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Organ transplantation is often the unique solution for organ failure. However, rejection is
still an unsolved problem. Although acute rejection is well controlled, the chronic use of
immunosuppressive drugs for allograft acceptance causes numerous side effects in the
recipient and do not prevent chronic allograft dysfunction. Different alternative therapies
have been proposed to replace the classical treatment for allograft rejection.The alternative
therapies are mainly based in pre-infusions of different types of regulatory cells, including
DCs, MSCs, and Tregs. Nevertheless, these approaches lack full efficiency and have many
problems related to availability and applicability. In this context, the use of extracellular
vesicles, and in particular exosomes, may represent a cell-free alternative approach in
inducing transplant tolerance and survival. Preliminary approaches in vitro and in vivo have
demonstrated the efficient alloantigen presentation and immunomodulation abilities of exo-
somes, leading to alloantigen-specific tolerance and allograft acceptance in rodent models.
Donor exosomes have been used alone, processed by recipient antigen-presenting cells,
or administered together with suboptimal doses of immunosuppressive drugs, achieving
specific allograft tolerance and infinite transplant survival. In this review, we gathered the
latest exosome-based strategies for graft acceptance and discuss the tolerance mecha-
nisms involved in organ tolerance mediated by the administration of exosomes. We will
also deal with the feasibility and difficulties that arise from the application of this strategy
into the clinic.

Keywords: exosomes, extracellular vesicles, transplantation immunology, tolerance, graft rejection, graft survival,
organ transplantation

INTRODUCTION
Solid organ transplantation (SOT) is the unique solution for
end-stage organ failure, and can be considered among the major
accomplishments of the twentieth century in human health. Only
in 2012, it is estimated that about 115,000 solid organ transplants
were performed worldwide (1). Apart from saving lives, SOT is
a cost-effective alternative to other medical options (when avail-
able). For instance, it is well established that kidney transplantation
(by far the most transplanted organ worldwide, being 65% of total
SOT), increases survival rates, guarantees a better quality-of-life
and it is also less costly in the long term compared to hemodialysis.

The improved methodology in surgical techniques, techno-
logical advances, and research in biological and pharmaceutical
products have profoundly improved the survival of transplanted
patients. Remarkably, the maximum survival reported for a kidney
transplanted patient is 46 years, and 39 years for a liver trans-
planted patient (2). However, the overall data indicates that the
median graft survival of kidney transplants is 50% after 10 years.
Most of these graft looses are due to chronic rejection episodes
conducted by the recipient’s immune system against the graft.
Therefore, one of the most important challenges in organ trans-
plantation is achieving graft immunological tolerance, i.e., pre-
venting the recipient’s immune system attack and destruction of
the transplanted organ leading to graft rejection.

To prevent graft rejection, immunosuppresive drugs (ISd) have
been successfully given to transplant recipients. Not in vain, these
ISd are responsible for the increased survival of transplanted
patients. Nonetheless, the chronic use of ISd leads to drug related-
toxicity and to an un-specific and general suppression of the
immune system, which may cause rising of opportunistic infec-
tions and malignancy. Therefore, alternative treatments to classical
immunosuppression to induce donor-specific tolerance need to be
found. In this review, we will briefly mention the mechanisms of
graft rejection, the classical immunosuppression strategies, and
how new extracellular vesicles (EVs)-based strategies may be an
opportunity to induce organ tolerance. We will also discuss some
critical points to be solved for the application of this strategy into
the clinic.

GRAFT REJECTION
Transplant rejection is a complex immune response directed
against the alloantigens (antigenic alleles) specifically expressed
by the graft, which are recognized as “non-self” by the host’s
immune system. These alloantigens essentially include the major
histocompatibility complex (MHC) molecules and also minor
histocompatibility antigens (miHAs) expressed by graft cells.
The final outcome of this immune response is the rejection
of the organ, leading the recipient to a new transplantation or
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alternative replacement therapy, such as dialysis in the case of
kidney failure.

According to the clinical and pathological course, graft rejec-
tion may be classified as (3) (i) Hyperacute rejection, which takes
place after only few minutes to few hours of transplantation; (ii)
Acute cellular rejection, mainly mediated by cells and occurring
within a few weeks; (iii) Acute humoral rejection, arising at the
first/second week after transplantation and mediated by antibod-
ies directed against alloantigens; (iv) Chronic rejection, which may
appear at any time (even years) after the acute phase and progres-
sively deteriorates the graft function. This last type of rejection is
responsible of most of rejected organs after 1 year from transplant.

In all graft rejection types, the effector mechanisms responsi-
ble for injury and destruction of the transplanted organ involve
the participation of all (cellular and soluble) components of the
immune system. These include not only T and B lymphocytes,
the major effectors of the adaptive immune system (involved in
antigen-specific rejection), but also cells of the innate immune
system including endothelial cells, NK cells, macrophages, and/or
polymorphonuclear cells. Also, antigen-specific (antibodies) and
un-specific (complement) soluble molecules of the immune sys-
tem are involved in the host’s attack to the graft cells. A recent
review provides an excellent overview of the cellular and molecular
mechanisms leading to graft rejection (4).

ALLOANTIGENS, THE INDUCERS OF GRAFT REJECTION
As mentioned above, MHC molecules from donor origin are
the main molecular targets triggering the immune attack suf-
fered by the graft. MHC molecules are a high variable, codom-
inantly expressed, and autosomically inherited genes expressed
by most cell types (5). Physiologically, MHC molecules (HLA
molecules in humans) are the essential bridge between innate
immunity and adaptive (specific) antigenic responses. In short,
antigen-presenting cells [APCs, such as dendritic cells (DCs) or
Macrophages] capture pathogens and exhibit pathogen-derived
processed antigens via MHC molecules to antigen-specific T
cells. This recognition initiates both cellular and humoral adap-
tive immune responses, ideally leading to the eradication of the
infective process.

In the transplant situation, graft cells expressing donor HLA
molecules are recognized by the recipient T cells as “non-self”
molecules, leading to a similar induction of the immune response
(6). However, while in a “physiological” immune response against
a pathogen, the number of activated T cell clones is rather low
(approximately 1/100,000), in the transplant situation this num-
ber is increased to 1/100 or even more. Thus, the potency of
inducing immune responses by HLA foreign alloantigens is much
higher compared to a conventional immune response. This strong
allorecognition is mainly based in two different aspects. First,
the high level of polymorphism associated to HLA genes, the
most polymorphic loci described in humans, that is continu-
ously updated with the appearance of new allelic forms (7).
Second, the wide repertoire of T cells able to respond to the
allostimulation. This is due to the fact that priming and activa-
tion of T cells by alloantigens may occur through three different
mechanisms, namely direct allorecognition, semi-direct allorecog-
nition, and indirect allorecognition (Figure 1A) (8–11). In the

direct allorecognition, recipient T cells “directly” recognize donor
peptide-MHC complexes on donor APCs. This mechanism is
responsible for the acute rejection and diminishes with time due to
the progressive loss of donor APCs. Importantly, in acute rejection
the inflammation caused in the organ by the surgical procedure
or the period of ischemia-reperfusion may induce the expres-
sion of MHC and adhesion molecules (for instance in endothelial
cells) and also the production of other inflammatory mediators
that contribute to amplify the immune attack. The semi-direct
allorecognition occurs when donor MHC molecules are recycled
and presented as intact molecules on recipient APCs and presented
to antigen-specific T cells (12). Finally, in the indirect allorecogni-
tion, recipient APCs capture and process donor alloantigens (as
any exogenous antigen in a “physiological” immune response)
and the derived peptides are exposed to T cell recognition via self
(of the recipient) MHC molecules. Both, semi-direct and indirect
allorecognition may be involved in chronic rejection.

Of course, an ideal situation to avoid the immune response
against alloantigens would be to find a complete HLA compatible
donor, a possibility reduced to HLA-identical siblings. Consider-
ing the multiple combinations and possibilities derived from the
number and diversity of MHC alleles and miHAs, it is extremely
difficult to find a high level of HLA compatibility between a
donor and a recipient. Thus, SOT has been routinely performed
between ABO compatible donor–recipient pairs with no evidence
of preformed anti-HLA antibodies (Cross-match negative). How-
ever, due to the shortage of organs from deceased donors, an
important number of SOTs (mainly kidney transplantations) are
performed over HLA or ABO antibody barriers. Desensitization
strategies such as plasmapheresis, immune adsorption, anti-CD20
antibodies, and the use of complement inhibitors, may help those
end-stage kidney disease patients (13). Yet, recipients with high
titters of antibodies and HLA sensitized patients demonstrate a
limiting long-term run.

The necessity to effectively block the immune response against
the graft and therefore avoid transplant rejection has encour-
aged the study and generation of different immunosuppressive
strategies.

CURRENT APPROACHES TO IMMUNOSUPPRESSION
Clinically, immunosuppression (IS) in transplantation has the
mission to prevent and treat acute rejection and to avoid chronic
graft injury. These main objectives have to be in fine equilibrium
with minimal adverse effects for the patient. Needless to say this
balance is very difficult to achieve.

During the early years of organ transplantation, basic IS used
corticosteroids and azathioprine. The appearance of Cyclosporine
introduced a significant change in the field of transplantation,
since the use of this drug dramatically reduced acute rejec-
tion episodes. Cyclosporine became the basic ISd until a new
calcineurin inhibitor, Tacrolimus, was introduced in the 90s.
Tacrolimus was more powerful compared to Cyclosporine, but
shared a similar spectrum of adverse effects (basically wors-
ening cardio-vascular profiles). Tacrolimus is still today the
drug of reference for renal transplantation. When used in com-
bination with antiproliferative drugs such as mycophenolate
mophetil/mycophenolate sodium, the frequency of acute rejection
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FIGURE 1 | Mechanisms of allorecognition by (A) cells and (B) extracellular vesicles (EVs).

episodes was set below 20%. The “Symphony” international study
established the guidelines for IS in transplantation for the last
15 years. Following the study, more than 85% of current IS pro-
tocols are based on a combination of steroids, tacrolimus at low
doses plus mycophenolate (14).

A new generation of ISd emerged with the synthesis of mTOR
inhibitors, sirolimus, and everolimus. These drugs were initially
applied in the so-called “no nephrotoxicity” protocols, which
avoided using calcineurin inhibitors. However, a high frequency

of adverse effects combined with increased rates of acute rejection
episodes forced to stop treatments. Today mTOR inhibitors are
combined with reduced doses of calcineurin inhibitors (15).
Several independent studies support this strategy, although a large
cohort study showing their efficacy and acceptable side effects is
still missing.

Biological-derived drugs are the next generation of “conven-
tional” IS. One of the most promising new drugs is Belatacept,
a human fusion protein aimed to block the co-stimulation of
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T lymphocytes. Several studies suggest an efficacy comparable
to calcineurin inhibitors, but preserving organ function (lower
incidence of chronic kidney disease). Although Belatacept shows a
good cardio-vascular profile (being this the main complication of
Tacrolimus), an undesirable side effect is an increased incidence
of post-transplant lymphomas, especially in Epstein-Barr virus
seronegative patients. This treatment is therefore not used in this
subgroup of patients (16, 17).

Many other agents are being evaluated in clinical trials to pre-
vent acute rejection. Some examples are Sotrastaurine (potent
and selective inhibitor isoform of protein kinase C), Tofacitinib
(selective inhibitor of JAK 3 kinase), Alefacept (anti-CD2 human-
ized monoclonal antibody), and others (18–20). However, most
of these studies are discontinued due to lower efficacy and safety
profiles when compared to conventional ISd.

Most of the improvements and new drugs show efficacy in the
short term after transplantation, thus controlling acute rejection
(the first objective). Unfortunately, similar results have not been
observed at long-term (21). The so-called chronic graft dysfunc-
tion is still a major cause of graft loss in kidney transplant [chronic
kidney dysfunction (CKD)]. It is estimated that a 4% of trans-
planted kidneys are lost every year by this pathological process.
In fact, CKD may be considered an epidemic itself, with similar
prevalence to diabetes in the general population (22). Thus, the
second mission of conventional IS aiming to control chronic graft
injury is still not fully accomplished.

Another unsolved issue with ISd is the reduction of adverse
side effects largely associated with these drugs. Remarkably, the
main cause of loss of fully functional transplanted kidneys is
due to death of the recipient patients affected by ISd side effects,
including cardio-vascular diseases, opportunistic infections, and
post-transplant neoplasia (23–25).

In summary, the use of ISd has markedly reduced the inci-
dence of acute rejection and early graft loss. However, the numer-
ous adverse side effects observed, and failure to effectively pre-
vent chronic allograft dysfunction of conventional IS boosted the
development of alternative strategies to avoid graft rejection.

NEW APPROACHES FOR IMMUNE REGULATION: CELL
THERAPY
Among the new approaches for the induction of allograft toler-
ance, the use of the regulatory properties of different cell types,
such as regulatory T cells, DCs, and mesenchymal stem cells
(MSCs) has been evaluated in animal models and also in some
clinical trials using primates, with promising results (26, 27).

Regulatory T (Treg) cells have been widely studied for their
capacities to modulate the immune response toward tolerance in
different immunological contexts, being autoimmune diabetes the
first to be considered for regulatory T cell therapy in a clinical
trial (28). Their use in allograft acceptance has shown encourag-
ing results (29–31), although no long term allograft tolerance has
been attained so far. The mechanisms by which Treg cells man-
age to induce allograft tolerance are yet to be fully elucidated.
Membrane-bound TGF-β and CTLA-4 expression is thought to
mediate contact-dependent immunosuppression toward APCs
and effector cells (32–35). Treg cells have been also reported to
block the induction of IL-2 in T cells at the transcription level,

leading to low proliferation and decreased activation of effector
CD4+ and CD8+ T cells (36). Indirect recognition is thought
to be the main allorecognition pathway suppressed by Treg cells
as tolerance is deficient in animals lacking this mechanism of
alloantigen presentation (37).

Different types of strategies have been tried to expand and
activate Treg cells to enhance their immunosuppressive functions,
thus several cytokine cocktails and immunosuppressants have
been used to obtain more potent suppressor cells ex vivo, such as
rapamycin (35). While some studies ensure IFN-γ induce Treg cells
in vitro, other relate TGF-β and IL-10 as the most potent cytokines
for Treg activation and survival (34, 38–42). On the other hand,
there are reports showing the need for naïve T cells co-culture
for obtaining alloantigen-specific Treg cells as the last depend on
cytokines produced by ongoing Th1/Th2 immune response to
develop (43). Anyway, the presence of CD4+ CD25+ T cells in
the recipient is necessary to induce tolerance and achieve allograft
acceptance (44).

Mesenchymal stem cells are an adult source of progenitor cells
with the ability to self-replicate and differentiate to multiple lin-
eages. MSCs have been proposed for their application in therapy
of multiple diseases involving aberrant immune responses given
their intrinsic immunoregulatory capabilities (35, 45–47) and abil-
ity to stimulate tissue repair and regeneration, as detailed further
in the article by de Jong et al. published in this same issue. Treat-
ment of injuries and diseases produced by unwanted inflammatory
processes has been done with MSCs, and they have proven effec-
tive in kidney and cardiac injuries and in clinical trials for the
treatment of Chron disease, graft versus host disease (GvHD), and
diabetes (48, 49).

Mesenchymal stem cells are found to have different immuno-
logical policing according to the inflammatory milieu they are
found in. For instance, under non-inflammatory conditions,
MSCs promote regeneration and tissue repair, and have poor
intrinsic immunogenicity due to the low expression of MHC or
activation accessory molecules, which makes them suited to be
used allogeneically in therapy and administered repeatedly (49,
50). On the other hand, MSCs become highly immunosuppressive
when triggered by the inflammatory cytokines IFN-γ and TNF-
α, and then importantly express MHC molecules (45, 48, 51), a
combination that would be optimal for the purpose of achieving
allograft tolerance.

In the transplantation set-up, there are some opposing studies
(52–54), but the use of MSCs has been found also to help prolong
heart and skin allograft survival and proves effective against refrac-
tory GvHD (45, 48). Relevantly, Ge et al. demonstrated the need
of the right concomitant immunosuppressive for MSC engraft-
ment and thus consecution of infinite allograft tolerance and also
showed Ag-specific tolerance induction regardless of MSCs ori-
gin (55). A beneficial effect of MSC on experimental chronic graft
nephropathy has been also reported in a rat kidney allograft model
(56). Importantly, MSCs have been already used in clinical trials
for allograft acceptance in the context of kidney transplantation,
showing interesting results (57).

However, MSCs therapy has obvious concerns, which can-
not be ignored, specifically their intrinsic tumorigenic poten-
tial given their self-replicating and differentiation capabilities.
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Moreover, their autologous use requires surgical intervention
in compromised patients and exogenous expansion cultures,
in which MSCs could modify their potency, efficiency, and
safety (49).

Antigen-presenting cells have also been tested in the induction
of tolerance. Among professional APCs, DCs actively participate in
the physiological mechanisms of tolerance, through the induction
of T cell anergy, depletion of antigen-specific T cells, and/or the
promotion of regulatory T cells (Treg) (58–60). The tolerogenic
potential of modified tolerogenic DCs (Tol-DCs) loaded with rel-
evant antigens opened the possibility to treat certain autoimmune
diseases in which antigenic proteins are at least partially charac-
terized, such as multiple sclerosis or rheumatoid arthritis (61, 62).
Similarly, the use of Tol-DCs has been tested in transplantation.
Preliminary experiments in rodents have widely demonstrated
that administration of different types of Tol-DCs prolong graft
survival in combination with suboptimal doses of conventional
immunosuppressant [reviewed in Ref. (63)]. As Tol-DCs may
be obtained under GMP conditions (64), they are being used
in clinical trials of tolerance induction in arthritis and allergy
(www.clinicaltrials.gov) (65).

Some evidences support that unloaded Tol-DCs are sufficient
for inducing allograft acceptance. In fact, it has been reported
that recipient DCs are actually responsible for alloantigen presen-
tation and tolerance attainment rather than injected DCs, from
which they would capture alloantigens in a tolerogenic fashion
(66). This would open the possibility to explore alternative cell-free
alloantigen sources.

ALLOANTIGENS: OPPORTUNITIES IN TOLERANCE
INDUCTION IN TRANSPLANTATION
Several sources of alloantigenic material have been investigated for
the induction of tolerance in transplantation. Immunodominant
peptides were first explored for the induction of tolerance (67),
which demonstrated the specificity of the response. In the case of
SOT, due to the high variability associated to MHC antigens, it is
virtually impossible to synthesize and cover all the antigenic poly-
morphisms of a given donor–receptor pair, thus pointing to the
need of finding specific sources of these alloantigens in each trans-
plant situation. Mimicking the experiments performed in DC-
based tumor immunotherapy (68), cell-free lysates were initially
chosen as a source of alloantigens, showing some encouraging
results (69–73).

Apoptotic bodies from donor origin have been also proposed
as another alloantigen source given their immunoregulatory capa-
bilities and enhanced capture by APCs [reviewed by Ref. (74)].
Moreover, apoptotic lymphocytes would be a rich MHC source
(75, 76), easy to prepare, and also would not require pre-loading
DCs in vitro as their use per se has been proven sufficient. They
have been used in transplant models in mice and rats, showing
a prolonged allograft survival, promoting donor-specific toler-
ance, and proving to be safe by intravenous administration (75–
79). Significantly, these studies highlighted the importance of the
right timing of the therapy and demonstrated apoptosis’ intrinsic
immunoregulatory capabilities, as necrosis did not show the same
beneficial effects (76). Nevertheless, despite the promising results
shown by several groups, infinite survival of the allograft has not

been attained yet. Also, given the content in damaged DNA and
high heterogeneity, other sources of alloantigens, such as EVs, are
being considered. In contrast to cell lysates and apoptotic bod-
ies, EVs represent a more stable and controlled source, can be
cryopreserved and produced for clinical purposes (80, 81).

EVs AS ALLOANTIGENS
Extracellular vesicles include a wide variety of lipid bilayered vesi-
cles secreted by cells, ranging from nano to micrometric sizes and
bearing distinct biochemical and physical properties. EVs mediate
communication by transferring proteins and RNA between cells
(82–84) not only at the paracrine level but also systemically. These
vesicles are found in biological fluids like urine, blood, ascites
fluid, cerebrospinal fluid, or semen [reviewed in Ref. (85)]. The
term EVs refers to a broad spectrum of vesicles from different cell
origin, biogenesis, function, and isolation method (86–88). Actu-
ally, most studies performed until now in this field refer to EVs as
exosomes. While microvesicles are budded from the plasma mem-
brane itself, exosomes are shed by many cell types upon the fusion
of the multivesicular bodies (MVBs) with the plasma membrane
and contain representative molecules from the cell they originate
from, with functional proteins and RNA specifically sorted into
them (89–91). Exosomes consistently express MHC antigens (92)
and their composition is more homogeneous compared to apop-
totic bodies (80) and less prone to inflammation compared to
cell lysates. For this reason, exosomes, and extendedly EVs, have
been proposed as a possible source for alloantigen presentation to
the host.

Alloantigen presentation in vivo could be either directly medi-
ated by the peptide-loaded MHC molecules found in the EVs or
indirectly upon the capture and presentation by recipient APCs.
Also, entire donor MHC molecules could be recycled by recip-
ient’s APCs and presented to the recipient T cells (Figure 1B).
There has been some controversy regarding the feasibility of direct
presentation by EVs. Some studies proved the need of indirect
presentation by DCs for exosomes to be able to stimulate T cells
(93–95), while other groups did demonstrate direct functional
presentation through exosomes themselves (96, 97).

SOURCE OF EVs FOR THERAPEUTIC USE
PLASMA EVs
Donor EVs containing MHC and miHAs may be obtained from
multiple sources, each possessing intrinsic characteristics and
advantages and being studied independently as strategies for allo-
graft acceptance. The first biological fluid coming to mind given
its ease of obtaining would be plasma. However, previous stud-
ies showed the little content of EVs and low MHC expression in
healthy human plasma samples (98, 99), meaning plasma would
not be the first choice in terms of alloantigen availability.

CELL-DERIVED EVs
Extracellular vesicles coming from cell-culture supernatants of dif-
ferent immunoregulatory cells would be the choice to modulate
further the immune response triggered by alloantigen presenta-
tion. One of their main benefits would be to possess a stable
phenotype that, contrary to cells, is not subject to further changes
or alteration by the milieu. There are three main cell types being
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studied so far for the production of immunomodulatory EVs:
regulatory T (Treg) cells, MSCs, and APCs, mainly DCs.

REGULATORY T CELLS EVs
As detailed information about Treg EVs and graft rejection can be
found in the paper from Lesley Ann Smyth et al. published in this
same issue, we will not discuss further this source.

MESENCHYMAL STEM CELLS EVs
Mesenchymal stem cells were thought to mediate tissue repair
and regeneration through replacement of injured cells by MSCs
themselves. Lately, it has been found that rather than proliferating,
MSCs promote the secretion of immunomodulatory cytokines
and trophic factors in response to damage signaling, encourag-
ing proliferation, and limiting apoptosis of the injured tissue (45,
48, 100). Recently, MSCs were found to secrete EVs, which would
mediate MSCs’ signature effects (101–106), although there is some
controversy regarding their full efficiency (107).

Mesenchymal stem cells-derived EVs have been used for the
treatment of kidney, cardiac, and brain injuries showing regenera-
tion and protective effect against injury, mainly at a paracrine level,
and thought to be mediated through cytokines, growth factors and
miRNAs delivered by EVs secreted by MSCs (47, 51, 108). In the
context of transplantation, some studies have shown promising
results, being the most outstanding the study reported by Kordelas
et al. in which the infusion of MSC-derived EVs was able to treat
a patient refractory to conventional IS therapy in GvHD (109).
More information about MSC–EVs can be read on the study by
Franquesa et al., in this same issue.

DENDRITIC CELLS EVs
Since Raposo et al. demonstrated in 1996 the presence of MHC
molecules in EVs secreted by B cells (110), APC-derived EVs as
source of alloantigens has gained enormous interest. Later, stud-
ies focused on the description of the cargo molecules present
in EVs coming from DCs indicated that DC-derived EVs were
not only carrying class I and II MHC molecules, but also acces-
sory molecules involved in T cell co-stimulation (81, 87, 111). As
mentioned before, some groups demonstrated EVs were able to
engage T cells through direct presentation (96, 112). Others sug-
gested that exosomes required to be captured by DCs to induce
an immune response by indirect presentation (94, 95). Moreover,
content of MHC molecules in EVs was proven to be sufficient for
effective and potent cross-presentation by host APCs. In this sense,
it was reported that exosomes from tumor cells could trigger cross-
priming of specific antitumor cytotoxic T lymphocytes (113, 114)
and DC-derived EVs could induce tumor rejection in mice (68)
and in human (115–117). Besides their use as cell-free vaccines
in antitumoral therapies, DC-derived EVs have been studied as
alternative therapies to induce tolerance in autoimmune diseases
and in the transplantation setting.

On one hand, there are strategies focusing on strengthen-
ing the immunoregulatory properties of the EV-producing cells.
For instance, several approximations engineered DC-derived-
exosomes expressing Fas-L or IL-4-transduced BMDC-derived-
exosomes, which were used as alternative treatments in mod-
els of delayed-type hypersensitivity (DTH) and collagen-induced

arthritis (CIA) in mice. These approximations managed to delay
the onset and severity of these immune-related diseases (118,
119). In a similar way, exosomes from IL-10-treated BMDCs or
transduced with an adenovirus expressing IL-10 suppressed DTH
responses (120).

Nevertheless, some effect was reported with mock exosomes,
so immature DCs were suggested to secrete exosomes with regula-
tory properties. In fact, allogeneic exosomes from immature DCs
can modulate the rejection of heart allografts (112). Therefore, it
is important to consider that the activation state of the DCs pro-
ducing EVs, may determine the immune response that these EVs
will evoke in the host [(68, 112, 121), p. 200; (96)].

In the context of transplantation, donor EVs derived from
immature Bone Marrow DC (BMDC) have been used as source
of donor MHC antigens in animal models of heart and intesti-
nal transplantation. A single iv administration of donor immature
BMDC-derived EVs (imDex) prior to intestinal transplantation
in a rat model reduced the host’s anti-donor cellular response,
induced the generation of regulatory T cells, and temporally pro-
longed allograft survival (122). Interestingly, the double infusion
of donor imDex before heterotopic heart transplantation pro-
longed allograft survival in a donor-specific manner (112). This
effect was accompanied by a decrease in graft infiltrating leuko-
cytes, a reduction of IFN-γ mRNA expression in the graft, and a
decrease in the anti-donor cellular response post-transplantation.

Also, the combination of EV infusion along with non-specific
immunosuppressive therapy to favor a tolerogenic microenviron-
ment has also been tested in heterotopic models of heart transplan-
tation (97, 123). Donor imDex administered post-transplantation
in combination with suboptimal doses of the immunosuppres-
sive drug LF15-0195 induced donor-specific tolerance, long term
allograft survival, and delayed chronic rejection (97). Further-
more, the combination of rapamycin and donor imDex injected
before and after transplantation promoted donor-specific toler-
ance, induced the generation of regulatory T cells and prolonged
allograft survival, this time in a mouse model (123). In both cases,
donor-specific tolerance was demonstrated to be transferable to
naïve recipients, thus allograft survival would be mediated by
cellular tolerance.

CRITICAL POINTS
The use of EVs for tolerance induction share some of the critical
points identified before in experimental cell therapies. As in these
approaches, the route of administration, timing and frequency of
administration, and the dose are some of the unsolved problems
in EVs therapy.

Extracellular vesicles may be administered through several
routes for tolerance induction, depending on the specific patholo-
gies. For instance, intra-articular injection of anti-inflammatory
exosomes has been used in rheumatoid arthritis patients [reviewed
in Ref. (124)]. Also, intranasal administration has been tested in
mice models of allergy (125). In the case of experimental trans-
plantation, and similarly to cell therapeutic approaches, intra-
venous administration is the route of choice for injecting EVs
in most of the experimental procedures.

The fate of (intravenously) injected EVs is still under dis-
cussion. It has been described that the expression of integrins,
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adhesion molecules, lipids, and other molecules on EVs con-
tribute to the attachment and fusion of the injected vesicles to
“acceptor” cells (126–130). In vitro experiments have shown that
internalization of EVs is an active process (inhibited by cytocha-
lasin D,EDTA,or low temperatures among others). In vivo imaging
experiments revealed that intravenously administered EVs rapidly
disappear from circulation and are firstly found in liver and lungs
(131). Partially confirming these results, in vitro capture of EVs
has been observed by liver and macrophage cell lines (98), and
also described in splenic and peripheral blood DCs (127, 132). It
is thus tempting to speculate that liver and spleen resident cells
will be the main targets of intravenously injected EVs, and thus
these cells will initially conduct the ongoing response (95).

A special mention needs to be paid to the different types of vesi-
cles and their cellular origin. Obviously, different types of vesicles
(such as apoptotic bodies and exosomes) from different cellu-
lar origins (MSCs, DCs, and others), or even the activation state
of the EV-producing cells (for instance, immature versus mature
DCs) will produce a specific response on target cells (and tissues)
most probably through different mechanisms. In the past years, an
outstanding effort has been made to elucidate the mechanisms of
action of EVs. Recently, Robbins and Morelli reviewed the regula-
tory effect of EVs (from different cell origin) in the immune system
(133). Yet, their regulatory effects in vivo are largely unknown,
especially in humans. Probably, one of the first demonstrations
of the in vivo regulation by EVs is the reported effect of MSC-
derived EVs to treat a patient refractory to conventional IS therapy
in graft-versus-host disease (109). Apparently, the mechanism of
action was an impaired capability of the patient’s PBMCs to release
pro-inflammatory cytokines in response to the EV treatment.
Speculatively, this effect could be attributed to a higher IL10/IFNγ

ratio in the infused EVs, although other mechanisms (generation
of Tregs, miRNA regulation) may also contribute to the observed
anti-inflammatory effect. The definition of a given type of vesi-
cles to specifically apply for therapeutic purposes will undoubtedly
depend on the pathology, mechanism(s) of action, and the feasi-
bility to obtain sufficient amounts of EVs under GMP conditions
to conduct the therapeutic approach.

Certainly, the definition of therapeutic doses is another impor-
tant issue to be solved for the use of EVs in therapeutic applica-
tions. Interestingly, in SOT studies in mice and rats, a common
observation seems to point to 10–25 µg of EV-associated protein
per dose as the optimal quantity leading to increased survival of the
graft (Table 1) (97, 121–123). Remarkably, exceeding or decreas-
ing this quantity could only reproduce the results in part. It is
noticeable though that this specific dose seems to work even when
different concomitant IS regimes were used and also in spite of
injecting different number of doses and at different days pre or
post-transplantation. Given that the protocols used to enrich EVs
do not preclude the presence of contaminant proteins in EV prepa-
rations, protein determination does not seem to be an accurate
method to define the actual dose of EVs used. Beyond differ-
ences among several laboratories, this could also lead to variability
among different preparations or batches in a given lab. Debates
on the adoption of quantitative standards applicable to different
laboratories, together with nomenclature of EVs, are underway in
international forums.

Scaling up this hypothetical working dose of 10 µg to a 60-
kg human being would result in approximately 30 mg of EV-
associated protein per dose. Data regarding this specific point is
yet scarce. In the first phase I clinical trial using DC-derived EVs
for melanoma vaccination, intradermal or subcutaneous EVs were
injected at doses set up based on the concentration of MHC mol-
ecules in the EV preparations (116). More related to the induction
of tolerance, Kordelas et al. defined one EV unit as the quantity of
EVs recovered from 4× 107 MSCs after 48 h in culture. The NTA
analyses of this supernatant revealed a range of 1.5–3.5× 1010 vesi-
cles per unit and between 0.5 and 1.6 mg of protein (109). Further
work is needed to define the optimal dose, number, and frequency
of administrations for a given therapeutic situation. These may
well benefit from the development of new methods aiming at an
accurate quantification of EV preparations (134–136).

Thus, a number of additional questions need to be fully
answered regarding EV therapy. Apart from the source of EVs,
the optimal route, dose, and frequency of administration, other
issues such as the standardization of EVs isolation/enrichment or

Table 1 | EV treatments in transplantation-related settings.

Author Model EV origin Qtyc EV infusion (d = days) ISd Conclusion

Pêche et al. (112) Rat heterotopic heart TXa imDexb 10 µg d14 pre-TX d7 pre-TX None Short term survival, donor-specific

Pêche et al. (97) Rat heterotopic heart TX imDex 25 µg d1 post-TX d6 post-TX LF15-0195 Long term survival, donor-specific,

transferable

Yang et al. (122) Rat intestinal TX imDex 20 µg d7 pre-TX None Short term survival

Li et al. (123) Mouse heterotopic heart TX imDex 10 µg d7 pre-TX, d0, d7 post-TX Rapamycin Short term survival, donor-specific,

transferable

Kordelas et al. (109) Human refractory GvHD MSC-EVs 1 Unit Several doses Steroids Reduced clinical GvHD

aTX, transplant.
b imDex, immature dendritic cell-derived EVs.
cQty, quantity of EVs administered.
dIS, immunossuppressive drug regime.
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quantitative issues will be necessarily solved in the incoming years.
To date, most of the procedures for EVs isolation are based on
differential ultracentrifugation. Other methods are based on the
capacity of several precipitating agents to favor EV selective enrich-
ment. Most of them though, do not preclude other proteins to be
co-enriched with EVs. Further developments on size-exclusion
chromatography and immune-based selection of EVs will con-
tribute to reduce the presence of non-vesicular proteins and to
improve EV preparations.

Despite these unsolved issues, EV therapy may have some
advantages over cell therapy approaches. These include, among
others, a non-tumorigenic potential (one of the main concerns on
MSC therapy), and the possibility of sterilization by filtration, the
capacity of EVs to cross tissue barriers (such as the blood–brain
barrier) (137), or the fact that EVs cannot be influenced by the
surrounding milieu (138). Some of these advantages may possi-
bly favor the definition of less restrictive regulatory conditions,
allowing an easier implementation of EV therapies.

CONCLUDING REMARKS
After a twentieth century, in which the development of IS has
permitted outstanding advances in the field of transplantation,
the next challenge of this discipline is a graft for life (139), that
is, preventing chronic rejection of engrafted organs. Different
approaches are exploring how to achieve this goal, including com-
bination of organ and bone marrow transplantation (140). Hypo-
thetically, discontinuation of IS after an initial acute phase would
contribute to reduce side effects, thus importantly improving life
expectancy after transplantation.

Given their particular characteristics, the contribution of EV
therapy in organ transplantation for tolerance induction may be
advantageous compared to other approaches in development, such
as cell therapy. Together with their potential as drug-delivery carri-
ers, cancer therapy, or in biomarker discovery, using EV strategies
in tolerance induction will undoubtedly be one of the future areas
of interest in biomedicine and biotechnology.
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