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Abstract: The profile of sphingomyelin and its metabolites shows changes in the plasma, organs,
and tissues of patients with cardiovascular, renal, and metabolic diseases. The objective of this study
was to investigate the effect of empagliflozin on the levels of sphingomyelin and its metabolites,
as well as on the activity of acid and neutral sphingomyelinase (aSMase and nSMase) and neutral
ceramidase (nCDase) in the plasma, kidney, heart, and liver of streptozotocin-induced diabetic and
Angiotensin II (Ang II)-induced hypertension rats. Empagliflozin treatment decreased hyperglycemia
in diabetic rats whereas blood pressure remained elevated in hypertensive rats. In diabetic rats,
empagliflozin treatment decreased sphingomyelin in the plasma and liver, ceramide in the heart,
sphingosine-1-phosphate (S1P) in the kidney, and nCDase activity in the plasma, heart, and liver. In
hypertensive rats, empagliflozin treatment decreased sphingomyelin in the plasma, kidney, and liver;
S1P in the plasma and kidney; aSMase in the heart, and nCDase activity in the plasma, kidney, and
heart. Our results suggest that empagliflozin downregulates the interaction of the de novo pathway
and the catabolic pathway of sphingolipid metabolism in the diabetes, whereas in Ang II-dependent
hypertension, it only downregulates the sphingolipid catabolic pathway.

Keywords: diabetes; angiotensin II-induced hypertension; sphingomyelin; ceramide; sphingosine;
shingosine-1-P; empagliflozin

1. Introduction

Numerous human studies have shown that, in cardiovascular, renal, and metabolic
diseases, the profiles of sphingomyelin [1–4] and its metabolites ceramide [5–11], sphingo-
sine [12], and sphingosine-1-phosphate (S1P) [13,14] are altered (reduction or elevation) in
the plasma, organs (liver and heart), and tissues (skeletal muscle and adipose). Most of
these studies focused on the determination of ceramide in plasma. However, it is necessary
to perform preclinical studies to determine the content of sphingomyelin and its bioactive
metabolites in plasma and organs such as the brain, liver, heart, and kidney, because the
sphingolipid metabolism imbalance can be affected directly or indirectly in various organs.

On the other hand, changes in the expression or activity of the enzymes that participate
in sphingolipid metabolism may explain the alterations in their profile. In the catabolic
pathway, sphingomyelinase (SMase) hydrolyzes sphingomyelin to release ceramide, which
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is hydrolyzed into sphingosine and S1P by ceramidase (CDase) and sphingosine kinase (SK),
respectively [15]. Concerning the expression at the mRNA level of the enzymes involved in
the synthesis (serine palmitoyltransferase) and degradation of ceramide (SMase, CDase,
and SK-1), the levels of these enzymes were increased in intra-abdominal adipose tissue
and the myocardium of obese patients with or without type 2 diabetes [16,17]. In another
study, the level of SK expression decreased in the brain of stroke-prone spontaneously
hypertensive rats and S1P receptor expression was increased in the kidney of stroke-
resistant spontaneously hypertensive rats [18].

Regarding enzyme activity, secretory SMase activity increased in the serum of patients
with type 2 diabetes, chronic heart failure, or acute coronary syndromes [19–21]. In the
adipose tissue of obese non-diabetic or diabetic patients, the activity of serine palmitoyl-
transferase, neutral and acid CDase (nCDase and aCDase) was increased, while the aSMase
activity was decreased [7]. Therefore, drugs that modify the expression or activity of the
enzymes involved in sphingolipid metabolism are attractive candidates for the treatment
of cardiovascular, renal, and metabolic disease.

Empagliflozin is a sodium-glucose co-transport 2 (SGLT2) inhibitor that reduces renal
glucose reabsorption in type 2 diabetes patients [22]. SGLT2 inhibitors also are used for the
treatment of type 1 diabetes [23], obesity [24], heart failure [25], myocardial infarction [26],
atherosclerosis [27] and hypertension [28]. SGLT2 inhibitors exert cardio-renal protective
effects in patients with and without diabetes, but their effects are independent of glycemic
control. Interestingly, empagliflozin reduced the content of sphingomyelin and ceramide
in the heart of type 2 diabetic rats [29]. In a previous study, we demonstrated that in
the isolated perfused rat kidney of diabetic rats, the vasoconstriction produced by S1P
increases [30]. Additionally, in the isolated perfused rat kidney, angiotensin II (Ang II)
stimulates ceramide formation via the activation of nSMase [31]. Therefore, it is possible
that SGLT2 inhibitors also regulate sphingolipid metabolism in the plasma and organs of
diseases other than diabetes, e.g., Ang II contributes via multiple mechanisms in the devel-
opment and maintenance of various pathologies including the metabolic, renal, cardiac,
and hepatic [32,33].

The objective of this study was to investigate the effect of empagliflozin on the levels
of sphingomyelin (SM) and its metabolites, as well as on the activity of aSMase, nSMase,
and nCDase in the plasma, kidney, heart, and liver of streptozotocin-induced diabetic
and Angiotensin II (Ang II)-induced hypertension rats. Thus, we have a model with
hyperglycemia and another dependent on Ang II.

2. Results
2.1. General Characteristics of Diabetic Rats

The diabetic rats showed no weight gain, and at the end of four weeks, they presented
a significant decrease in weight compared with the control. Blood glucose and urine volume
were significantly higher in diabetic rats than in control rats. All of these changes decreased
with empagliflozin treatment (Table 1).

Table 1. General characteristics of control, diabetic and empagliflozin-treated diabetic rats.

Control Diabetic Diabetic + Empagliflozin

Basal Final Basal Final Basal Final

Body weight (g) 315 ± 15 330 ± 10 325 ± 8 250 ± 18 * 330 ± 10 294 ± 6.5 *
Blood glucose (mg/dL) 102 ± 8 113 ± 2.5 106 ± 4 589 ± 34 * 104 ± 6 206 ± 43 *

Urine volume (mL/24 h) 12 ± 3 12 ± 8 15 ± 2 141 ± 4.2 * 14 ± 3 50.3 ± 0.7 *

Values are mean ± EM from 10 rats. * p < 0.05 vs. control.

2.2. Characteristics of Angiotensin II-Dependent Hypertension Rats

Hypertensive rats showed no weight gain and change in blood glucose concentration
compared with the normotensive and were not affected by empagliflozin treatment. Ang II



Int. J. Mol. Sci. 2022, 23, 2883 3 of 19

administration caused an increase in urine volume and blood pressure, which were not
affected by empagliflozin treatment (Table 2).

Table 2. General characteristics of Sham, hypertensive and empagliflozin-treated hypertensive rats.

Sham Ang II Ang II + Empagliflozin

Basal Final Basal Final Basal Final

Body weight (g) 324 ± 23 332 ± 20 352 ± 7 303 ± 6 * 341 ± 18 321 ± 13
Blood glucose (mg/dL) 114 ± 5 120 ± 7 116 ± 4 122 ± 11 108 ± 8 118 ± 18

Urine volume (mL/24 hrs) 12.5 ± 4 13.3 ± 9.2 14.4 ± 5.11 45 ± 8.1 * 45 ± 12 40 ± 14
Blood pressure 120 ± 5 122 ± 6.6 125 ± 4.51 195 ± 22 * 119 ± 3 195 ± 12

Values are mean ± EM from 10 rats. * p < 0.05 vs. Sham.

2.3. Sphingomyelin Content in Diabetic and Hypertensive Rats

Sphingomyelin was only increased in the plasma and liver of diabetic rats compared
with the control group and was reduced by empagliflozin treatment. While the kidney
and heart did not show changes with or without empagliflozin compared with the control
group (Figure 1).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. General characteristics of control, diabetic and empagliflozin-treated diabetic rats. 

 Control Diabetic Diabetic + Empagliflozin 
 Basal Final Basal Final Basal Final 

Body weight (g) 315 ± 15  330 ± 10 325 ± 8 250 ± 18 * 330 ± 10 294 ± 6.5 * 
Blood glucose (mg/dL) 102 ± 8 113 ± 2.5 106 ± 4 589 ± 34 * 104 ± 6 206 ± 43 * 

Urine volume (mL/24 h) 12 ± 3  12 ± 8 15 ± 2 141 ± 4.2 * 14 ± 3 50.3 ± 0.7 * 
Values are mean ± EM from 10 rats. * p < 0.05 vs. control. 

2.2. Characteristics of Angiotensin II-dependent Hypertension Rats 
Hypertensive rats showed no weight gain and change in blood glucose concentration 

compared with the normotensive and were not affected by empagliflozin treatment. Ang 
II administration caused an increase in urine volume and blood pressure, which were not 
affected by empagliflozin treatment (Table 2).   

Table 2. General characteristics of Sham, hypertensive and empagliflozin-treated hypertensive 
rats. 

 Sham Ang II Ang II + Empagliflozin 
 Basal Final Basal Final Basal Final 

Body weight (g) 324 ± 23 332 ± 20 352 ± 7 303 ± 6 * 341 ± 18 321 ± 13 
Blood glucose (mg/dl) 114 ± 5 120 ± 7 116 ± 4 122 ± 11 108 ± 8 118 ± 18 

Urine volume (ml/24 hrs) 12.5 ± 4 13.3 ± 9.2 14.4 ± 5.11 45 ± 8.1 * 45 ± 12 40 ± 14 
Blood pressure 120 ± 5 122 ± 6.6 125 ± 4.51 195 ± 22 * 119 ± 3 195 ± 12 

Values are mean ± EM from 10 rats. * p < 0.05 vs. Sham. 

2.3. Sphingomyelin Content in Diabetic and Hypertensive Rats 
Sphingomyelin was only increased in the plasma and liver of diabetic rats compared 

with the control group and was reduced by empagliflozin treatment. While the kidney 
and heart did not show changes with or without empagliflozin compared with the control 
group (Figure 1).  

 
Figure 1. The effect of empagliflozin on sphingomyelin content in the plasma, kidney, heart, and 
liver of diabetic rats. Control (C), diabetic (D), and diabetic rats treated with empagliflozin (D+E). 

Figure 1. The effect of empagliflozin on sphingomyelin content in the plasma, kidney, heart, and
liver of diabetic rats. Control (C), diabetic (D), and diabetic rats treated with empagliflozin (D+E).
Each bar represents the mean ± SE of n = 10. * p < 0.05 when compared with control; δ p < 0.05 when
compared with diabetic rats.

The sphingomyelin level also increased in plasma and all the evaluated organs of
hypertensive rats compared with the sham group; the empagliflozin treatment decreased
sphingomyelin in the plasma, kidney, and liver, but not in the heart (Figure 2).

2.4. Ceramide Content in Diabetic and Hypertensive Rats

The ceramide content decreased in the plasma of diabetic rats compared with the
control group, and empagliflozin treatment did not modify this content, while the kidney
and liver did not show changes with or without empagliflozin. The ceramide content
increased in the heart compared with the control group and decreased with empagliflozin
(Figure 3).
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Figure 2. The effect of empagliflozin on sphingomyelin content in plasma, kidney, heart, and liver
of hypertensive rats. Normotensive (Sham), hypertensive (Ang II-induced hypertensive rats), and
empagliflozin-treated hypertensive rats (Ang II + E). Each bar represents the mean ± SE of n = 10.
* p < 0.05 when compared with sham; δ p < 0.05 when compared with hypertensive rats.
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Figure 3. The effect of empagliflozin on ceramide content in plasma, kidney, heart, and liver of
diabetic rats. Control (C), diabetic (D), and diabetic rats treated with empagliflozin (D+E). Each
bar represents the mean ± SE of n = 10. * p < 0.05 when compared with control; & p < 0.05 when
compared with diabetic rats.
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On the other hand, in plasma, kidney, and liver, the ceramide content was decreased;
however, it was increased in the heart of hypertensive rats; empagliflozin treatment did
not modify this content (Figure 4).
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Figure 4. The effect of empagliflozin on ceramide content in plasma, kidney, heart, and liver of
hypertensive rats. Normotensive (Sham), hypertensive (Ang II-induced hypertensive rats), and
empagliflozin-treated hypertensive rats (Ang II + E). Each bar represents the mean ± SE of n = 10.
* p < 0.05 when compared with sham;.

2.5. Sphingosine Content in Diabetic and Hypertensive Rats

The sphingosine content decreased in the plasma, kidney, and liver of diabetic rats
compared with the control, and empagliflozin treatment did not modify this content. The
sphingosine content did not show changes in the heart with or without empagliflozin
compared with the control group (Figure 5).

Sphingosine content decreased in the plasma and kidney of hypertensive rats com-
pared with the sham group, and empagliflozin treatment did not modify this content. The
sphingosine content did not show changes in liver with or without empagliflozin compared
with the sham group. The sphingosine content increased in the heart and empagliflozin
treatment did not modify this content (Figure 6).

2.6. Sphingosine-1-Phosphate Content in Diabetic and Hypertensive Rats

Sphingosine-1-phosphate content increased in the plasma, kidney, and heart of diabetic
rats compared with the control group, and empagliflozin treatment only decreased this
content in the kidney. The sphingosine-1-phosphate content did not show changes in the
liver with or without empagliflozin compared with the control group (Figure 7).
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Figure 5. The effect of empagliflozin on sphingosine content in plasma, kidney, heart, and liver of
diabetic rats. Control (C), diabetic (D), and diabetic rats treated with empagliflozin (D+E). Each bar
represents the mean ± SE of n = 10. * p < 0.05 when compared with control.
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Figure 6. The effect of empagliflozin on sphingosine content in plasma, kidney, heart, and liver
of hypertensive rats. Normotensive (Sham), hypertensive (Ang II-induced hypertensive rats), and
empagliflozin-treated hypertensive rats (Ang II + E). Each bar represents the mean ± SE of n = 10.
* p < 0.05 when compared with sham;.
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Figure 7. The effect of empagliflozin on sphingosine-1-phosphate content in plasma, kidney, heart,
and liver of diabetic rats. Control (C), diabetic (D), and diabetic rats treated with empagliflozin (D+E).
Each bar represents the mean ± SE of n = 10. * p < 0.05 when compared with control; δ p < 0.05 when
compared with diabetic rats.

On the other hand, sphingosine-1-phosphate content also increased in the plasma,
kidney, and heart of hypertensive rats compared with the sham group; empagliflozin
treatment only decreased this content in plasma and kidney. The sphingosine-1-phosphate
content did not show changes in the liver with or without empagliflozin compared with
the sham group (Figure 8).
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Figure 8. The effect of empagliflozin on sphingosine-1-phosphate content in plasma, kidney, heart,
and liver of hypertensive rats. Normotensive (Sham), hypertensive (Ang II-induced hypertensive
rats), and empagliflozin-treated hypertensive rats (Ang II + E). Each bar represents the mean ± SE of
n = 10. * p < 0.05 when compared with sham; δ p < 0.05 when compared with hypertensive rats.
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2.7. Sphingomielinases Activity in Diabetic and Hypertensive Rats

The aSMase activity increased in the plasma of diabetic rats compared with the control
group. The aSMase activity did not show changes in the kidney and was decreased in the
heart and liver compared with the control group. Empagliflozin treatment did not modify
the nSMase activity (Figure 9).
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Figure 9. The effect of empagliflozin on acid sphingomyelinase (aSMase) activity in plasma, kidney,
heart, and liver of diabetic rats. Control (C), diabetic (D), and diabetic rats treated with empagliflozin
(D+E). Each bar represents the mean ± SE of n = 10. * p < 0.05 when compared with control.

The aSMase activity increased in the plasma of hypertensive rats compared with
the sham group. While the aSMase activity decreased in kidney and liver, empagliflozin
treatment did not modify the nSMase activity. The aSMase activity increased in the heart
compared with the sham group and decreased with the empagliflozin treatment (Figure 10).

The nSMase activity increased in the kidney and liver, and decreased in the hearts of
diabetic rats compared with the control group; empagliflozin treatment did not modify the
nSMase activity (Figure 11).

The nSMase activity increased in the kidney and liver and was without changes in the
heart of hypertensive rats compared with the sham group; empagliflozin treatment did not
modify the nSMase activity (Figure 12).

2.8. Ceramidase Activity in Diabetic and Hypertensive Rats

The nCDase activity increased in the plasma, heart and liver of diabetic rats compared
with the control group and the empagliflozin treatment decreased the activity. nCDase
activity decreased in the kidney, and empagliflozin treatment did not modify the activity
(Figure 13).

The nCDase activity increased in the plasma, kidney, and heart of hypertensive rats
compared with the sham group but decreased with empagliflozin treatment. nCDase
activity in the liver did not show changes with and without treatment (Figure 14).
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Figure 10. The effect of empagliflozin on acid sphingomyelinase (aSMase) activity in plasma, kid-
ney, heart, and liver of hypertensive rats. Normotensive (Sham), hypertensive (Ang II-induced
hypertensive rats), and empagliflozin-treated hypertensive rats (Ang II + E). Each bar represents
the mean ± SE of n = 10. * p < 0.05 when compared with sham; δ p < 0.05 when compared with
hypertensive rats.
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Figure 11. The effect of empagliflozin on neutral sphingomyelinases (nSMase) activity in kidney,
heart, and liver of diabetic rats. Control (C), diabetic (D), and diabetic rats treated with empagliflozin
(D+E). Each bar represents the mean ± SE of n = 10. * p < 0.05 when compared with control.
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and empagliflozin-treated hypertensive rats (Ang II + E). Each bar represents the mean ± SE of n = 10.
* p < 0.05 when compared with sham; δ p < 0.05 when compared with hypertensive rats.

3. Discussion

In the present study, we evaluated whether empagliflozin treatment modifies the
activity of the enzymes involved in sphingolipid catabolism, which can alter the contents
of sphingomyelins and its metabolites in the plasma, kidney, heart, and liver of diabetic
and hypertensive rats.

Sodium–glucose cotransport 2 (SGLT2) inhibitors are drugs approved for type 2 dia-
betes mellitus treatment that also exert cardiorenal protection in patients with and without
diabetes, independent of lowering the plasma glucose concentration [34]. In this regard,
in a model of type 2 diabetes, dapagliflozin decreased the renal expression of the renin–
angiotensin system (RAS), oxidative stress, renal inflammation, and fibrosis [35].

In type 1 diabetes models, empagliflozin causes weight loss, lowers blood pressure, pre-
vents the development of endothelial dysfunction, reduces oxidative stress and apoptosis in
the pancreatic β-cells and attenuates albuminuria, renal growth, and inflammation [36,37].
Empagliflozin also prevents renal fibrosis in Ang II-dependent hypertension [38].

Interestingly, the empagliflozin treatment decreased the cardiac sphingomyelin and
ceramide content in a model of type 2 diabetes [29]. In this regard, sphingomyelin, and
its metabolites, such as ceramide, sphingosine, and sphingosine 1-phosphate, have been
considered bioactive signaling molecules, which may directly contribute to the progression
of cardiovascular, renal, and metabolic diseases [3,5,12]. However, studies are still needed
to understand the mechanism or mechanisms that contribute to the damage.

In this study, we evaluated the sphingomyelin content and its metabolites in two
experimental models: diabetic and hypertensive rats. Our results show that, in the plasma
and liver of diabetic rats, sphingomyelin is increased; in the heart, ceramide; and in
the kidney, S1P. Moreover, increased sphingomyelin was observed in the plasma and all
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evaluated organs of hypertensive rats, as well as increased ceramide and sphingosine in
the heart, and increased S1P in the plasma, kidney, and heart. Similar results have been
reported in other experimental models, regarding the increased S1P in the plasma and
heart of diabetic animals, although the liver did not show changes [39].

In the plasma of obese mice, increased sphingomyelin, ceramide, sphingosine, and
S1P levels were observed, while in adipose tissue there were decreased sphingomyelin and
ceramide content but increased sphingosine content [40]. In the plasma of spontaneously
hypertensive rats, increased ceramide and sphingosine levels were found while in arterial
tissue, only an increased ceramide content was observed [1].

To explain whether the changes in the sphingomyelin content and its metabolites
were due to the participation of the sphingolipid catabolism enzymes, we also evaluated
acid and neutral SMase activity and nCDase activity. Our results show that the aSMase
activity increased in the plasma of both experimental models and only in the heart of
hypertensive rats. nSMase activity increased in the kidney and liver of both experimental
models. nCDase activity increased in the plasma, heart, and liver of diabetic rats, while
nCDase activity increased in the plasma, kidney, and heart of hypertensive rats.

Similar results have been reported under physiological and pathological conditions;
over the course of aging, the acid and neutral SMase activity and ceramide content in-
creased, but the sphingosine and S1P in small arteries did not change [41]. Moreover, in
old age the acid and neutral SMase and nCDase activity in the brain, liver, and kidney
increased [42–44]. The ceramide content and nSMase activity increased in the diaphragm
of chronic heart failure rats [45]. In aSMase knock out mice, decreased ceramide and
superoxide production was observed [46]. In the glomeruli of diabetic rats, S1P and the
activity of nCDase and sphingosine kinase increased [47].

In addition, it is important to consider the following: in the plasma of diabetic rats,
the sphingomyelin and S1P content and aSMase and nCDase activity increased, while in
the liver, the sphingomyelin content and nSMase and nCDase activity increased. These
results suggest that, in the liver, the sphingomyelin can be synthesized through the de novo
pathway (serine palmitoyltransferase, 3-ketosphinganine reductase, ceramide synthase, di-
hydroceramide desaturase, and sphingomyelin synthase), which can also directly influence
the sphingomyelin content in the plasma, as previously reported [48].

Moreover, in the liver of diabetic rats, the nCDase activity increased, however, the
ceramide, sphingosine, and S1P content did not. These results suggest two possible expla-
nations: (1) ceramide can be hydrolyzed by CDase to generate fatty acid and sphingosine,
and this sphingosine can be reused through N-acylation to produce ceramide by ceramide
synthase; and (2) nCDase can also catalyze the reverse hydrolysis reaction that condenses
fatty acid to sphingosine, generating ceramide [49–51].

Thus, one or both pathways may contribute to ceramide formation, which can be
used for sphingomyelin synthesis via sphingomyelin synthase. Interestingly, patients
with type 1 diabetes also show changes in the profile of fatty acids in circulation, where
they in turn overwhelm muscle, liver, heart, and other peripheral organs and tissues [52].
This may explain why we observed in the liver a decrease in the sphingosine content. In
liver, empagliflozin treatment can downregulate nCDase activity to prevent the deleterious
effects of sphingomyelin elevation.

In the heart of diabetic rats, SMases activity decreased, whereas the ceramide content,
nCDase activity, and S1P content increased. Our results suggest that in the heart, ceramide
was not generated from the hydrolysis of sphingomyelin by the action of SMases, but can
be produced by the de novo pathway. Ceramide generated by this pathway is deacylated
by CDase to produce sphingosine, which can be phosphorylated by sphingosine kinases
(SK1 or SK2) to S1P [15]. In this regard, our study has a limitation, in that we did not
evaluate the sphingosine kinase (SK) activity.

Empagliflozin treatment decreased the ceramide content, which can be formed through
the de novo pathway, and downregulated the nCDase activity. Our results agree with other
studies that showed that empagliflozin treatment reduced the sphingomyelin and ceramide
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content, reduced the fatty acid transporter expression and decreased the expression of
pro-inflammatory molecules such as interleukin-6 (IL-6), chemerin, TNF-α and MCP-1 at
the mRNA level in the heart of type 2 diabetic rats [29]. Insulin treatment also decreased
S1P in the heart of diabetic mice [39].

On the other hand, in the kidney of diabetic rats, only the nSMase activity increased,
as well as the S1P content, and empagliflozin treatment decreased only the S1P content.
Unexpectedly, in the heart of hypertensive rats, the content of sphingomyelin, ceramide,
sphingosine, and S1P increased, as well as aSMase and nCDase activity, while in the kidney,
sphingomyelin and S1P content increased, as well as the nSMase and nCDase activity. In
the liver, sphingomyelin content and nSMase activity increased.

Interestingly, in the heart of hypertensive rats, empagliflozin treatment decreased
aSMase and nCDase activity, while in the kidney sphingomyelin and S1P content decreased,
as well as nCDase activity, and in the liver only the content of sphingomyelin decreased.
Therefore, one could speculate that, in the kidney, heart, and liver of hypertensive rats
as well as in the kidney of diabetic rats, the sphingomyelin can be hydrolyzed by SMase
to ceramide, and this is hydrolyzed by CDase to produce sphingosine, which can be
phosphorylated by SK to S1P through the sphingolipid catabolic pathway [15]. Our results
suggest that empagliflozin treatment in Ang II-induced hypertension, downregulated the
sphingolipid catabolic pathway.

In this regard, it has been reported that losartan treatment in spontaneously hyperten-
sive rats causes blood pressure and ceramide levels to decrease in the plasma and aorta [53].
This suggests that Ang II, via the AT1 receptor, decreases the ceramide level. In a previous
study, we reported that in the isolated perfused rat kidneys, Ang II stimulates ceramide
formation via the activation of nSMase [31].

We also previously demonstrated that, in Ang II-dependent kidney damage, the
AT1 receptor block prevented a blood pressure increase and the production of reactive
oxygen species; the empagliflozin treatment did not affect blood pressure and had a
small effect on kidney damage. However, the combination of both drugs resulted in the
potentiation of the effects observed with AT1 receptor blockade alone [54]. These findings
suggest that Ang II also directly regulates sphingolipid metabolism.

It is important to note that the use of infusion pumps to increase Ang II circulation
is a model that permits the fine-tuning of Ang II at set levels. Interestingly, in this model
the Ang II induces the infiltration of immune cells into kidneys [55–58]. Similarly, it was
shown that hyperglycemia lead to an increase in inflammation, oxidative stress and NLRP
inflammasome activation [59].

Thus, in both experimental models the activation of immune cells can lead to an
increase in the secretion of interferon γ, tumor necrosis factor α (TNF-α), and interleukin
1β (IL-1 β), IL-6, and IL-18 into circulation with potential wide-reaching effects. That is,
pathological changes in an organ can instigate the release of a cascade of mediators that
promote injury in other organs.

In this regard, it has been reported that IL-1 increases the aSMase activity and the
concomitant activation of NF-kβ [60]. TNF-α also activates aSMase and nSMase [61]. IL-1
and TNF-α do not stimulate CDase activity [62].

These findings suggest that hyperglycemia and Ang II regulates directly and indirectly
the sphingolipids metabolism. Therefore, if empagliflozin decreases inflammation it indi-
rectly regulates the sphingolipids metabolism in diabetes and Ang II-induced hypertension.

4. Materials and Methods
4.1. Animal Models
4.1.1. Animal Procedures

The procedures used in this study were performed in accordance with the Mexican
Federal Regulation for Animal Experimentation and Care (NOM-062- ZOO-1999, published
in 2001) and approved by the Institutional Committee for the Care and Use of Labora-
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tory Animals of the Instituto Nacional de Cardiología “Ignacio Chávez”, under protocol
numbers INC-CICUAL/012/2019, INC-CICUAL/005/2020, and INC-CICUAL/006/2020.

4.1.2. Streptozotocin-Induced Diabetic Rats

Male Wistar rats (300–350 g) were divided into three groups (n = 10 each): control,
diabetic and empagliflozin-treated diabetic rats (30mg/kg/day/p. o/4 weeks). Diabetes
was induced by a single intraperitoneal administration of streptozotocin (STZ) (65 mg/kg
body weight) dissolved in citrate buffer (0.1 M, pH 4.5) and control rats received the same
volume of citrate buffer. After 24 h of STZ administration, the blood glucose concentration
was determined (Accu-check glucose monitor, Roche Diagnostics) and only rats with a
blood glucose concentration greater than 300 mg/dL (18 mmol/L), empagliflozin-treatment
was started and maintained for 30 days [30,63].

4.1.3. Angiotensin II-Induced Hypertension Rats

Male Wistar rats (350–360 g) were divided into three groups (n = 10 each): normoten-
sive (sham), hypertensive (Ang II-induced hypertensive rats), and hypertensive rats treated
with empagliflozin (30 mg/kg/day/p. o/4 weeks). The rats received a two-week infu-
sion of Ang II (Sigma, St. Louis, MO, USA) via subcutaneous osmotic minipumps (Alzet
2002; Alza, Palo Alto, CA, USA) implanted under isoflurane anesthesia. Minipumps de-
livered angiotensin II at a rate of 435 ng/ kg- / min; the same surgical procedure was
performed but the minipump was not placed in the sham rats. After recovery from surgery,
empagliflozin-treatment was started and maintained for two weeks [58].

4.1.4. Sample Collection and Preparation

A total of 30 days after STZ administration, or two weeks safter the infusion of
angiotensin II, the rats were placed in metabolic cages with water and food ad libitum, and
urine was collected for a 24 h period and stored at −20 ◦C. The animals were anesthetized
with pentobarbital sodium (30 mg/kg, i.p), the blood was collected in heparin tubes, and
plasma was obtained by centrifugation (10,000× g for 5 min) and stored at −20 ◦C. The
plasma and urine were used for the determination of glucose (Quanti ChromTM glucose
assay kit).

Before dissection, organs were perfused with PBS, pH 7.4, to remove red blood cells
and clots. Organs (kidney, heart, and liver) were frozen in liquid nitrogen and stored at
−80 ◦C until use. Organs (0.1 g) were homogenized with 500 µL of Tris buffer (25 mM
Tris-HCl, pH 7.4, 5 mM EDTA, 0.2% Triton X-100, and protease inhibitors) on ice. The
homogenate was centrifuged at 10,000× g for 10 min at 4 ◦C. The supernatant was aliquoted
and stored at −20 ◦C for the determination of protein, sphingomyelin, ceramide, sphingo-
sine, sphingosine-1-phosphate, and the activity of aSMase, nSMase, and nCDase. Protein
concentration was determined by Bradford assay (Bio-Rad) using BSA as a standard.

4.2. Sphingomyelin Determination

For the enzymatic measurement of sphingomyelin, we used 30 µg of protein of sample
which was added to individual wells of a 96-well microtiter plate that contained 100 µL of
reaction buffer (50 mM Tris–HCl, pH 8 with 0.66 mM CaCl2) with 50 mU of Bacillus cereus
sphingomyelinase, 1U of alkaline phosphatase, 50 mU of choline oxidase, 2U of horseradish
peroxidase, 0.73 mM of DAOS (N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline)
and 0.73 mM of 4-aminoantipyrine. After 1 h of incubation at 37 ◦C, the microtiter plate
was read using a microplate reader (Synergy®HTX multi-mode) at 595 nm. Standard
sphingomyelin solution (5 mg/10 mL of 2% Triton X-100 ethanol solution) was used. The
sphingomyelin levels were normalized to mg of protein [64].
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4.3. Enzyme-Linked Immunosorbent Assay (ELISA) for Ceramide, Sphingosine, and
Sphingosine-1-Phosphate Determination

For ceramide determination, we used 30 µg of protein sample, which was homog-
enized with 2 mL of chilled chloroform-methanol-1 M NaCl (1:2:0.4, v/v/v) and pro-
cessed as previously reported [65]. Sphingosine and sphingosine-1 phosphate contents
were determined using a commercial ELISA Kit, according to the manufacturer’s instruc-
tion (OKEH02615, Aviva Systems Biology, San Diego, CA, and TDS K1900, Echelon Bio-
sciences, Salt Lake City, UT, USA, respectively) [66]. These assays were read at 450 nm
(Synergy®HTX multimode).

4.4. Sphingomielinase Activity

Neutral SMase (nSMase) activity was measured as previously described [31]. Fluores-
cence was measured using a microplate reader (Synergy®HTX multimode) at ňex = 545 nm
and λem = 590 nm. For acid SMase (aSMase) activity, the method was performed as de-
scribed for the nSMase assay, except that the reaction mixture contained 100 mM sodium
acetate, pH 5 [67].

4.5. Ceramidase Activity

nCDase activity was measured according to previously described methods [68]. The
enzymatic assay was carried out in 96-well plates; each well contained a mixture of 30 µg
protein in 25 µL of a 0.2 M sucrose solution, 74.5 µL of 50 mM HEPES buffer, 1 mM
CaCl2 at pH 7.4, and 0.5 µL of a 4 mM Rbm 14–12 substrate solution in ethanol (substrate
final concentration 20 µM; ethanol final concentration 0.5%). The plate was incubated at
37 ◦C for 3 h without agitation. The enzymatic reaction was stopped by adding 50 µL
methanol and 100 µL of sodium periodate (2.5 mg NaIO4/mL in 100 mM glycine/sodium
hydroxide buffer at pH 10.6) was added. After incubation at 37 ◦C for 1 h in the dark, 100 µL
/well of 100 mM glycine/sodium hydroxide buffer was added, and the fluorescence was
quantified using a microplate fluorescence reader (λex 355 nm, λem 460nm) (Synergy®HTX
multimode). The same reaction mixture without enzyme was used as a blank.

4.6. Statistical Analysis

Values were expressed as the means ± SE. Statistical differences among groups were
calculated using a one-way ANOVA, followed by the Bonferroni test, using the GraphPad Prism
6 software (GraphPad, San Diego, CA, USA); p < 0.05 was considered statistically significant.

5. Conclusions

Our results suggest that empagliflozin treatment downregulates the interaction of
the de novo pathway and the catabolic pathway of sphingolipid metabolism in the dia-
betes, whereas in Ang II-dependent hypertension, it only downregulates the sphingolipid
catabolic pathway.
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