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Background & Summary

Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all
vertebrates. Hair cells transduce mechanical stimuli, i.e., movement in their environment, into electrical
activity"*. There are two types of hair cells in the mammalian cochlea, inner hair cells (THCs) and outer
hair cells (OHCs). These two types of hair cells are anatomically and functionally distinct’. Although
much is known about how IHCs and OHCs function in hearing, we have limited knowledge of molecular
mechanisms, i.e., gene expression and regulation, that underlie their distinct morphological and
functional specializations.

While all cells in multicellular organisms have nearly identical genome, the genes that are transcribed
are different for each cell type. Diverse patterns of gene expression and post-transcriptional regulation of
gene expression by miRNA underlie phenotypic variances of different cell types. Genome-wide
characterization of cell-specific transcriptomes is central to understanding the biological property of a cell
or a population of cells. High-throughput mRNA sequencing (RNA-seq) allows simultaneous transcript
discovery and abundance estimation with a wide dynamic range and lower false-negative and false-
positive discovery rates™”. Direct sequencing of RNA libraries also provides the opportunity to explore
alternative splicing, a key mechanism that contributes to transcriptome diversity®™®. Transcriptome
analysis has emerged as a powerful tool in revealing the genetic and molecular profile of a cell or a
population of cells.

In a previous study, we used the microarray technique to examine transcriptional profiling of purified
IHCs and OHCs from adult mice’. Although microarray is a powerful technique, it has limitations in
dynamic range and identification of multiple splice variants of the genes. Furthermore it relies on
prerequisite sequence information, which precludes analysis of unannotated genes'’. Because of this, 22
to 24% of the transcrlpts detected in our previous microarray study were uncharacterized or unannotated
transcripts or genes’. Hair cell-specific transcriptomes have been analyzed using RNA-seq in several
recent studies'' '*. However, these studies analyzed transcriptomes of cochlear and vestibular hair cells
only from embryomc and neonatal mice. Furthermore, those studies did not distinguish between IHCs
and OHCs.

Here, we describe transcriptome-wide profiling of IHCs and OHCs obtained from one-month-old
CBA/] mouse cochleae to provide a comprehensive view of the gene expression in IHCs and OHCs.
Unlike some other mouse strains (such as C57/B6) which carry mutations that can cause early onset of
age-related hearing loss, CBA/] mice do not exhibit age-related hearmg loss until 18 months of age. We
took advantage of the established pulled glass pipette technique™'® and distinct morphology of the two
types of hair cells to separately collect 1,000 isolated IHCs and OHCs. Two biological replicates of IHCs
and three replicates of OHCs, each containing 1,000 hair cells, were prepared for RNA-seq. An overview
of the study design is depicted in Fig. la. Transcriptomes of adult IHCs and OHCs from microarray
technique’, as well as neonatal hair cells from RNA-seq''™'* were presented along with transcriptomes
from the current study. We validated our results by comparm some THC and OHC preferentially
expressed genes between the present study and previous studies™ " '* as well as by real-time quantitative
PCR (RT gPCR). In addition, we used antibody-based immunostaining to show the preferential
expression of SLC7A14 and DNM3, whose function in hair cells has not been characterized. While
SLC7A14 showed strong staining in the soma of IHCs, DNM3 was detected in the stereocilia bundle of
only OHCs. These two genes/proteins can be used as specific markers for adult IHCs and OHCs. Finally,
we examined the expression of deafness-related genes in hair cells. Mutations or deficiencies affectmg
approximately 150 genes have been linked to inherited syndromic or non-syndromic hearing loss'®. We
analyzed the expression of 143 known deafness genes, excluding X-chromosome-linked genes, and
showed 128 genes are expressed in hair cells.

Our dataset is expected to serve as a highly valuable resource for unraveling the molecular
mechanisms underlying different biological properties of IHCs and OHCs. The dataset will also provide a
road map for future characterization of genes expressed in these two types of hair cells and for assisting
the auditory research community in exploring the functions of deafness-related genes.

Methods
Hair cell isolation and collection
CBA/] mice aged between 28 and 35 days old were used for the study. The basilar membrane together
with the organ of Corti was isolated as described before'®. The sensory epithelium was transferred to an
enzymatic digestion medium containing 1 ml L-15 and 1 mg Collagenase IV (Sigma) in a small Petri dish.
After 5 min for incubation at room temperature (20 + 2 °C), the tissue was transferred to a small plastic
chamber (0.8 ml in volume) containing enzyme-free Leibovitz’s L-15 medium (7.35 pH, 300 mOsm). Hair
cells were separated after gentle trituration of the basilar membrane with a 200 pL Eppendorf pipette tip.
The chamber containing the hair cells was then mounted onto the stage of an inverted Olympus IX71
microscope equipped with a video camera. The chamber (with inlet and outlet) was perfused with fresh
L-15 medium to wash out debris for 5min. IHCs and OHCs in most cases retained their distinct
morphological feature after isolation. Some representative images of solitary IHCs and OHCs are
presented in Fig. 1b.

To collect solitary hair cells, two pulled glass pipettes with a diameter of ~30 pm were used to pick up
and transfer IHCs and OHCs. Each pipette was designated for one cell type to prevent cell type
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Figure 1. Study design workflow for RNA-seq and suction pipette technique for collecting isolated hair
cells. (a) Workflow of experimental design for RNA-seq transcriptomic analysis of IHCs and OHCs isolated
from adult mouse cochleae. (b) Representative images (from left to right) of two isolated IHCs and two OHCs
from adult mice. (c) A pick-up pipette before and after an isolated OHC was drawn into the pipette. This
technique was used to individually collect isolated hair cells. Bars: 5 (b) and 10 (¢) pm.

contamination in the pipette. The pickup pipette was fabricated from 1.5mm thin-wall glass tubing
pulled by a two-stage electrode puller. The pipettes were mounted in two separate electrode holders
mounted on two Narashigi micromanipulators (Narashigi, Japan). The suction port of the pipette holder,
held by the micromanipulator, was connected to a micrometer-driven syringe to provide positive or
negative pressure to draw in or expel the cells. An image of an OHC before being drawn into a pickup
pipette is shown in Fig. lc. A video showing a mouse OHC being drawing into a pickup pipette is
provided (Data Citation 1). IHCs and OHCs were identified based on their morphology under direct
visual observation and solitary hair cells that were not attached to any other cell types were collected. Any
hair cells with ambiguous morphology were excluded. Hair cells were transferred to a microcentrifuge
tube containing 50 ul RN Alater (Thermo Fisher Scientific, Waltham, MA) after ~10 cells were collected in
the pipette. Cells were expelled from the pipette by applying positive pressure. This step was repeated
until approximately 50 to 80 IHCs and 100 to 150 OHCs were collected from each mouse. Thirty mice
were used for the collection of two biological replicates of IHCs and three replicates of OHCs.

RNA isolation, amplification

Approximately 1,000 cells suspended in 100 pL. RNALater from each biological replicate were used to
extract total RNA, including small RNAs (>~18 nucleotides), using the Qiagen miRNeasy mini plus Kit
(Qiagen Sciences Inc, Germantown, MD). DNA contamination was eliminated by on-column DNase
digestion. The quality and quantity of RNA after purification was examined using an Agilent 2100
BioAnalyzer (Agilent Technologies, Santa Clara, CA) and compared to examples of pure RNA results
found in the Agilent 2100 Bioanalyzer 2100 Expert User’s Guide. Total RNA from each sample was
approximately 8 to 10 ng/pl (with ~3—4 pl total for each sample). These samples were reverse transcribed
into cDNA and amplified using the SMART-Seq V4 Ultra Low Input RNA kit (Clontech Laboratories,
Inc., Mountain View, CA).

RNA-sequencing and bioinformatic analyses

Genome-wide transcriptome libraries were produced from biological replicates of IHCs and OHCs.
SMART-Seq V4 Ultra Low Input RNA kit (Clontech) was used to generate cDNA in combination with
the Nextera Library preparation kit (Illumina, Inc., San Diego, CA). To ensure the inserts were the
appropriate size and to determine concentration prior to sequencing, a Bioanalyzer 2100 and a Qubit
fluorometer (Invitrogen) were used to assess library size and concentration. Transcriptome libraries were
sequenced using the HiSeq 2500 Sequencing System (Illumina). Libraries were multiplexed and three
samples per lane were sequenced as 100-bp paired-end reads. This generated approximately 100 million
reads per sample. The files from the multiplexed RNA-seq samples were demulitplexed and fastq files
representing each library and quality control data were generated.

Bioinformatics analyses

CLC Genomics Workbench software (CLC bio, Waltham, MA, USA) was used to map the reads to the
mouse genome (mm10, build name GRCm38) and generate gene expression values in the normalized
form of reads per kilobase of transcript per million mapped reads (RPKM) values. Reads were mapped to
exonic, intronic, and intergenic sections of the genome. Gene expression estimates were derived from the
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mapped reads using HTSeq count'”. Ingenuity IPA program (www.ingenuity.com) and DAVID'® were
used for functional annotation. Entrez Gene, HGNC, OMIM, and Ensembl database were used for
verification, reference, and analyses.

Code availability
No custom code was used in any of these analyses.

Real-time qPCR

We validated the expression of 26 genes using RT qPCR. RT qPCR experiments were run on an Applied
Biosystems 7500 Fast Real-Time PCR system. Ten microliters of Powerup SYBR Green Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA) was used in each 20 microliter reaction. Primer
concentrations were 450 nM. The original cDNA samples were diluted twenty-fold with two microliters
for every reaction. The fast thermal cyclin§ mode of the Applied Biosystems 7500 instrument was used.
We calculated ACt values (ACt = Ct{9CV — CtAVS HKG) Gf each gene (gene of interest or GOI) after
normalizing to Ct value of a house-keeping gene (HKG). For comparing differential expression of a gene
between THCs and OHCs, we calculated AACt, where AACt = ACt (IHCs) — ACt (OHCs)". Thus, a
positive value would suggest that this gene has a higher expression value in IHCs than OHCs, whereas a
negative value suggesting higher expression in OHCs than in IHCs.

The sequences of the oligonucleotide primers were designed using A plasmid Editor (ApE) software
(http://biologylabs.utah.edu/jorgensen/wayned/ape/) and BLAST searches (http://blast.ncbinlm.nih.gov/
Blast.cgi.) to find unique and appropriate sequences with melting temperatures above 60 °C that had
predicted low rates of homodimerization. Oligonucleotide primers were acquired from Integrated DNA
Technologies (Coralville, Iowa). The sequences of oligonucleotide primers are shown in Table 1.

GENE FOWARD PRIMER REVERSE PRIMER

Bel2 ACGTGGACCTCATGGAGTG TGTGTATAGCAATCCCAGGCA
Bcl6 GTG TCC TGG GGT TAC AGG TG CCT GTC CTG CCT ACC CAT AG
Dnajc5b ATTTTTGTTGCTGCCTTTGC AGGCTGGAGAACAACTGGAA
Ednrb AAAGCCAACGATCACGGATA CCTTTCTGCTAGCATGGTTTTT
Fzd4 TGCCAGAACCTCGGCTACA ATGAGCGGCGTGAAAGTTGT
Hdac3 GCCAAGACCGTGGCGTATT GTCCAGCTCCATAGTGGAAGT
Otof GGC GCT TCA TIT ATC CTT TCG AC GAC GAG GTG CCG GAT TGC CTT TAG C
Prkd1 GGGGGCATCTCGTTCCATC GTGCCGAAAAAGCAGGATCTT
Slc17a8 GGAGACAGAACTCAACCACGA TTCGGCCTGGTAGGATAATG
Slcla3 GCACCAAGTGTTGGAAACTG TTCAAATGTAGGCTAAAACCGATA
Sle7al4 CACCCTGGTCTCTGTCTGTG CTGGAAAATTCCTCCCCTTC
Tbx2 CCGATGACTGCCGCTATAAGT CCATCCACTGTTCCCCTGT

Nono GCCAGAATGAAGGCTTGACTAT TATCAGGGGGAAGATTGCCCA
Ppia GAGCTGTTTGCAGACAAAGTTC CCCTGGCACATGAATCCTGG
Cigl1 GGGGCAACAGCAACAAATAC CCTTGGTCAGGCAATTTGAA
Carhspl CCCACGCATCAGACTTCTGTA GTAGGCAGAGGGCTAGGGA
Chrna9 CGTGTGATCTCCACCAGTGT TCCTTCATCCCTTTATCCTTGA
Chrnal0 AGCCCTTCTGCATCACGTAG AAAGCGGTCCATTACTCTGG

Clu CCATCTGCAACTAGCTGTGAG TCCGTTTTCTTCGGAAGTAAGAC
Dmn3 AACTTCACATCAACGCGACC CTCGCACTGGAGTCTCTGAT

Isl1 ATGATGGTGGTTTACAGGCTAAC TCGATGCTACTTCACTGCCAG
Keng4 GCTCAACCAAGTCCGCTTC GTGATCGGAATCAGCCACAGT
Lbh CTGCTCTGACTATCTGAGATCGG CGGTCAAAGTCTGATGGGTCC
Lmo7 TTGAAACAACGGATTTTCGAGC GACGCCAGGTTTGAGCTTATT
Lmod3 TTCAAGATGGGCAGCTAGAAAAT TCGTCAGCTCGGAGATAGGAA
Six2 CACCTCCACAAGAATGAAAGCG CTCCGCCTCGATGTAGTGC
Sle26a5 CACTCATTATGGGAGCGAGA TCCGTCTACTTCTGCATCCAC
Strip2 ACTGGGGTCCTGAGTCAAAG TTGACAAAAGTGAGCAGGGC

Table 1. Sequences of oligonucleotide primers for q-PCR.
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Organism Cell Type Replicate Analysis type Sample ID Raw data accession number
Mus musculus 1,000 THCs Biological Replicate 1, Technical replicate 1 RNA-Sequencing THC_1 SRX3757335
Mus musculus 1,000 IHCs Biological Replicate 1, Technical replicate 2 RNA-Sequencing THC_2 SRX3757336
Mus musculus 1,000 IHCs Biological Replicate 2, Technical replicate 1 RNA-Sequencing IHC_3 SRX3757337
Mus musculus 1,000 IHCs Biological Replicate 2, Technical replicate 2 RNA-Sequencing THC_4 SRX3757338
Mus musculus 1,000 OHCs Biological Replicate 1, Technical replicate 1 RNA-Sequencing OHC_1 SRX3757339
Mus musculus 1,000 OHCs Biological Replicate 1, Technical replicate 2 RNA-Sequencing OHC_2 SRX3757340
Mus musculus 1,000 OHCs Biological Replicate 2, Technical replicate 1 RNA-Sequencing OHC_3 SRX3757341
Mus musculus 1,000 OHCs Biological Replicate 2, Technical replicate 2 RNA-Sequencing OHC_4 SRX3757343
Mus musculus 1,000 OHCs Biological Replicate 3, Technical replicate 1 RNA-Sequencing OHC_5 SRX3757344
Mus musculus 1,000 OHCs Biological Replicate 3, Technical replicate 2 RNA-Sequencing OHC_6 SRX3757345

Table 2. Accession numbers for each biological sample.

Immunocytochemistry

Cochleae were perfused with 4% formaldehyde in phosphate buffered saline (PBS) and the basilar
membrane together with the organ of Corti was dissected out. The tissue was treated with 0.2% Triton
X-100/PBS and goat serum (10%) was used to block nonspecific binding. The tissue was then incubated
with antibodies (anti-Slc7al4: HPA045929, Lot: R43519 from Atlas Antibodies; anti-Dnm3: AB3458, Lot:
GR154711-3 from Abcam) and washed with PBS, followed by incubation with secondary antibodies (Life
Technologies, Lot# 1579044). The samples were mounted on glass slides with antifade solution (Prolong
Antifade Kit, Invitrogen, Carlsbad, CA) before imaging on a Leica Confocal Microscope (Leica TCS SP8
MP). Three cochleae from three adult CBA/] mice were used for immunodetection.

Data Records

Raw fastq sequencing files, comprised of 2 biological repeats of IHCs and 3 biological repeats of OHCs,
each with 2 technical repeats, have been deposited in the NCBI Sequence Read Archive (Data Citation 2).
The individual accession numbers for each biological and technical replicate is provided in Table 2. An
excel file containing the RPKM gene expression values of each biological and technical repeat of IHCs
and OHG:s is included as “GSE111348_Inner_and_outer_ hair_cells. RPKM.xlsx” (Data Citation 3). Since
microarray-based transcriptomes of IHCs and OHCs from adult CBA/J mice are available from our
previous study (Data Citation 4)°, we aligned the expression values of all the genes detected from RNA-
seq and microarray, according to the Ensembl annotated gene names (symbols). We also obtained
transcriptome datasets (Data Citation 5 and Data Citation 6) of neonatal cochlear hair cells from two
published studies'>'’. The gene expression values together with transcriptome datasets from these
published studies are included for comparison in Data Citation 7. Alignment of each gene from different
studies was also assisted by reference to Ensembl, HGNC, Entrez Gene and OMIM. Additional resources
such as the gEAR (https://www.umgear.org) and SHIELD (https://shield.hms.harvard.edu/index.html)
were also used for reference and verification.

Technical Validation

RNA quality control and RNA-seq quality control

We analyzed RNA quality and concentration of our samples to determine their suitability for RNA-
sequencing using an Agilent 2100 BioAnalyzer. In addition to using the 2:1 ratio (28S:18S) as an
indication for determining the integrity of RNA in the electropherogram, we also used the RIN (RNA
integrity number) software algorithm to evaluate the quality of our RNA samples. All of our samples had
a RIN of 9, indicating that the integrity of RNA samples was high with minimal degradation.

Sequencing accuracy

We used the FastQC app (version 1.0.0) on the Illumina cloud computing interface (https://basespace.
illumina.com/ome/index) to examine the quality of the reads. The analysis compared the read signals to
the probability of accurate base-reading with a Phred quality score*’. The fastq files generated from RNA-
sequencing were analyzed for base-reading accuracy. All our sequencing runs exceeded 30, which reflects
a 99.9% accuracy of the correct base at a given nucleotide in the sequence. This suggests that the RNA-
sequencing performed was of high quality and unambiguous. We used Phred quality score > 30 as the
high-quality cutoff in our analysis for all samples.

Reproducibility of biological samples

Correlation coefficient was used to examine reproducibility of biological and technical replicates of IHCs
and OHC:s. Fig. 2a presents three plots of comparison among three biological replicates OHCs while Fig.
2b shows the comparison among three technical repeats of the dataset for OHCs. As shown, the data
points are all concentrated near the line (replicate 1) with small deviation. The mean correlation
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Figure 2. Reproducibility of biological replicates and RT qPCR validation of differential expression of 27 genes in IHCs
and OHC:s. (a) Correlation coefficient between biological replicates from OHCs. Correlation coefficient (r) for each comparison
is given in each panel. (b) Correlation coefficient between technical repeats of RNA-seq from OHC samples. (c) PCA analysis of
the gene expression profiles of IHCs and OHCs compared with liver cells. Filled circles with different colors represent different
biological and technical repeats for IHCs and OHCs. (d) Validation of differential expression of 26 genes between IHCs and
OHC:s using RT qPCR and RNA-seq. Positive values indicate higher expression of the genes in IHCs than in OHCs, while
negative values indicate higher expression the genes in OHCs than in IHCs. Fold differences, based from RPKM values from
RNA-seq, are all calculated in log2 base. AACt for each gene was calculated from RT qPCR.
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Figure 3. Differential expression of SLC7A14 and DNM3 in IHCs and OHCs by immunocytochemistry
and confocal microscopy. (a) Expression of SLC7A14 in THCs in a whole mount preparation from an adult
mouse cochlea. Stereocilia bundles were labelled with rhodamine-phalloidin while SLC7A14 was labelled with
anti-SLC7A 14 antibody. Bar: 20 pm. (b) Confocal optical sectioning from the whole mount preparation in (a).
Expression of SLC7A14 (in red) is only detected in THCs. Bar: 10 pm. (c) Top view of stereocilia bundles of hair
cells. Rhodamine-phalloidin (in green) was used to label actin. Bar: 5 pm (for ¢, d and e). (d) Expression of
DNMS3 (in red) in the same view as in c. (e) A merged image of c and d. (f): Optical sectioning image of OHC
stereocilia bundles under high magnification. (g) Optical sectioning image of THC stereocilia bundles. (h)
Image of vestibular hair cells. In f, g and h, antibodies against phalloidin and DNM3 were used. Expression of
DNM3 was only seen in the stereocilia bundle of OHCs. Bar: 5 um for f and g and h.

coefficient between biological replicates of OHCs is 0.994 + 0.0003 (mean + SD), while the mean
correlation coefficient between technical repeats of OHCs is 0.999 + 0.0045. The correlation coefficient
between biological replicates of IHCs is 0.9984 + 0.0003 (mean + SD), and the coefficient between
technical repeats is 0.994 + 0.0045. The analysis suggests that the results were highly reproducible.

Principal component analysis (PCA) is a technique commonly used to measure levels of variation and
similarity among gene expression datasets. We used PCA to examine similarity of gene expression of
different cell populations as well as reproducibility of biological replicates. Fig. 3c shows PCA of the gene
expression profiles of IHCs and OHCs. Transcriptome data of mouse liver cells from a published study*'
was downloaded and normalized with our data set. As shown, the expression profiles of OHCs are highly
reproducible as the data points from three biological and three technical repeats are clustered all together
with small variability. Similarly, the expression profiles of IHCs are also highly reproducible. However,
the datasets of IHCs and OHCs are separated by a large distance, suggesting that their gene expression
profiles are different. The gene expression profile of liver cells is also distinct from those of IHCs and
OHCs, as liver cells are further away from hair cells in the graph.

Real-time qPCR validation

Fifteen additional CBA/J] mice were used to prepare three biological replicates of IHCs and OHCs for
RT qPCR to validate the expression of 26 genes, 14 of which were highly expressed in OHCs and 12
were highly expressed in IHCs. The expression values were all normalized to the cycle threshold (Ct)
value of Nono and Ppia. Nono and Ppia, used as reference genes in a previous study'’, had similar level
of expression with no statistical significance between the two populations of hair cells in both previous
microarray’ and present RNA-seq studies. We compared the patterns of differential expression of these
genes between IHCs and OHCs using expression values from qPCR and RNA-seq. While log2 fold
difference for each gene was computed using the RPKM values of IHCs vs. OHCs from RNA-seq, the
AACt for each gene was calculated from RT qPCR. Fig. 2d shows such a comparison after the
expression values were normalized to fold changes. Although the values from two analyses are
different, the trend of differential expression of these genes is highly consistent between the two
datasets.

Immunocytochemistry
We used immunocytochemistry to detect the expression of SLC7A14 and DNM3; the function of these
proteins in the two populations of hair cells has not been characterized. Slc7al4 and Dnm3 are
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differentially expressed in IHCs and OHCs, respectively, as shown in our previous microarray-based
transcriptome analysis’. Current study (Fig. 2d) also shows that Slc7al4 and Dnm3 are preferentially
expressed in IHCs and OHCs, respectively. Slc7al4 is predicted to encode a glycosylated, cationic
amino acid transporter protein to mediate lysosomal uptake of cationic amino acids. This gene is
expressed in the photoreceptor layer of the retina and mutations in this gene are associated with
autosomal recessive retinitis pigmentosa®’. Dnm3 encodes dynamin-3, which is predicated to be
involved in producing microtubule bundles and able to bind and hydrolyze GTP. We used antibodies
(against SLC7A14 and DNM3) and confocal microscopy to determine where they are expressed and
whether they are differentially expressed. As shown in Fig. 3a,b, strong staining of SLC7A14 is detected
in the soma of IHCs and but not in the soma of OHCs. Thus, SLC7A14 may be used as a specific
marker for IHCs. Conversely, DNM3 expression is detected in the stereocilia bundle of OHCs, but not
in the bundle of ITHCs and vestibular hair cells (Fig. 3c-h) suggesting that DNM3 may play an
important role in the biological property of OHC stereocilia and the components of the IHC and OHC
stereocilia may be different. The functional roles of these two proteins in OHCs and IHCs are yet to be
determined.

Validation by comparison with published studies

Previous studies have identified and characterized many genes expressed in hair cells in developing and
adult animals using immunocytochemistry, molecular biology, and electrophysiology techniques. These
genes encode some proteins for unique structure and function of hair cells as well as transcription factors
important for hair cell differentiation, specification and maintenance. Since the expression of these genes
has been validated by either in situ hybridization, antibody staining or molecular biology and
electrophysiology techniques, comparison of the genes detected in our RNA-seq analysis with the genes
that are already be described in the inner ear is a good way to validate our dataset. We compiled a list of
genes that were identified in previous studies and presented in Table 3 (available online only). In the
table, the expression (RPKM) values from our RNA-seq analysis are included for comparison. As shown,
most genes that were previously detected in hair cells are also expressed in our dataset. We should point
out though, some genes (especially those encoding transcription factors) are known to be expressed
during development and significantly downregulated in adulthood. This may explain why some genes are
expressed at lower levels (e.g., Atohl and Jag2) or no longer detected (Foxjl, Scnlla, and Tmc2) in adult
hair cells.

Several previous studies used microarray and RNA-seq to examine the gene expression profiles of
cochlear and vestibular hair cells from embryonic and neonatal mice *'''* as well as hair cells in the
inner ear and lateral lines of larval and adult zebrafish'"**"*”. Comparison of our dataset with the
transcriptome datasets from previous studies offers another way to validate our results. The gene names
and their expression values from microarray-based transcriptomes of IHCs and OHCs from adult mice’
are presented in Data Citation 7. Although the expression values are not directly comparable because of
the two different techniques used, the majority of the genes that are detected in hair cells in different
datasets are highly consistent. In the same file, we also included transcriptome datasets from neonatal
mouse hair cells'>'?. Since these datasets were obtained from a mixed population of both THCs and
OHCs from neonatal mice, some differences between the datasets are expected.

Although the expression values from microarray and RNA-seq are not directly comparable, we expect
that the genes that are differentially expressed in one cell population in the two studies should largely be
consistent. We used the top differentially expressed genes in IHCs and OHCs from Fig. 4b,c of the
microarray study’ for comparison. We computed the log2 fold difference between the two hair cell types
from each study and present side-by-side comparison of the fold difference values from the
two techniques in Fig. 4. As shown, none of the differentially expressed genes in IHCs (IHCs/OHCs
in Fig. 4a) or OHCs (OHCs/IHCs in Fig. 4b) displace fold changes in the opposite direction from the two
studies, suggesting that the differentially expressed genes identified by the two techniques are highly
consistent. These differentially expressed genes may provide valuable information to understand different
biological properties (such as structural and functional differences) of IHCs and OHCs in the adult
inner ear.

Usage notes

While acquired deafness associated with age or noise exposure is more common than genetic deafness by
roughly two orders of magnitude, congenital deafness occurs in 1 out of every 1,000 to 2,000 births.
Hereditary hearing loss and deafness can be regarded as syndromic or non-syndromic. Mutations or
deficiencies affecting approximately 140 genes have been linked to inherited syndromic or non-
syndromic hearing loss'®. Although majority of these genes are known to be expressed in the inner ear, it
is important to determine whether they are expressed in hair cells. We analyzed the expression of 125
known deafness genes. Table 4 (available online only) shows expression levels of the 125 deafness genes
in adult IHCs and OHCs. As shown, most of these genes are detected in hair cells. We should point out
that several genes are known to be expressed during development and significantly downregulated in
adulthood. Other genes may be expressed in spiral ganglion neurons, supporting cells, and stria vascularis
and play important roles in those cells. Thus, it is not surprising that the expression of some genes is not
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Figure 4. Comparison of differentially expressed genes in IHCs and OHCs quantified by microarray
and RNA-seq techniques. The microarray data are based on genes presented in Fig. 6 of Liu et al.’ (a) Log2
fold difference between IHCs and OHCs (IHCs/OHCs). (b) Log2 fold difference between OHCs and IHCs
(OHCs/IHCs).

detected in hair cells. However, the analysis will be highly useful for assisting the auditory research
community in exploring the function of these deafness-related genes in hair cells.
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