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Abstract 

Background: To identify the potential biological target molecules and the corresponding interaction networks in 
primary open-angle glaucoma (POAG) development.

Methods: The microarray datasets of GSE138125 and GSE27276 concerning lncRNA and mRNA expression profiles in 
trabecular meshwork of POAG were downloaded from the Gene Expression Omnibus database. The R software was 
applied to identify differentially expressed (DE) lncRNAs and mRNAs in POAG, and to perform GO and KEGG functional 
enrichment analysis. Protein–protein interaction (PPI) network and module analysis, and lncRNA-miRNA-mRNA com-
peting endogenous RNA (ceRNA) network were performed by Cytoscape software.

Results: A total of 567 DE-mRNAs were identified from GSE138125 and GSE27276, including 298 up-regulated and 
269 down-regulated mRNAs, which were found enriching in biological processes of extracellular matrix organiza-
tion and epidermis development, respectively. KEGG pathway enrichment analysis further revealed that module 
genes in PPI network were primarily involved in the AGE-PAGE, PI3K-Akt and TGF-β signaling pathways. Moreover, 
897 up-regulated and 1036 down-regulated DE-lncRNAs were identified from GSE138125. Through literature review 
and databases searching, we obtained 712 lncRNA-miRNA and 337 miRNA-mRNA pairs based on the selected eight 
POAG-related miRNAs. After excluding 702 lncRNAs and 284 mRNAs that were not comprised in the DE-lncRNA and 
DE-mRNAs, a total of 53 lncRNA nodes, eight miRNA nodes, 10 mRNA nodes, and 78 edges were included in the final 
ceRNA network.

Conclusions: This study demonstrated the lncRNA and mRNA expression profiles of trabecular meshwork in POAG 
patients and the normal controls, and identified potentially ceRNAs and pathways which might improve the patho-
genic understanding of this ocular disease.

Keywords: Primary open-angle glaucoma, Differentially expressed gene, Competing endogenous RNA network, 
Bioinformatics analysis

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Glaucoma is currently the second leading cause of blind-
ness in the world, affecting more than 60 million peo-
ple [1]. According to whether the angle is closed or not, 

glaucoma can be divided into two categories: closed angle 
and open angle. Primary open-angle glaucoma (POAG), a 
common type of glaucoma, is characterized by progres-
sive and irreversible degeneration of retinal ganglion cells 
and unique visual field loss [2]. It has been determined 
that a variety of risk factors may be related to the onset 
of POAG, such as age, elevated intraocular pressure 
(IOP), family history, etc. [3–5]. In addition, genetics has 
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also been shown to play a key role in the pathogenesis of 
POAG [6, 7].

A non-coding RNA (ncRNA) is an RNA molecule that 
is not translated into protein. It has been found that 
ncRNAs are the main regulators involved in various bio-
logical pathological processes [8, 9]. Long non-coding 
RNA (lncRNA) is a typical ncRNA of more than 200 
nucleotides, with fewer exons and tissue- or cell-specific 
characteristics [10]. LncRNA can regulate gene expres-
sion at different biological levels, such as gene transla-
tion and transcription [11, 12]. Recently, new evidence 
has shown that lncRNA is involved in the development 
of POAG [7, 13]; however, so far, the functions and 
related mechanisms of most lncRNAs have not been 
fully elucidated, and only a small portion being well-
annotated. In addition, another ncRNA – microRNA 
(miRNA) has also been proved to play a vital role in the 
diagnosis and treatment of glaucoma [14–17]. MiRNA is 
a single-stranded nucleotide with a length of 18–23 bp, 
which could regulate the expression of target genes at 
the post-transcriptional level [18]. Salmena et  al. put 
forward a hypothesis that lncRNAs were emerging as 
competing endogenous RNAs (ceRNAs), communicat-
ing with messenger RNA (mRNA) through competitive 
miRNA [19]. On the one hand, miRNAs can bind to 
their target mRNAs and inhibit their expression in the 
ceRNA network. On the other hand, lncRNA can share 
miRNA response elements (MREs) with mRNA, which 
can alleviate the inhibition of the miRNA-mediated 
gene-encoded protein level [20, 21].

Gene Expression Omnibus (GEO; https:// www. ncbi. 
nlm. nih. gov/ geo/) is a largest high-throughput database 
containing microarray- and sequence-based data from a 
variety of tissues. Mining and analyzing of the vast reli-
able gene expression data is helpful for revealing molec-
ular changes of diseases [22]. Over the past decades, 
several studies have utilized the GEO data to identify the 
underlying molecular mechanisms of glaucoma patho-
genesis [7, 23, 24]. Although certain protein-coding genes 
or miRNAs have been identified, all of them were found 
in aqueous humor or optic nerve head tissue but not in 
trabecular meshwork of POAG patients and the inter-
action network of these genes is seldom reported [25]. 
In this study, we first obtained differentially expressed 
RNAs (DE-RNAs), including DE-lncRNAs and DE-
mRNAs, in trabecular meshwork of POAG patients by 
mining two GEO datasets. Subsequently, we performed 
functional enrichment and protein–protein interaction 
(PPI) analysis on the acquired DE-mRNA. Then, through 
the integration of relevant lncRNA, miRNA and mRNA, 
a regulatory ceRNA network related to POAG was suc-
cessfully established. This new method of predicting dis-
ease-specific ceRNA networks can clarify the regulatory 

mechanism of lncRNA-mediated ceRNA in the develop-
ment and prognosis of POAG, and identify new lncRNAs 
as potential diagnostic biomarkers or therapeutic targets.

Methods
All data of this study was conducted based on the public 
databases and performed in accordance with the ethical 
standards stated in the 2013 Declaration of Helsinki. The 
informed consent from each participant and the ethical 
approval was obtained in the original study.

Data collection and preprocessing
We searched the GEO database for studies comparing 
RNA expression of human TM between POAG and nor-
mal eyes. The RNA expression profile data of GSE27276 
based on the GPL2507 platform (Sentrix Human-6 
Expression BeadChip), and GSE138125 based on the 
GPL21827 platform (Agilent-079487 Arraystar Human 
LncRNA microarray V4), were selected for subsequent 
analysis. As the lncRNA microarray includes the expres-
sion results of lncRNA and mRNA, the lncRNA micro-
array of GSE138125 is divided into lncRNA array and 
mRNA array for further analysis. Finally, four pairs of 
POAG and normal samples in GSE138125 dataset, and 
17 POAG samples and 19 normal samples in GSE27276 
dataset, were enrolled in this study (Supplementary 
Tables  1–2). All TM tissues were obtained from POAG 
patients undertaking the conventional trabeculectomy 
and the donated normal eyes in both datasets [26].

Differential expression analysis of RNAs
The probes in gene expression matrix were annotated 
with corresponding gene symbols based on the platform 
annotation information. For a given gene mapping to 
several probes in one sample, the gene expression level 
was determined as the average of the detected probe val-
ues. We used the “limma” package in R to identify the 
DE-RNAs, and the p-value was adjusted to false discov-
ery rate (FDR) by applying the Benjamini–Hochberg 
(BH) program [27]. FDR adjusted p-value < 0.05 and 
|log2Fold Change (FC)|> 0.58 were considered as the 
cutoff values for DE-RNAs screening. The “ggplot2” and 
“pheatmap” packages were applied for data visualiza-
tion via volcano plots and two-way hierarchical cluster-
ing heat maps in R [28]. Moreover, the DE-mRNAs from 
both microarrays were subjected to Venn analysis using 
the “venn” package in R. Overlapping genes were consid-
ered as co-expression DE-mRNAs (Co-DE-mRNAs) in 
the following analyses.

Functional enrichment analysis
To understand the potential biological functions of 
DE-mRNAs, the “clusterProfiler” package in R was 
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utilized to identify the Gene Ontology (GO) biologi-
cal functions and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways [29, 30]. The GO and 
KEGG analyses were performed for up-regulated and 
down-regulated DE-mRNAs, separately. Records with 
a p-value < 0.05 and enrichment > 2.0 were regarded 
as statistically significant in functional enrichment 
analysis. The “enrichplot” package in R was utilized to 
show the relationship between GO-terms and genes by 
chord plots.

Construction of PPI network
Search tool for the retrieval of interacting genes 
(STRING, http:// string- db. org/), an online database 
that collects predicted and/or testified protein inter-
actions, was used to construct the PPI interaction 
network of the identified DE-mRNAs [31]. After DE-
mRNAs were entered into the database, important 
PPI interaction pairs were obtained from six sources: 
neighborhood, gene fusion, co-occurrence, co-
expression, experiments, databases, and text mining. 
Cytoscape software was used to predict the associa-
tion among these target genes with a combined con-
fidence score ≥ 0.4 in the regulatory network analysis. 
In addition, the MCODE program in Cytoscape was 
used to identify important modules (degree cut-
off ≥ 2, node score cutoff ≥ 0.2, K core ≥ 2 and maxi-
mum depth = 100). The clusters that contained ≥ 10 
nodes and that possessed MCODE scores ≥ 10 were 
selected [32].

Identification and establishment of potential ceRNA 
interactions
Based on the hypothesis that lncRNA can be anchored 
to MREs to prevent the binding of miRNA to its target 
mRNA, a ceRNA network was constructed [33]. First, we 
selected several miRNAs closely related to the pathogen-
esis of POAG through literature review. These miRNAs 
directly promote the development of POAG by partici-
pating in pathological processes such as TM extracellular 
matrix deposition or inflammation [17]. The miRNA-
lncRNA interactions were predicted by the miRNet [34, 
35] (https:// www. mirnet. ca/), LncRNABase (https:// starb 
ase. sysu. edu. cn/ starb ase2/ mirLn cRNA. php) and star-
Base [36, 37] (https:// starb ase. sysu. edu. cn/). The miRDB 
(http:// www. mirdb. org/), miRTarBase [38] (http:// mirta 
rbase. mbc. nctu. edu. tw/) and TargetScan (http:// www. 
targe tscan. org/) were used for predicting target mRNAs 
of miRNA. The lncRNAs and mRNAs, existing in the 
DE-lncRNA and DE-mRNA groups, respectively, and 
also appearing in the above databases, were enrolled in 
the final ceRNA network (Fig.  1). Cytoscape software 
was used for the construction and visualization of the 
lncRNA-miRNA-mRNA ceRNA network [39].

Results
Screening of significantly DE‑RNAs in POAG
All microarray data is standardized after median nor-
malization. The volcano plots and heat maps of both 
DE-mRNAs and DE-lncRNAs are shown in Fig. 2, show-
ing that the DE-RNAs in both datasets could be easily 
distinguished from each of the samples, and suggesting 

Fig. 1 The flowchart of the identification differentially RNAs and the subsequent construction of lncRNA-miRNA-mRNA network. DE-RNAs, 
differentially expressed mRNAs, DE-lncRNAs, differentially expressed lncRNAs

http://string-db.org/
https://www.mirnet.ca/
https://starbase.sysu.edu.cn/starbase2/mirLncRNA.php
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Fig. 2 Overview of differentially expressed RNAs from microarray datasets. Volcano plots and heat maps of the differentially expressed mRNAs 
from GSE138125 A, B and GSE27276 C, D, and differentially expressed lncRNAs from GSE138125 E, F. Dash-dotted lines: vertical ones represent log 
transformed p value, and horizontal ones indicated the mean expression differences of genes between POAG and normal samples. Red dots are for 
up-regulated RNAs and blue dots for down-regulated ones. Color scale bar denotes the expression levels from high (dark red) to low (dark blue). 
|log2FC|> 0.58 and adj. p-value < 0.05 were set as the cut-off criteria
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an expressional heterogeneity among the samples. A 
total of 567 DE-mRNAs were identified after screen-
ing of GSE138125 and GSE27276, among which 298 
were up-regulated and 269 were down-regulated 
(Fig.  3). Moreover, 897 up-regulated and 1036 down-
regulated DE-lncRNAs were identified after screening 
of GSE138125. Table 1 shows the top 10 up- and down-
regulated DE-mRNAs from GSE138125 and GSE27276, 

and top 10 up- and down-regulated DE-lncRNAs from 
GSE138125.

Functional enrichment analysis
The complete results of GO analysis, including biologi-
cal process (BP), cellular component (CC) and molecu-
lar function (MF), and KEGG analysis are presented 
in Supplementary Table  3. The top 10 GO-BP terms 

Fig. 3 Venn diagrams of overlapped differentially expressed mRNAs (DE-mRNAs) in GSE138125 and GSE27276

Table 1 The top 10 up- and down-regulated DE-mRNAs and DE-lncRNAs

mRNA Log2FC p Value lncRNA Log2FC p Value Change

HBA2 4.65 3.42E-11 AC068282.1 9.51 1.92E-05 UP

HBB 4.51 9.67E-14 AC105916.1 7.95 2.02E-03 UP

HBD 2.89 3.90E-08 AC022517.1 7.43 9.72E-03 UP

MGP 2.08 5.19E-07 LINC02428 7.20 3.22E-03 UP

HLA-DPA1 1.74 1.87E-08 NTN5 7.04 6.55E-09 UP

ECRG4 1.60 2.28E-07 DPP9‑AS1 6.61 3.58E-04 UP

PTGDS 1.54 3.18E-08 LINC02682 6.16 2.32E-03 UP

CYTL1 1.51 4.24E-06 AC079790.2 6.00 2.32E-02 UP

GRP 1.48 1.16E-05 AC096577.1 5.53 5.49E-04 UP

HBG1 1.43 4.89E-06 LINC02489 5.39 3.17E-03 UP

KRT13 -2.69 4.95E-07 AL138787.2 -11.67 7.66E-09 DOWN

KRT19 -2.68 4.26E-04 AC006305.1 -9.68 7.69E-10 DOWN

LCN2 -2.30 3.00E-06 AC136443.4 -9.49 5.53E-08 DOWN

S100A9 -2.27 6.62E-06 POM121L4P -9.46 2.03E-08 DOWN

SLPI -2.27 1.37E-06 AC002454.1 -9.40 1.65E-07 DOWN

PAX6 -2.24 4.12E-06 AL358876.2 -9.22 1.90E-07 DOWN

S100A8 -2.10 3.75E-04 AC008758.6 -8.85 2.22E-04 DOWN

TNNT3 -2.08 3.67E-08 PDE6B -8.82 2.94E-06 DOWN

TGM1 -1.97 5.53E-06 PARD6G‑AS1 -8.78 7.15E-07 DOWN

KRT5 -1.86 4.17E-05 LINC02008 -8.25 6.24E-08 DOWN
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of DE-mRNAs were visualized in the bubble diagram 
(Fig. 4A-B). The top three enriched GO term of up-regu-
lated DE-mRNAs were the extracellular matrix organiza-
tion (GO:0,030,198), extracellular structure organization 
(GO:0,043,062) and external encapsulating structure 
organization (GO:0,045,229). The epidermis develop-
ment (GO:0,008,544), skin development (GO:0,043,588) 
and epidermal cell differentiation (GO:0,009,913) were 
the top three enriched pathways of down-regulated DE-
mRNAs. GO chord plot shows the relationship between 

GO term and genes (Fig. 4C-D). In addition, the top 10 
KEGG pathways enriched are visualized in the bar plots 
(Fig.  4E-F), which shows that immunity and infection 
probably played an important role in POAG.

PPI network analysis
PPI network of the significantly DE-mRNAs was con-
structed with 133 nodes and 259 edges being mapped 
from STRING database (Fig.  5A). Only one cluster was 
selected from the PPI network by MCODE analysis based 

Fig. 4 Functional enrichment analysis of the 567 overlapped differentially expressed mRNAs (DE-mRNAs). A and B, The top 10 enriched biological 
processes for the up-regulated and down-regulated DE-mRNAs via GO analysis; C and D, Chord plots revealed the detailed relationships 
between GO-terms and up-regulated and down-regulated DE-mRNAs; E and F, The top 10 enriched KEGG pathways for the up-regulated and 
down-regulated DE-mRNAs. (KEGG pathway database is available at www. kegg. jp/ feedb ack/ copyr ight. html)

http://www.kegg.jp/feedback/copyright.html
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on the criterial of nodes ≥ 10 and scores ≥ 10 (Fig.  5B). 
The cluster consisted of eight up-regulated genes (FN1, 
COL1A2, COL3A1, BGN, COL5A1, COL5A2, FMOD, 
LUM, PDGFRB, SPARC, IGFBP7, TGFB3, TIMP1) and 
two down-regulated genes (BMP1, MMP3). KEGG path-
way enrichment analysis revealed that these module 
genes were primarily involved in the AGE-PAGE, PI3K-
Akt and TGF- β signaling pathway (Fig. 5C).

Construction of a ceRNA network
To further understand how lncRNA regulates mRNA 
through binding with miRNA in human POAG, a 
lncRNA-miRNA-mRNA (ceRNA) network was con-
structed. By literature review, we first identified eight 
miRNAs that may be related to the pathogenesis of 
POAG, including hsa-miR-29b, hsa-miR-143/145, hsa-
miR-21, hsa-miR-210, hsa-miR-126, hsa-miR-182 and 
hsa-miR-187. Then we found 712 lncRNAs interact-
ing with the eight miRNAs via searching the miRNet, 
LncRNABase and starBase databases. However, only 53 
of these lncRNAs were overlapped with the DE-lncRNAs 
of GSE138125. Similarly, through searching miRDB, miR-
TarBase and TargetScan databases, we found 10 mRNAs 
interacting with the target miRNAs as well as con-
tained in the Co-DE-mRNAs between GSE138125 and 
GSE27276. As shown in Fig. 6, the preliminarily lncRNA-
miRNA-mRNA network was built based on the miRNA-
mRNA and miRNA-lncRNA pairs, which was composed 

of 53 lncRNA nodes, eight miRNA nodes, 10 mRNA 
nodes, and 78 edges.

Discussion
POAG is a progressive optic neuropathy, and it is esti-
mated that by 2040, there will be 111.8 million glaucoma 
patients worldwide [40]. The major risk factor of POAG 
is the increased IOP, which could compress the struc-
tures in and around the optic nerve head to disturb the 
axoplasmic transport of nerve fibers [41]. This can lead 
to the death of retinal ganglion cells and their axons, 
resulting in thinning of the edge of the neural retina and 
depression of the optic nerve head [42]. Injury related 
to elevated IOP is mainly manifested as the occurrence 
of TM degeneration [43]. TM is a key component of the 
aqueous humor outflow pathway and constitutes most of 
the outflow resistance [44]. In POAG, a series of patho-
logical changes occur in the TM, leading to increased 
outflow resistance and elevated IOP [45]. In the past few 
years, considerable efforts have been made to explore the 
molecular mechanisms of POAG [46, 47]. However, most 
studies have focused on protein-coding genes or miR-
NAs [15, 48]. Neither GO or KEGG analysis of key genes 
nor the lncRNA expression profile of the TM in POAG 
was established. Therefore, we analyzed two published 
microarray data from GEO databases, including the 
lncRNA microarray from GSE138125 and mRNA micro-
array from GSE138125 and GSE27276, and constructed 
a possible ceRNA network based on the DE-mRNAs and 

Fig. 5 Protein–protein interaction analysis. A, Protein–protein interaction network of the differentially expressed mRNAs from GSE138125 and 
GSE27276 datasets; B, The sub-network module genes analyzed by MCODE in Cytoscape software; C, KEEG pathways analysis of the genes in the 
sub-network module genes
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DE-lncRNAs. To our knowledge, this study is the larg-
est comparison of lncRNA and mRNA expressions in the 
TM of POAG group and normal group.

In this study, a total of 567 significantly DE-mRNAs 
were found in POAG patients compared to normal 
beings, including 298 up-regulated and 269 down-reg-
ulated DE-mRNAs. Functional analysis further showed 
that the main enrichment pathways of the up-regulated 
DE-mRNAs resided in cell organization, such as extracel-
lular matrix organization involving genes of fibromodulin 
(FMOD,  log2FC = 1.40), biglycan (BGN,  log2FC = 1.25) 
and HtrA serine peptidase 1 (HTRA1,  log2FC = 1.16), 
etc. Specifically, HTRA1 and FMOD are responsible for 
the degradation and reconstruction of the extracellular 

matrix [49], while BGN is positively correlated with col-
lagen fibril assembly in multiple tissues [50, 51]. Previous 
study indicated that both FMOD and BGN play a role in 
the pathogenesis of POAG, in which BGN participate in 
the extracellular matrix remodeling and axonal damage 
in the lamina cribrosa of the optic nerve head in glauco-
matous optic neuropathy, and FMOD might be associ-
ated with susceptibility to glaucoma damage [52–54]. In 
addition, it was reported that HTRA1 participate in the 
extracellular deposits of proteins and lipids on the basal 
side of retinal pigment epithelium, which contribute to 
the pathogenesis of age-related macular degeneration 
[55]. For the down-regulated DE-mRNAs, development 
related pathways were mainly enriched. The pathway of 

Fig. 6 Competing endogenous RNA network in human POAG. Red nodes denote miRNAs, blue for mRNAs and yellow for lncRNAs
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epidermis development, for example, involved genes of 
keratin 13 (KRT13,  log2FC = -2.69), keratin 19 (KRT19, 
 log2FC = -2.68) and transglutaminase 1 (TGM1, 
 log2FC = -1.97), etc. Both KRT13 and KRT19 are mem-
bers of the keratin family which is a group of interme-
diate filament proteins responsible for the structural 
integrity of epithelial cells. And TGM1 is also involved 
in the process of keratinization. The above three mRNAs 
mainly exist in epithelial cells, which may be involved 
in the process of corneal epithelial conjunctivalisation, 
and few studies have investigated their relationship with 
POAG [56]. These down-regulated DE-mRNAs may 
be considered as potential targets for drug therapy of 
POAG. Moreover, the PPI network of DE-mRNAs out-
lined their functional connections and revealed a total of 
15 hub genes: FN1, COL1A2, COL3A1, BGN, COL5A1, 
COL5A2, FMOD, LUM, PDGFRB, SPARC, IGFBP7, 
TGFB3 and TIMP1 amongst the up-regulated genes, 
and BMP1, MMP3 amongst the down-regulated genes. 
Among them, the top DE-mRNA was fibronectin (FN1), 
a glycoprotein within the extracellular matrix. It has been 
proved that FN1 was upregulated in tears, tenon’s capsule 
and aqueous humor samples in pseudoexfoliation glau-
coma, and that inhibiting FN1 would promote the pro-
liferation and invasion of TM cells [57, 58]. Two other 
highly expressed mRNAs, COL1A2 and COL3A1, have 
also been shown to be genetic and biochemical biomark-
ers of POAG [59, 60]. All above significantly dysregulated 
genes involved in extracellular matrix organization and 
epidermis development may play a vital role in the patho-
genesis of POAG and thus deserve more exploration.

Moreover, 897 up-regulated and 1036 down-regu-
lated DE-lncRNAs were identified by screening the 
GSE138125 database. Compared with protein-coding 
gene and miRNA, lncRNA has significant advantages 
as a prognostic biomarker or therapeutic target [61, 62]. 
LncRNA regulates the level of gene-encoded proteins by 
competitively binding to MREs to regulate cell activities 
[63]. For example, the lncRNA TGFβ2-AS1 could pro-
mote the production of extracellular matrix production 
through targeting TGF-β2 in human TM cells, suggest-
ing that lncRNA TGFβ2-AS1 may be a potential treat-
ment target for POAG [64]. Moreover, lncRNAs are also 
important components of the ceRNA network, which 
plays an important role in the post-transcriptional reg-
ulation of genes. It has reported that the ceRNA was 
associated with the molecular mechanisms of eye dis-
ease [65]. In these circumstances, a ceRNA network 
based on the differentially expressed genes in TM tissue 
can be helpful to understand the underlying molecular 
mechanisms of POAG development. In order to con-
struct the lncRNA-miRNA-mRNA network, we selected 
a total of eight miRNAs that have been functionally 

proved in cells and animal models to be associated with 
the pathogenesis of POAG, including hsa-miR-29b, hsa-
miR-143/145, hsa-miR-21, hsa-miR-210, hsa-miR-126, 
hsa-miR-182 and hsa-miR-187. All these miRNAs are 
involved in IOP elevation or TM damage. For example, 
the hsa-miR-29b could inhibit the expression of colla-
gen I/III/IV through PI3K/Akt/Sp1 signaling pathway, 
leading to the deposition of extracellular matrix in the 
TM [66]. And the hsa-miR-143/145 primarily promotes 
the phosphorylation of myosin in TM cells, which in 
turn promotes the contraction of TM cells and thus 
results in an elevated IOP [67, 68].

In this study, all above eight miRNAs were applied to 
predict the possible miRNA-lncRNA pairs and miRNA-
mRNA pairs within the public databases. These identified 
lncRNAs or mRNAs presented both in the pairs and in 
the DE-lncRNAs or DE-mRNAs groups were enrolled 
in the final ceRNA network. Consequently, 53 lncRNAs, 
eight miRNAs, and 10 mRNAs were selected for the 
ceRNA network analysis. Among them, the most up-
regulated lncRNA in the ceRNA network is HOTAIR, 
which is an antisense lncRNA that has been reported 
to play a critical role in multiple complex diseases, such 
as the progression of Parkinson’s disease, psoriasis and 
cancers, by targeting hsa-miR-126 and its downstream 
pathways [69–71]. In POAG patients, hsa-miR-126 may 
be down-regulated under chronic hypoxia conditions, 
resulting in retinal ganglion cells injury through targeting 
VEGF-Notch signaling pathway [72]. We speculated that 
this can be related to the competitive binding of up-reg-
ulated HOTAIR to the hsa-miR-126 response element. 
Besides, the ceRNA network also shown that LINC00173 
and LBX1-AS1 could sponge to the hsa-miR-182. Recent 
studies suggested that hsa-miR-182 was up-regulated in 
aging TM cells and aqueous humor of POAG patients to 
regulate IOP and protect retinal ganglion cells from oxi-
dative stress [73, 74]. Thus, we thought the elevated IOP 
and optic nerve damage of POAG would be associated 
with the up-regulation of LINC00173 and LBX1-AS1. 
XIST is another notable lncRNA in the ceRNA network, 
which is interacted with four miRNAs including hsa-
miR-29b, hsa-miR-21, hsa-miR-126 and hsa-miR-182. It 
has been reported that XIST was involved in the epithe-
lial-mesenchymal transitions of retinoblastoma and also 
participated in the apoptosis and migration of retinal pig-
ment epithelial cells subjected to hyperglycemia [75, 76]. 
However, few studies have reported the function of XIST 
as miRNA sponges in the development of POAG.

Conclusions
In summary, current research demonstrated the 
lncRNA and mRNA differential expression profiles of 
TM between POAG patients and the normal controls 
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by bioinformatics methods. We identified several 
potential lncRNAs and mRNAs that may be involved in 
the pathogenesis of POAG. And the lncRNA-miRNA-
mRNA ceRNA network is successfully constructed, 
showing complex interactions among the lncRNAs, 
miRNAs and mRNAs during the development of 
POAG. This may help reveal the unknown pathogen-
esis and potential therapeutic targets of POAG. Future 
research effort should focus more on lncRNA explora-
tion to clarify the molecular mechanisms concerning 
the pathogenesis of POAG.
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