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During pregnancy, the immune systems of mother and offspring are challenged by their
close adjacency to balance tolerance and rejection. After birth the neonate has to continue
this balance towards its new environment by tolerating commensals while rejecting
pathogens and towards its developing tissues to avoid inflammatory damage while
overcoming immunosuppression. Our group was the first to link immunosuppressive
features of myeloid derived suppressor cells (MDSC) to materno-fetal tolerance, neonatal
susceptibility to infection and inflammation control. Here we summarize recent advances
in this dynamic field.
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INTRODUCTION

Discrimination between self and non-self is one of the fundamental features of the mammalian
immune system. Especially during pregnancy, the immune systems of both, the mother and the
fetus perfectly balance between protection against pathogens and tolerance towards a semi-
allogeneic organism. Dysfunction of the immune adaptation during pregnancy can lead to severe
complications like pregnancy loss, preeclampsia, preterm birth or fetal growth restriction. Initially
the field of materno-fetal tolerance mainly focused on T cell immunology (1) [reviewed in (2)],
however it has become more and more clear that the immune mechanisms leading to successful
pregnancy are much more complex and that our understanding of how this exceptional situation is
facilitated exhibits significant gaps.

After birth, the neonatal organism is challenged to adapt immunological functions, when body
surfaces become colonized with microbes, directly exposing the neonatal immune system to
potential pathogens, also requiring a perfect balance between defense against pathogens and
tolerance towards commensals.

Myeloid-derived suppressor cells (MDSC) are myeloid cells with the ability to suppress various
types of immune responses. While other myeloid cells such as monocytes, macrophages, dendritic
cells (DCs), polymorphnuclear (PMN) neutrophils, eosinophils, and basophils classically get
activated by strong signals through pathogen-associated molecular patterns (PAMPs) or danger-
associated molecular patterns (DAMPs) resulting in a pro-inflammatory response, MDSC rather
expand under conditions with chronic infection or inflammation and act anti-inflammatory (3).
MDSC mainly consist of two cell types named granulocytic MDSC (GR-MDSC) with phenotypic
similarity to neutrophils and monocytic MDSC (MO-MDSC) with phenotypic similarity to
org October 2020 | Volume 11 | Article 5847121
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monocytes, to date making it impossible to clearly identify
MDSC only by phenotypic characteristics. In mice, GR-MDSC
are defined as CD11b+/Ly6G+/Ly6Clo and MO-MDSC as
CD11b+/Ly6G-/Ly6Chi cells. In humans, GR-MDSC expresses
the granulocytic markers CD11b, CD15 and/or CD66b, but are
negative for the monocytic surface antigen CD14. They can only
be distinguished from granulocytes by their sedimentation in the
low-density fraction (peripheral blood mononuclear cells,
PBMC) after density gradient centrifugation. Recent data
suggest, that expression of the lectin-type oxidized low density
lipoprotein (LDL) receptor 1 (LOX-1) might be a possible
marker to distinguish between granulocytes and GR-MDSC.
Human MO-MDSC are defined as CD14+/HLA-DRlo/−; their
discrimination from monocytes is based on their generally lower
expression of HLA-DR (4–6). However to date, GR-MDSC and
MO-MDSC have to be identified by their suppressive capacity,
primarily towards T-cell proliferation.

MDSC use a large number of mechanisms to suppress
immune responses. Among these, the best known are a
depletion of the essential amino acid arginine by expression of
the enzymes Arginase I (ArgI) and inducible nitric oxide
synthase (iNOS), the sequestration of cysteine by indoleamine
2,3-dioxygenase (IDO), the production of anti-inflammatory
cytokines like TGFb and IL-10, the synthesis of prostaglandins
by expression of cyclooxygenase-2 (COX-2) and the production
of reactive oxygen species (ROS) [reviewed in (7)]. The main
targets of MDSC-mediated immune suppression are T-cells,
however also a suppression of NK-cell functions (8) and DC
functions (9), as well as a modulation of monocyte/macrophage
functions (10) have been reported. Furthermore, MDSC can
induce regulatory T-cells (11), which in turn exert their own type
of immune suppression.

Accumulation and activation of MDSC are driven by various
factors. Condamine et al. proposed a two-signal model in which
the first signal leads to an expansion of myeloid cells and
inhibition of their differentiation and the second signal
converts these immature cells to MDSC (3, 12). Factors
involved in this process are growth factors and cytokines
leading to activation of transcription factors such as signal
transducer and activator of transcript 1, 3 and 6 (STAT1, 3,
and 6), CCAAT/enhancer binding protein b (C/EBPb) or NOD-,
LRR- and pyrin-domain containing protein 3 (NLRP3)
[reviewed in (12)].

Primarily, MDSC accumulation has been described under
tumor conditions, leading to inhibition of the immune response
against tumor cells and to spreading of the disease (13). In the
following years, MDSC accumulation has been described under
various other conditions such as sepsis/infection, trauma,
autoimmune diseases, obesity, ageing and transplantation
where they seem to play either a detrimental or a beneficial
role [reviewed in (14)]. Overall, it appears that under conditions,
where immune tolerance is needed to survive, MDSC
accumulation may be advantageous for the host. In this review,
we aim to summarize data on MDSC during perinatal time, i.e.
during pregnancy and the neonatal period, as a phase of life,
where under physiological conditions tolerance is needed most.
Frontiers in Immunology | www.frontiersin.org 2
MDSC DURING PREGNANCY

MDSC During Normal Pregnancy
The first description of a MDSC-accumulation during
pregnancy came from Mauti et al. who showed that increased
permissiveness for tumor metastasis during gestation in mice
was accompanied by an expansion of MDSC with inhibitory
effects on NK-cell activity and that depletion of MDSC in
pregnant mice reduced metastasis (8). Later, our group
showed, that also during physiologic conditions in healthy
human pregnancies an accumulation of GR-MDSC but not
MO-MDSC occurred with up to tenfold higher numbers of
GR-MDSC in the peripheral blood of pregnant women
compared to blood of healthy non-pregnant controls (15).
Levels of GR-MDSC were highest during early gestation (15,
16) and dropped within a few days postpartum to levels of non-
pregnant women (15). In human placenta GR-MDSC were
shown to be enriched in comparison to maternal and fetal
blood (17) and mainly located in decidua and intervillous
space (17, 18). Genetic analyses revealed that they descend
from maternal origin (17). Pan et al. and Zhang et al., showed
that also MO-MDSC increased in the peripheral blood of
pregnant women (19, 20), however percentages of MO-MDSC
were much lower than that of GR-MDSC.

In accordance with the data from humans, it has been shown
that GR-MDSC also expand during murine pregnancy both in
the periphery (21, 22) and in the uterus (22–24), especially
during early gestation (21, 24). This phenomenon was
observed in syngeneic (8, 22, 23) as well as in allogeneic (21,
24, 25) murine pregnancies. Mouse strains used were BALB/c
(21), C57BL/6J (8, 22, 25), CBA/J (24, 25), and FBVn (23).

MDSC During Pathological Pregnancies
It was shown that women with miscarriage had decreased levels
of GR-MDSC both in blood (16) and in placenta (16, 17, 26),
while numbers of MO-MDSC did not differ (26). Studies in mice
revealed that MDSC accumulation during pregnancy was also
decreased in abortion prone animals (24, 25, 27) and adoptive
transfer prevented fetal rejection in the murine abortion model
(25). In addition, depletion of MDSC caused gestation failure
(21, 23–25). Interestingly, Ostrand-Rosenberg et al. showed that
especially MDSC-depletion at day 4.5 (E4.5) of murine
pregnancy, which is the time of implantation, completely
prevented successful pregnancy, while MDSC-depletion after
E8.5 did not affect pregnancy rates (21). This is in line with
two human studies showing that high GR-MDSC levels predict a
better outcome after in-vitro fertilization (28, 29). One study
investigated MDSC in preeclampsia and showed that GR-MDSC,
but not MO-MDSC levels are decreased in peripheral blood and
cord blood of preeclampsia patients in comparison to healthy
pregnancies (30), however functional studies are lacking.

MDSC Functions and Suppressive
Mechanisms During Pregnancy
Pregnancy induced MDSC from different compartments
(peripheral blood, uterus, decidua) exert different effector
October 2020 | Volume 11 | Article 584712
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mechanisms to modulate immune effector cells during
pregnancy. A summary is depicted in Table 1 and Figure 1.

Inhibition of T-Cell Function
Suppression of T-cell function is a main feature of MDSC.
Changes in T-cell function are one of the best examined
mechanisms mediating maternal-fetal tolerance (33). In
humans, it could have been shown that GR-MDSC during
pregnancy inhibit T-cell proliferation (15, 17, 18), express
ArgI, iNOS and IDO and produce ROS (15, 18, 30). ArgI
expression led to downregulation of CD3z chain on T cells
Frontiers in Immunology | www.frontiersin.org 3
and to decreased T-cell proliferation (31), while inhibition of
ArgI restored T-cell proliferation in-vitro (17). Furthermore, it
was shown that GR-MDSC isolated from placenta exhibited
marked increased ROS-production in comparison to GR-
MDSC from the periphery (17). In pregnant mice, the main
mechanism of T-cell suppression by GR-MDSC was ROS-
production (25). From tumor-bearing mice, it is known that
induction of antigen-specific T-cell tolerance is mediated by
MDSC via ROS (34), indicating that increased ROS-production
could be also a mechanism for suppression of specific T-cell-
immunity against fetal antigens.

In mice, Zhao et al. showed that depletion of MDSC during
pregnancy led to an increase in uterine T-cells (23). Later, Ostrand-
Rosenberg et al. showed, that the detrimental effect of MDSC-
depletion during pregnancy was mediated by an increase in T-cell
activation and an upregulation of L-Selectin supposing that MDSC
prevent homing of alloreactive T-cells to the uterus (21).

Modulation of T-Helper Cell Function
Besides a general suppression of T-cell responses, MDSC during
pregnancy also modulate polarization of Th-cells. Different studies
described a predominance of Th2 responses and a suppression of
Th1-responses [reviewed in (35)] as well as an accumulation of
Tregs during normal pregnancy (36). Our group showed in-vitro
that placental GR-MDSC induce Th2-responses and inhibit Th1-
responses in a cell-contact dependent manner (17). Furthermore,
Kang et al. showed that GR-MDSC from pregnant mice induced
Tregs via production of TGF-b and the transcription regulator b-
catenin (24). In contrast to that, Ren et al. described an increase in
Tregs after MDSC-depletion during pregnancy.

Inhibition of NK Cell Function
NK cells are the predominant cell type in deciduae of early
pregnancies [reviewed in (37, 38)] and MDSC have been shown
to suppress NK-cell functions under tumor-conditions (39, 40).
During pregnancy, MDSC may contribute to reduced NK-cell
TABLE 1 | Origin, effects and mechanisms of MDSC in pregnancy.

MDSC origin Effect Main
mechanism
of MDSC

Ref.

GR-MDSC from
peripheral blood

Inhibition of T-cell proliferation – (15,
17, 18,
31)

Downregulation of CD3 z chain ArgI (31)

Inhibition of T-cell proliferation ROS (25)

GR-MDSC from
placenta
(human)

Inhibition of Th1 response Cell contact (17)

Induction of Th2 response Cell contact (17)

Inhibition of T-cell proliferation ROS (25)

MDSC (murine) Inhibition of T-cell proliferation ROS (25)

Decrease of uterine T-cells – (21, 23)

Decrease of T-cell activation, L-
selectin downregulation

– (21)

Induction of Tregs TGF-beta
Beta-catenin

(24)

Reduce NK-cell cytotoxicity, inhibition
of perforin, downregulation of
NKG2D

– (8, 32)
Source of MDSC, effect on immune effector cell and the main MDSC mechanisms are
listed. ArgI, arginase I; ROS, reactive oxygen species; iNOS, inducible NO-synthetase.
FIGURE 1 | Mechanisms of MDSC induction and MDSC-mediated immune modulation during pregnancy.
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cytotoxicity systemically (8), as well as locally in the uterus (32).
Mechanisms for inhibition of NK cell function by MDSC during
pregnancy are an inhibition of perforin-cytotoxicity and a
downregulation of the surface receptor NKG2D on NK-cells (32).

Effects on Myeloid Cells
Decidual DCs have been shown to be in a tolerogenic state with
reduced co-stimulatory capacity and altered cytokine expression
[reviewed in (41)]. Hu et al. showed that in hepatocellular
carcinoma MDSC impair DC function (42). To our knowledge,
until now no data exists concerning the influence of MDSC on
myeloid cell function during pregnancy. Zhao et al. described an
increase in infiltrating DCs in the uteri of pregnant animals after
MDSC-depletion, while total myeloid cell numbers remained
unchanged (23), however functional data is missing.

MDSC Expansion and Activation During
Pregnancy
Soluble Factors Regulating MDSC Expansion and
Activation During Pregnancy
Different studies investigated potential mechanisms regulating
MDSC accumulation and activation during pregnancy. Zhang
et al. showed in vitro and in human cells an expansion of and an
upregulation of Arg1 in MO-MDSC by the human trophoblast
cell line HTR8 via CCL2 (20). Pan et al. showed an induction of
MO-MDSC by 17b-Estradiol also in human cells (19). In murine
cells, progesterone but not estrogen induced MDSC in-vitro. Our
group showed that co-culture with the human trophoblast cell
line JEG-3 induced MDSC. This was partially mediated through
the receptor CXCR4 on MDSC, indicating that CXCL12, the
ligand of CXCR4, plays a role in MDSC-expansion (17).
Furthermore, we showed that soluble human leucocyte antigen
G (sHLA-G) induced MDSC from PBMC through the receptor
immunoglobulin like transcript (ILT) 4, increased suppressive
activity of GR-MDSC and induced IDO expression (43).

In-vivo, Ostrand-Rosenberg et al. demonstrated that the IDO-
inhibitor 1-methyltryptophan (1-MT) decreased the level of
MDSC in pregnant mice, while application of granulocytic
colony-stimulating factor (G-CSF) restored MDSC-levels (21).
Studies describing soluble factors mediating MDSC induction or
activation in-vivo that may be targets for therapeutic interventions
are still lacking.

Transcriptional Regulation of MDSC Expansion and
Activation During Pregnancy
Three studies described a role of STAT3 for regulation of MDSC
function during pregnancy. STAT3 has been shown to be involved
in MDSC expansion via estradiol and via progesterone (19, 25) as
well as in HLA-G-mediated MDSC-activation (43). Furthermore,
our group showed that lack of the transcription factor hypoxia-
inducible factor 1a (HIF-1a) led to decreased accumulation of
MDSC during pregnancy and impaired suppressive activity (22).
Interestingly, mice with homozygous deletion of heme oxygenase 1
(HO-1), one of the target genes of HIF-1a (44) are infertile and
heterozygous deletion results in preeclampsia like pregnancies with
primarily absorption of HO-1–deficient fetuses (45, 46).
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Furthermore, it has been shown that HO-1 is relevant for MDSC
function during transplantation (47). The role of HO-1 for MDSC
function during pregnancy remains to be elucidated. A summary of
mechanisms leading to MDSC accumulation and activation during
pregnancy is depicted in Figure 1.
MDSC IN THE FETUS AND NEONATE

MDSC in Cord Blood
Concordant to the maternal side, MDSC have also been found in
cord blood, suggesting that they not only modulate maternal but
also fetal immune system to ensure feto-maternal tolerance (48).
In two cohorts comprising cord blood samples from 83 healthy,
full-term neonates after caesarian section, MDSC accounted for
about 5% (0,3% - 60%) of mononuclear cells (48, 49) - levels
formerly only described in pathological processes. Accumulated
cord blood MDSC were characterized as positive for granulocytic
markers CD66b or CD15, positive for CD33, CD11b and IL-4Ra
and negative for CD14 and HLA-DR, thus classified as GR-
MDSC, while MO-MDSC were not elevated.

Several clinical characteristics have been evaluated as influencing
factor for cord blood GR-MDSC accumulation. Most interesting,
cord blood GR-MDSC levels seem to be independent of gestational
age (50), resembling GR-MDSC rates in maternal blood. However,
it has been reported, that very low birth weight infants, i.e. infants
with a birth weight below 1500 g and small for gestational age
(SGA) infants, i.e. weight below the 10th percentile for the
gestational age may have decreased cord blood GR-MDSC levels
(50, 51). No influence has been described for biological sex and
exposition to prenatal medication of the mother such as magnesium
or corticosteroids, influencing factors that have been described for
other regulatory immune effector cells such as regulatory T cells
(Treg) in preterm infants (52).

While until now, no data on MDSC counts are available
directly from the fetal blood, cord blood MDSC are regarded as
of fetal origin. This is supported by the fact, that GR-MDSC have
been shown to be elevated in cord blood not only from term, but
also from preterm infants as early as 23 weeks of gestation (50).

Elevation of MDSC has also been described in neonatal
mice in spleens and bone marrow (51), with substantial
expansion of GR-MDSC up to 40% while MO-MDSC were
only marginally elevated.

MDSC After Birth
After birth, different studies showed elevated GR-MDSC levels
persist for at least 4 to 6 weeks, accounting a fraction of 2% to
4% of PBMC with a negative correlation of MDSC-counts and
postnatal age. MDSC then further decreases to adult levels during
the second month of life (49, 50). Paralleled to the kinetics in
humans, in neonatal mice, GR-MDSC levels stay elevated during
the first 3 weeks of life, then dropping to adult levels (51).

The parallelism in the kinetic of postnatal persistence of neonatal
MDSC in human and mice is somehow astonishing since
adaptation and maturation of various immunological functions is
generally thought to follow different time scales in men and mice
October 2020 | Volume 11 | Article 584712
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and are different in each immunological compartment such as
innate cytokine response, innate myeloid cell populations and
adaptive immune functions (53). For neonatal MDSC persistence
external factors regulating MDSC accumulation under other
circumstances such as tumor environment may be relevant.
Intriguingly, reports on CD71+ erythroid cells, another immature
cell population with immunosuppressive activity, which are highly
elevated in cord blood and peripheral blood during the first weeks of
life and thus extraordinarily mimicking the course of MDSC
accumulation (54) hint toward a role of these cells for
microbiome establishment after birth. Taken together, neonatal
MDSC might not only be interpreted as remnant of materno-fetal
tolerance and as a sign of distinct immune adaptation, but might be
a crucial regulator of inflammation during the neonatal period.

MDSC in Neonatal Pathologies
Data from our group showed, that in neonates suffering from
bacterial infection GR-MDSC may dramatically expand, even
from the elevated level seen in healthy neonates (50), and that
GR-MDSC levels correlated with inflammatory markers such as
C-reactive protein (CRP), demonstrating the influence of an
inflammatory environment of MDSC at least on their expansion,
as seen in adult patients [reviewed in: (55)].

Interesting but somehow unclear data descend from an
inflammatory disease model of neonatal mice using a gavage/
hypoxia approach to induce necrotizing enterocolitis (NEC), an
often-devastating inflammatory bowel-disease of preterm infants.
Selective depletion of MDSC with an agonistic antibody to Tumor-
Necrosis-Factor-Related Apoptosis-Inducing Ligand receptor
(TRAIL-R) depleted MDSC from the lamina propria and led to
shortened survival and pronounced intestinal inflammation and
bacterial load (51) duringmurine NEC. In contrast, neonatal splenic
myeloid cells containing MDSC adoptively transferred
intraperitoneally greatly decreased these symptoms compared to
adult mouse spleen cells or mock transfer (51). These data may
underline the potential role of neonatal MDSC as regulator of
inflammation during the neonatal period.

MDSC Functions in Neonates
Functional characteristics of cord blood MDSC and neonatal
MDSC have been described in some details and have added
several new aspects in the knowledge of MDSC functionality in
general (Table 2). Besides the ability to inhibit T cell proliferation as
prerequisite and characteristic function of MDSC (48), we could
demonstrate that cord blood GR-MDSC preferentially inhibited
Th1 cells, contrarily polarized towards Th2 reactions (56) and
induced Tregs (51, 56). Intriguingly these processes seemed to be
mediated by different effector mechanisms. Th1 inhibition required
direct cell-contact and was independent of other cell types, while
induction of Th2 cells was mainly mediated through soluble factors,
i.e. ArgI and ROS. Induction of Tregs was partially mediated
through iNOS expression (56).

Cord blood GR-MDSC may have effects on other types of
immune effector cells such as monocytes and NK-cells. In co-
cultures with cord blood GR-MDSC monocytes downregulated
HLA class I and class II expression and upregulated co-inhibitory
molecules such as programmed death ligand 1 (PD-L1) and PD-
Frontiers in Immunology | www.frontiersin.org 5
L2, showed reduced stimulatory capacity of antigen-dependent
and antigen-independent T-cell proliferation and altered
cytokine expression upon bacterial stimulation with decreased
TNF-a and IL-1b but enhanced IL-8 production (57). Taken
together, monocytes seem to be biased towards an immature
phenotype typically seen in cord blood monocytes (58).
Furthermore, NK cell cytotoxicity was inhibited by cord blood
GR-MDSC (48). On the whole cord blood GR-MDSC may
orchestrate several other aspects of immune reactions in a way
which is thought to be characteristic for the neonatal period.

Concerning other mechanisms for immune suppression/
modulation mediated by cord blood GR-MDSC, it could have
been shown that cord blood GR-MDSC produce higher amounts
of prostaglandin E2 (PGE2),express increased levels of S100A9
and lactoferrin and exert pronounced antibacterial activity
compared to adult neutrophils (51).

While the functionality of neonatal MDSC has not been tested
in detail in humans, mainly because of the unavailability of larger
volumes of peripheral blood of neonates, function of neonatal
murine GR-MDSC and MO-MDSC have been studied in-vitro
and in-vivo (51). In-vitro, neonatal GR-MDSC and MO-MDSC
exhibited potent suppression of antigen-specific proliferation of
OT-1 CD8+ T-cells with stimulated with SIINFEKL antigen as
well as antigen nonspecific CD8 T-cell proliferation stimulated
with CD3/CD28. In-vivo, neonatal GR-MDSC were able to
decrease lung inflammation in an ovalbumin-sensitization
model (51). A summary of MDSC-mediated immune
modulation in neonates is depicted in Figure 2.
MDSC IN BREAST MILK

Besides the accumulation of MDSC in the maternal organism
during pregnancy as well as in the fetal and neonatal organism,
recently our group could show that also breast milk contains
large numbers of GR-MDSC (59). Numbers of GR-MDSC in
breast milk from preterm infants correlated with gestational
TABLE 2 | Origin, effects, and mechanisms of MDSC in neonates.

MDSC origin Effect Main mechanism
of MDSC

Ref.

GR-MDSC from
cord blood

Inhibition of T-cell proliferation – (44,
45)

Inhibition of Th1 responses Cell contact (51)

Induction of Th2 responses ArgI, ROS (51)

Induction of Tregs iNOS (47,
51)

Downregulation of HLA-
molecules on monocytes

– (52)

Upregulation of co-stimulatory
molecules PD-L1, PD-L2

– (52)

Decrease of TNF-alpha, IL-1beta – (52)

Induction of IL-8 – (52)

Inhibition of NK-cell cytotoxicity – (44)
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age (unpublished data). In comparison to GR-MDSC from the
periphery, breast milk GR-MDSC were functionally activated
with increased T-cell inhibitory capacity, increased expression
of CXCR4, PD-L1, PD-L2, and iNOS. Furthermore, we could
show that breast milk GR-MDSC suppressed the expression of
TLR-4 on monocytes. As putative mechanisms for MDSC-
accumulation in breast milk, we investigated if prolactin or
oxytocin could induce MDSC from PBMC, but could not show
any effect (59). Beyond that, He et al. showed that breastfed
infants had increased GR-MDSC levels in comparison to
infants fed with formula (51). Further in-vivo studies are
needed to investigate the functional role of GR-MDSC in
breast milk.
CONCLUSION

Besides their well described role during pathological processes
such as cancer and inflammation, where an expansion of MDSC
is detrimental for the host, during the last years MDSC have been
discovered also as potent regulators of critical immunological
processes during pregnancy and the neonatal period such as
maintenance of materno-fetal tolerance and control of
inflammation in neonates. Better understanding of the
differences between protective and destructive MDSC-
populations and the mechanisms leading to their expansion is
Frontiers in Immunology | www.frontiersin.org 6
needed to specifically influence their functions. Targeting
MDSC-functions may help to positively impact immunological
pregnancy complications as well as inflammatory diseases of the
newborn making them an interesting target for cellular based
therapies in this field.
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