapeutic
applications and the appropriate radionuclides can be selected for various purposes. γ ray
emitting radionuclides are used for the visualization of reporter gene-expressing cells. β ray
emitting radionuclides killing reporter gene-expressing cells. Visualization of gene expression
and cell killing can be performed simultaneously or sequentially. Over the past decade, various
enzyme/prodrug systems, such as yeast cytosine deaminase/5-fluorocytosine (yCD/5-FC), thymidine
kinase/ganciclovir (TK/GCV), and nitroreductase/CB1954 (NTR/CB1954), have been used for
suicide gene therapy in cancer treatment. CD [49–51], herpes simplex virus type 1 thymidine kinase
(HSV1-TK) [51,52], NTR [53], and NTR mutant deoxycytidine kinase (dCK) [54] can convert a prodrug
into a cytotoxic drug; thus, a therapeutic radionuclide becomes obsolete in therapy. Receptor-based
monitoring of somatostatin receptor type 2 [55], bombesin receptor [56] and transported based
monitoring of sodium iodide symporter [57], norepinephrine [58], can be used for molecular imaging.
Furthermore, one of the first noninvasive reporter gene imaging applications was based on HSV1-TK
and described in 1995 [59,60]. HSV1-TK reporter system is a radiotracer enzymatic assay similar
to the FDG (fluorodeoxyglucose)–hexokinase system that is widely used for glucose utilization
imaging [60]. Owing to their theranostic usability, radionuclide-based reporter genes have been
widely applied in cell-based therapy in preclinical studies [39]. However, two important issues need to
be resolved prior to clinical translation of theranostic applications. First, optimization of the cell-based
therapy and, second, visualization of the administered cells in vivo. Therapeutic cells tagged with a
radionuclide-based reporter gene can be detected by nuclear molecular imaging owing to the excellent
tissue penetration capability of γ rays emitted from the appropriate probe labeled with radionuclide.
The administered cells can thus be monitored by reporter gene imaging in a cell-based therapy.
The important issue here, however, is safety, because uncontrolled proliferation of the administered
cells can occur, specifically in the case of embryonic stem cell therapy [61]. Introduction of a suicidal
gene into therapeutic cells is an example of a safety back-up strategy [62]. Moreover, therapeutic cell
visualization and removal using radionuclide-based imaging reporter gene in a mouse model have
worked well to resolve the above-mentioned concerns [63].

4. Development of Therapeutic Strategies with Optical Imaging in Preclinical Models

Preclinical mouse models are important and helpful tools for studying biology and disease
pathophysiology, and for developing therapeutic strategies for certain diseases. Detailed preclinical
evaluation is needed before novel therapeutic approaches can undergo translation into clinical trials [64].
Advances in fluorescent probe design and optical detection technology facilitate application of optical
imaging technologies for drug discovery and development. Biologically compatible near-infrared (NIR)
probes can be visualized safely even in vivo animal models, and the highly sensitive photon-detection
technologies provide better imaging results even with fluorophores having low photon yield.



Int. J. Mol. Sci. 2017, 18, 1639 7 of 20

Bioluminescence and fluorescence imagings became popular in the field of drug discovery
and development due to their high sensitivity, low cost, versatility, and high-throughput
capability. Fluorescent proteins allow actual images rather than photon-counting of luciferase
imaging [65–68]; however, BLI represents the biochemical reaction of luciferases and their substrates.
Unlike fluorescence techniques, bioluminescence techniques do not generate inherent background
signal, which renders BLI more sensitive than fluorescence imaging [17,69].

Optical imaging plays an important role in high-throughput in vitro chemical screening and is also
a powerful and versatile imaging platform for in vivo pre-clinical animal studies. High-throughput
screening (HTS) has widely been used to screen hit compounds from compound libraries in academia
and the pharmaceutical industry, as a central paradigm of drug discovery and development. HTS of
compound libraries against pharmacological targets is one of the key strategies in modern drug
discovery [70]. Luciferase is best known as a genetic imaging reporter in HTS applications. Numerous
cellular events with application to drug discovery are associated with the regulation of gene
transcription [70]. HTS are frequently performed by means of miniaturized cell-based assays which
enable chemical libraries to be screened for molecules that present different biological activities [71].
In BLI imaging modality, a luminescent protein or enzyme can be transfected into cells and used for
drug screening and therapy response (Figure 3). The transfected cells are then implanted into an
animal [72,73]. The light emitted from the implanted cells is then imaged and used to assess treatment
response or progress of the diseases. This in vivo optical imaging modality also allows easy recognition
of a molecular or biological process without animal sacrifice.
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Figure 3. Drug screening and therapeutic drug monitoring by Bioluminescence imaging (BLI). (A) Drug
screening by BLI. Stable luciferase (FLuc)-transfected cancer cells can be used for high throughput
screening (HTS). FLuc activity of cancer cells treated with 5 µM tyrosine kinase inhibitors was analyzed
by BLI imaging after 24 h. Compounds that decrease FLuc activity were selected and used further in
target study and preclinical drug efficiency; (B) Therapeutic drug monitoring by BLI imaging. Stable
FLuc-transfected cancer cell was injected into the subcutaneous tumor (Xenograft) and then therapeutic
effect was monitored. Decrease in FLuc activity was observed in the drug-treated mouse after 2 weeks
of treatment.

Research into molecular imaging is also contributing to our understanding of lymphomas and
helping to direct more effective care of patients with certain types of the disease. Each year, new cases
of lymphoma are diagnosed and more people die from the disease. An urgent need exists for the
development of new diagnostic and therapeutic technologies for lymphoma, and molecular imaging
can contribute to these developments. Adult T-cell lymphoma/leukemia (ATLL) is caused by human
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T-cell lymphotropic virus type 1 (HTLV-1). A bioluminescent mouse model has been developed to
investigate new therapies for humoral hypercalcemia of malignancy and ATLL [74].

Rituxan (Rituximab), a chimeric immunoglobulin G1 (IgG1) monoclonal antibody (mAb) directed
against the CD20 antigen, has an improved therapeutic effect in NHL. Dayde et al. showed
that rituximab prevented the development of lymphoma tumor in mice treated with 6 mg/kg
of rituximab 1 day after inoculation with EL4-huCD20-Luc cells, which was confirmed with BLI
analysis [75]. Proteasome inhibitors, such as PS-341, suppress nuclear factor κB (NF-κB) activity
by inhibiting the degradation of inhibitor κB (IκB) family members [76]. PS-341 has been used
as a chemotherapeutic agent for lapsed multiple myeloma [77]. PS-341 and zoledronic acid, a
bisphosphonate, were administered alone or in combination to treat mice xenografted with HTLV-1
infected cells that developed predominantly mesenteric lymph node lymphoma, five weeks after
inoculation. BLI imaging showed significantly lower signal in mice treated with either PS-341,
zoledronic acid, or their combination, compared with the empty vehicle control group [74].

Terziyska et al. isolated acute lymphoblastic leukemia (ALL) cells from ALL patients and
transduced a membrane-bound form of Gaussia luciferase (GLuc). They performed imaging-guided
preclinical treatment trials in a mouse model having the tranduced acute lymphoblastic leukemia
cells and demonstrated that individual ALL samples retained their individual sensitivities towards
conventional cytotoxic drugs [78]. Thus, GLuc-based in vivo imaging using an individualized
preclinical model enables treatment trials at a new level of accuracy and precision. This patient
derived ALL animal model is facilitating a detailed preclinical analysis of important therapies to
prepare their translation into the clinic and might address the most demanding clinical questions, such
as treatment failure and relapse [78].

To assess drug efficacy in a central nervous system (CNS) lymphoma xenograft model,
Kadoch et al. transduced the luciferase gene into Raji cells using the lentivirus transfection method,
thereby enabling cell visualization via in vivo BLI [79]. The authors investigated the response of
intracranial luciferase-modified Raji xenografts to orally administered temozolomide (250 mg/kg/days
for 5 days), an alkylating agent commonly used in primary CNS lymphoma therapy. The treatment
group reproducibly revealed that significant delay in tumor progression, as shown by BLI, had delayed
the onset of neurologic symptoms, and prolongation of survival compared with control mice. Whereas
Raji cells were sensitive to temozolomide in a dose-dependent manner in vitro, Raji tumors rapidly
exhibited resistance to this agent in vivo. This was demonstrated by in vivo BLI, when the overall
survival of treated mice bearing CNS lymphoma xenografts did not exceed 23 days even when the
temozolomide dose was increased to 300 mg/kg/days [79].

Near-infrared fluorescence (NIRF) imaging is developing revolutionary new technologies for the
visualization of veins and also the detection and monitoring of brain injuries and malignant cancers.
NIRF-based optical imaging is promising for a clinical diagnostic imaging for solid tumors by its
high sensitivity [80]. The mAb based functional probe can be used for in vivo optical imaging of the
lymphoma cells [81]. The noninvasive imaging can also help in the early detection of NHL, and to
characterize the behavior of tumors [82].

5. Clinical Molecular Imaging for Lymphoma

The outcomes for lymphoma have significantly improved over the past few decades with
5-year survival rates, especially in NHL, increasing from 47% in 1975–1977 to 71% in 2003–2009 [13].
This dramatically improved survival is attributed to newer chemotherapeutic regimens and the
inclusion of monoclonal anti-CD20 agents in combination strategies for NHL. In addition, tremendous
advances in immunophenotyping, cell biology, and molecular genetics of lymphoma have led to
newer risk stratification strategies, as well as the development of targeted agents [83]. With newer
and more effective therapies for lymphomas, the need for accurate staging systems and standardized
criteria for response becomes even more critical. Clinical trials exhibiting the efficacy of new drugs are
essential before these new drugs are approved to enter the market. Multimodal molecular imaging
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modalities using a nuclear imaging technique, including PET/CT and PET/MR using glucose or
amino acid tracers, are examples of standard imaging modalities for assessing the therapeutic response
of lymphoma to new drug candidates. Therefore, nuclear molecular imaging, as the only clinically
translated molecular imaging method, is a widely used assessment tool for the efficacy of new drug
candidates in many clinical trials targeting lymphomas.

5.1. 18F-Fluorodeoxyglucose (FDG) PET/CT

Since the early 2000s, the assessment of lymphoma has been essentially based on clinical
examination, CT, and bone marrow (BM) biopsy. Traditionally, imaging has played a fundamental role
in the initial staging and surveillance of lymphoma, and the Cotswold classification was the first one to
formally include CT scans [84]. Functional imaging with 18F-FDG PET/CT is widely used in the staging
and evaluation of therapy response in lymphomas, overcoming the limitations of conventional anatomic
imaging modalities. One advantage of 18F-FDG PET/CT scans over CT is that they enable discrimination
of a viable tumor from scar and fibrosis in residual tumor mass. 18F-FDG PET/CT provides metabolic
information on tumors based on the assumption that cancer cells are generally characterized by increased
glucose utilization. 18F-FDG PET/CT was incorporated for response assessment in the International
Harmonization Project recommendations published in 2007 [85].

18F-FDG PET/CT is now an obligatory diagnostic procedure for initial staging and end-of-therapy
treatment response assessment in FDG avid lymphomas. 18F-FDG PET/CT assessment has over
95% sensitivity and specificity. In 10 to 20% of cases, changes in staging can be made by 18F-FDG
PET/CT, particularly in disease staged at I/II on CT, sometimes leading to changes in therapeutic
management [86]. 18F-FDG PET/CT can even replace BM biopsy analysis for HL, and according to the
new Lugano classification, BM biopsy can be distinguished in diffuse large B-cell lymphoma (DLBCL)
with no evidence of BM involvement using PET/CT [87]. Based on the meta-analysis, specificity
and sensitivity of 18F-FDG PET for residual disease detection and after first-line therapy for HL were
84% and 90%, respectively, 72% and 100%, respectively in aggressive NHL [88]. Furthermore the
role of interim 18F-FDG PET/CT, performed after a few cycles of chemotherapy (Figure 4), is actively
investigated in clinical trials for risk-adapted therapy strategies [89–91].
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Figure 4. 18F-Fluorodeoxyglucose (FDG) PET/CT imaging of the effect of R-CHOP therapy in a patient
with follicular lymphoma. A 70-year-old female patient was diagnosed with follicular lymphoma after
lymph node excision. The initial 18F-FDG PET/CT imaging (A) revealed hypermetabolic lesions in
the palatine tonsils, spleen, and lymph nodes of the neck, axilla, mediastinum, paraaortic, iliac, and
inguinal regions. After three cycles of R-CHOP therapy (rituximab, cyclophosphamide, doxorubicin,
vincristine, and Prednisolone), a follow up imaging (B) revealed that the hypermetabolic lesions have
disappeared, representing a complete response to therapy.
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The international consensus for lymphoma, such as the International Harmonization Project and
Lugano classification, involves standardized performance and interpretation of 18F-FDG PET/CT
using a five-point visual scale. Such consensus guidelines of 18F-FDG PET/CT are helpful for accurate
comparisons between studies, for accelerating standardization of uniform reporting system and for
identifying optimal regimens in the clinical trials or clinical practices [87]. In addition, the quantitative
parameters, including the metabolic tumor volume and total lesion glycolysis, which may better reflect
the overall tumor burden [92], are now recognized as valuable tools to improve the robustness of
therapeutic follow-ups.

5.2. Non-FDG PET/CT

With the introduction of new tracers, PET offers new potentially valuable parameters for
lymphoma imaging.

5.2.1. 18F-Fluorothymidine (18F-FLT)

3′-[18F] fluoro-3′-deoxythymidine (18F-FLT) is a structural analog of the DNA constituent thymidine
and a representative marker of cellular proliferation. Because residual lymphoma would be expected
to exhibit a high level of proliferation, whereas inflammation would not, 18F-FLT PET/CT might be
suitable for distinguishing these two states, which cannot be discriminated by 18F-FDG PET/CT. Recent
pilot study demonstrated that 18F-FLT PET/CT scan excellently differentiate residual lymphoma from
post-treatment inflammatory changes in patients showing 18F-FDG avid lasting masses (90% sensitivity
and 100% specificity for residual disease) [93]. Furthermore, early interim 18F-FLT PET/CT seems to
be a significant predictor of progression-free survival and overall survival in patients with aggressive
NHL [94], and a potential tool for predicting complete response in DLBCL patients with R-CHOP
(rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) therapy [95].

5.2.2. 11C-MET (Methionine)

11C-methionine (MET) is a radiolabeled amino acid used to monitor amino acid metabolism
in tumors. MET uptake represents higher amino acid incorporation and protein synthesis, which
is associated with cell proliferation. Cancers are, possibly universally, MET-dependent and require
excess MET. Therefore, when many tested cancer cells are deprived of MET, a condition that is
generally nontoxic to normal cells, they arrest development and eventually die [96]. 11C-MET has
been widely used in detection of many cancers including lymphoma. Given that 11C-MET can
cross the blood brain barrier, it is more useful in assessing the therapeutic response of brain tumors
to radiotherapy than 18F-FDG [97]. Nuutinen et al. investigated whether 11C-MET uptake was
associated with the histological grade of malignancy and survival in NHL and HL patients. The authors
demonstrated that the technique was able to differentiate high-grade lymphoma from low-grade
lymphoma if using the influx constant. However, prediction of survival was not feasible with 11C-MET
PET/CT [98]. 11C-MET is useful for delineation of CNS lymphoma, because 11C-MET has lower uptake
in the normal brain than 18F-FDG does, and for monitoring the therapeutic effect of irradiation [98].
Ogawa et al. performed 11C-MET PET in CNS lymphoma patients before and after radiation therapy,
and demonstrated decreased tracer uptake after the therapy [99].

5.3. PET/MR (Magnetic Resonance)

An integrated whole-body PET/MR scanner has been recently introduced and is expected to
potentially exceed the advantages of PET/CT because MR data provide high soft tissue contrast and
can provide accurate anatomical details. Despite different scanner geometry and attenuation correction
approaches, qualitative lesion detection is highly reproducible with hybrid PET/MR and PET/CT,
and the standardized uptake values (SUV) values of PET positive lesions correlate well between the
two modalities [100]. Platzek et al. evaluated the use of sequential PET/MR for lymphoma staging
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in 27 lymphoma patients and concluded that PET/MR is feasible for this application [101]. The MR
component of a PET/MR scanner adds functional information derived from MR technologies and,
especially in DWI, can offer information about tumor cellularity and improve tumor detection by direct
comparison with metabolic information from the PET component. Lin et al revealed that result of DWI
was 94% concordance with the findings of 18F-FDG PET/CT [102]. Furthermore, recent data indicated
that the sensitivity (90%) of whole-body MRI equals that of 18F-FDG PET/CT for the detection of bone
marrow involvement in HL but is less specific (75%) [103]. The benefit of MR in combination with
18F-FDG PET is not yet clear but DWI might play a complementary role for baseline imaging and
assessment of treatment response in lymphoma.

5.4. Clinical Molecular Imaging for Experimental Therapies

Clinical trials using 18F-FDG PET/CT for the evaluation of many experimental therapies for
lymphoma, including combinations of experimental drugs, are ongoing. For example, the combination
of lenalidomide and R-CHOP, phase II trial, was evaluated for safety and efficacy by assessing the final
response with 18F-FDG PET/CT in elderly patients with untreated DLBCL. Forty-five patients (92%)
achieved a response (complete remission (CR), 86%; partial response (PR), 6%) [104]. Phase I study of a
novel oral Janus kinase 2 (JAK2) inhibitor (SB15180) for patients with relapsed or refractory Hodgkin’s or
NHL also included 18F-FDG PET/CT to evaluate baseline disease status and treatment response [105].

Furthermore, the clinical response of radioimmunotherapy (RIT) was demonstrated with 18F-FDG
PET/CT in many studies because the clinical application of RIT has greatly expanded in recent
years [106]. Early DLBCL patients in phase II studies were monitored with 18F-FDG PET/CT during
experimental therapies of R-CHOP followed by anti-CD20 RIT. In the present study, 89% percent of
patients achieved functional CR after R-CHOP plus RIT. At 5 years, 78% of patients remain in remission
and 94% are alive [107]. In addition, an ongoing phase I/II trial of Tenarad RIT (131I-F16SIP) evaluated
the treatment efficacy using 18F-FDG PET/CT in patients with refractory HD. Tenarad is a fully human
mini-antibody, or small immunoprotein (SIP, 80 kDa), labeled with 131I, and targets the extra-domain
A1 of tenascin-C, which is one of the best characterized markers of angiogenesis [108].

PET/CT imaging using a mAb labeled with a positron-emitting isotope, such as 89Zr, could be
useful for visualizing the biodistribution of the individual radiotracer, subsequently RIT with 90Y-labeled
rituximab in CD20+ B-cell lymphoma [109]. Janik et al. assessed the clinical response to 90Y-daclizumab
(radiolabeled anti-CD25 antibody) therapy for HL by using SPECT/CT with 111In-daclizumab and
18F-FDG PET/CT [110]. 111In-daclizumab was administered to identify biodistribution and tumor
targeting. SPECT imaging with 111In-daclizumab was congruent with 18F-FDG findings. In 46 evaluable
HL patients treated with 90Y-daclizumab, there were 14 CRs and nine PRs.

Ibritumomab and Tositumomab are antibodies that target and bind to the CD20 antigen found
on the surface of malignant B cells; therefore, labeling these antibodies with β-emitting radionuclides
allows this radiation to kill the target cells along with others nearby. It mainly targets low-grade or
follicular B-cell NHL and newly diagnosed follicular NHL following a response to initial anticancer
therapy [106]. The mAbs Zevalin (90Y-ibritumomab tiuxetan) and Bexxar (131I-tositumomab) are
notable representatives of FDA-approved drugs for the treatment of NHL. Unfortunately, Bexxar was
withdrawn from the market in 2014 [10,11].

5.5. Personalized Medicine

With the shift of the medical paradigm into era of personalized medicine, the enormous needs
are requested for tailored drugs based on individual response to each patient (Nuclear Medicine in
the Era of Precision Medicine [111]). Clinical molecular imaging methods including PET are required
to select appropriate patient group for certain drugs on the basis of imaging biomarker. In addition,
radionuclide theranostics, one of the representatives for personalized medicine, uses pre-therapy
low-dose diagnostic/theranostic imaging followed by higher-dose therapy in the same patient [112].
T-lymphocytes are one of key components of immune response which eliminating abnormal cells and
infectious agents from the body. Adoptively transferred cytotoxic T-lymphocytes have been developed
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to control resistant cancers and in vivo monitoring of the administered T-lymphocytes are warranted
to optimize the therapy and predict the therapeutic effect. Koehne et al. monitored radionuclide-based
reporter gene transduced T cells noninvasively with PET imaging [113]. PET imaging allows for
quantifying cell signals of the regions of anatomic interest. However, PET signal detection requires
knowledge of cell numbers in different regions. Su et al. determined the correlation of PET signal with
cell number and characterized the cellular limit of detection for PET imaging [114].

Antibody-drug conjugates (ADCs) are powerful biopharmaceutical drugs developed for targeted
therapy against cancerous diseases. Arming of mAbs by connecting them with certain cytotoxic drugs
enhances the targeting efficiency of the therapeutic agent, specifically to certain tumors, and results in a
valuable enhancement of antitumor activity. Brentuximab vedotin (Adcetris) is an ADC directed to the
protein CD30, which is expressed in classical HL and systemic anaplastic large cell lymphoma [115–117].
mAbs are among the most rapidly expanding classes of therapeutics for the treatment of cancer [118].
Rituximab is the only commercially available unmodified mAb that demonstrates antitumor activity
in HL [119,120]. The US FDA has approved the use of brentuximab vedotin in the treatment of
relapsed HL after failure of autologous stem cell transplantation or multi-agent chemotherapeutic
regimens [117]. In addition, antitumor mAbs can be used as therapeutics after labeling with
therapeutic radionuclides. The radiolabeled mAb conjugates are able to kill cancer cells at a distance
of several cell diameters by the substantial range of emitting particles and, thereby, may also kill
antigen-negative tumor cells adjacent to antigen-expressing cells [121–123]. Daclizumab (humanized
anti-Tac, i.e., anti-CD25) can be armed with a β-particle emitter 90Y. Daclizumab targets the 55-kDa
IL-2Rα (CD25) subunit that is constitutively expressed on Treg cells but not on other resting normal
cells [124,125]. Lim et al. reported that patients with relapsed or refractory B-cell NHL were treated
by RIT with radioiodinated human/murine chimeric anti-CD20 mAb rituximab (131I-rituximab).
Contrast-enhanced 18F-FDG PET/CT scans before therapy and after one month allowed for the tumor
sizes and maximum standardized uptake values (SUVmax) to be measured [126]. Therefore, molecular
imaging technology is more useful for new drug discovery and therapeutic monitoring.

Drugs and therapies for lymphoma are summarized in Table 2.

Table 2. Drug discovery and therapy for lymphoma via molecular imaging.

Drugs or Therapy Used Imaging Modality Target Receptor/Protein Lymphoma Type

Rituximab BLI CD20 NHL [75]

PS-341 and zoledronic acid
(bisphosphonate) BLI NA HTLV-1 infected cell lines [74]

Cyclophosphamide BLI NA Acute lymphoblastic leukemia [78]

Temozolomide BLI NA CNS lymphoma—Raji cells [79]

Lenalidomide plus R-CHOP
(phase II trial)

18F-FDG PET/CT NA DLBCL [104]

90Y-ibritumomab tiuxetan and
90Y-ibritumomab tiuxetan plus

R-CHOP (phase II trial)

18F-FDG PET/CT CD20 NHL, DLBCL [106,107]

JAK2 inhibitor (SB15180)
(phase I trial)

18F-FDG PET/CT NA Relapsed or refractory HL or NHL [105]

90Y-daclizumab
18F-FDG PET

111In-daclizumab SPECT
CD25 Relapsed or refractory HL [110]

90Y-rituximab 89Zr- rituximab PET/CT CD20 CD20+ B-cell lymphoma [109]

Tenarad (131I-F16SIP)
(phase I/II trial)

18F-FDG PET/CT NA Recurrent HL [108]

131I-rituximab 18F-FDG PET/CT
CD20 with

radioimmunotherapy B-cell non-Hodgkin‘s lymphomas [126]

BLI, bioluminescence imaging; CNS, central nervous system; DLBCL, diffuse large B-cell lymphoma; 18F-FDG
PET/CT, 2′-deoxy-2′-[fluorine-18]fluoro-D-glucose positron emission computed tomography; HL, Hodgkin’s
lymphoma; HTLV, human T-lymphotropic virus; JAK2, Janus kinase; mAb; monoclonal antibody; NHL,
non-Hodgkin’s lymphoma; PS-341, proteosome inhibitor; R-CHOP, rituximab, cyclophosphamide, doxorubicin
(hydroxydaunomycin), vincristine, Prednisolone; F16SIP, antibody fragment targeting extra-domain A1 of
tenascin-C. NA: Not applicable.
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6. Conclusions

The unique features of molecular imaging allow us to expand our knowledge of the therapeutic
targets for lymphomas and pathways involved in the initiation and progression of lymphomas, and
provide bridges to clinical applications in diagnosis, staging, therapeutic target determination, and
monitoring therapeutic response. Therefore, molecular imaging is exceedingly useful in drug discovery
and development for lymphomas, by accelerating the entire process. With time, it has become crucial
for the success of the development of new drugs. At present, molecular imaging is already perfectly
integrated into the infrastructure of the pharmaceutical industry, and it will eventually reduce the
costs and time required for novel drug development for lymphoma.
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Abbreviations

IND Investigational new drug
HD Hodgkin’s disease
NHL Non-Hodgkin’s lymphoma
MRI Magnetic resonance imaging
SPECT Single-photon emission computed tomography
PET Positron emission tomography
DWI Diffusion-weighted imaging
FDG Fluorodeoxyglucose
NIR Near-infrared
BLI Bioluminescence imaging
HTS High-throughput screening
ATLL Adult T-cell lymphoma/leukemia
HTLV-1 Human T-cell lymphotropic virus type 1
mAb Monoclonal antibody
ALL Acute lymphoblastic leukemia
R-CHOP Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone
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