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Aims The European Society of Cardiology guidelines recommend risk stratification with limited clinical parameters such as 
left ventricular (LV) function in patients with chronic coronary syndrome (CCS). Machine learning (ML) methods enable 
an analysis of complex datasets including transthoracic echocardiography (TTE) studies. We aimed to evaluate the accuracy 
of ML using clinical and TTE data to predict all-cause 5-year mortality in patients with CCS and to compare its performance 
with traditional risk stratification scores.

Methods 
and results

Data of consecutive patients with CCS were retrospectively collected if they attended the outpatient clinic of Amsterdam 
UMC location AMC between 2015 and 2017 and had a TTE assessment of the LV function. An eXtreme Gradient Boosting 
(XGBoost) model was trained to predict all-cause 5-year mortality. The performance of this ML model was evaluated using 
data from the Amsterdam UMC location VUmc and compared with the reference standard of traditional risk scores. A total 
of 1253 patients (775 training set and 478 testing set) were included, of which 176 patients (105 training set and 71 testing 
set) died during the 5-year follow-up period. The ML model demonstrated a superior performance [area under the receiver 
operating characteristic curve (AUC) 0.79] compared with traditional risk stratification tools (AUC 0.62–0.76) and showed 
good external performance. The most important TTE risk predictors included in the ML model were LV dysfunction and 
significant tricuspid regurgitation.

Conclusion This study demonstrates that an explainable ML model using TTE and clinical data can accurately identify high-risk CCS pa-
tients, with a prognostic value superior to traditional risk scores.
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Graphical Abstract

CCS, chronic coronary syndrome; eGFR, estimated glomerular filtration rate; LV, left ventricular; TTE, transthoracic echocardiography.
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Introduction
Chronic coronary syndrome (CCS) is a common cardiovascular condi-
tion that affects millions of patients worldwide.1 Despite receiving med-
ical and interventional treatment, CCS patients have a high rate of 
cardiovascular events leading to myocardial infarction or mortality in 
8% of patients within 5 years.2 To evaluate the risk of cardiovascular 
events, the European Society of Cardiology (ESC) guidelines recommend 
a transthoracic echocardiographic (TTE) assessment of the left ventricu-
lar (LV) function in all patients with CCS.1 Transthoracic echocardiog-
raphy is the most performed non-invasive cardiac procedure and has 
unique characteristics such as high temporal resolution, absence of ion-
izing radiation, portability, and low costs.3 Furthermore, LV dysfunction 
has been established as one of the strongest predictors of mortality.1,4

However, LV function as a stand-alone risk stratifier may not account 
for all potential risk factors and the complex interactions among them.

Artificial intelligence is a rapidly emerging field and refers to the 
broad concept of computer systems performing tasks that previously 
required human intelligence. Machine learning (ML) is a subfield of arti-
ficial intelligence in which an algorithm is trained on sample data to per-
form a specific task (e.g. classification, regression), in order to perform 
this task on new data.5,6 Machine learning has shown superior results to 
predict mortality in patients with CCS using data from coronary com-
puted tomographic angiography (CCTA) or stress cardiac magnetic 
resonance (CMR) compared with traditional methods.7,8 Despite these 
promising results, limited ML studies have used TTE data to predict 
mortality in patients with CCS.9

To work towards an ML model applicable to a larger proportion of 
the CCS patients, we formulated the research question whether ML 
using TTE and clinical data can improve risk stratification of patients 
with CCS. The aim of this study was to investigate the accuracy of 
ML using clinical and TTE data to predict 5-year mortality in patients 
with CCS and to compare its performance with traditional risk strati-
fication scores.

Methods
Training cohort
The training cohort was used to train the ML model. This cohort consisted 
of patients aged 18 years or older diagnosed with CCS who had both an 
outpatient visit and TTE at the Amsterdam University Medical Center 
(AUMC), location AMC, the Netherlands, between 2014 and 2017. 
Chronic coronary syndrome was defined as a clinical presentation of cor-
onary artery disease at the outpatient visit, with the exception of patients 
in which acute coronary syndrome was the primary clinical presentation.10

The diagnosis was determined by the treating physician based on history 
taking, and patients were treated with medication accordingly, in accord-
ance with the ESC guidelines.10 Additional testing was performed at the dis-
cretion of the physician, commonly in patients where medical treatment 
was ineffective or when there was a need to confirm or refute the CCS 
diagnosis. Patients were consecutively selected from electronic health re-
cords, and their data were extracted from pseudonymized electronic health 
records and echocardiography reports, which was further described in the 
study of Molenaar et al.4
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Testing cohort
The generalizability of the ML model was assessed by testing it on a cohort 
of CCS patients in an external centre. This cohort was drawn from a regis-
try of CCS patients between 2014 and 2017 of the AUMC, location VUMC, 
the Netherlands. The included patients in the testing cohort fulfilled the 
same inclusion criteria as the training cohort. The local human ethical 
review board approved the establishment of both registries for study pur-
poses, without the need for written consent.

Outcome
The clinical endpoint was 5-year all-cause mortality, extracted from elec-
tronic health records of both medical centres.

Echocardiography data
Chronic coronary syndrome patients underwent two-dimensional TTE 
with tissue Doppler imaging using various machines, including Vivid 9 

(GE Vingmed Ultrasound AS, Horten, Norway) in the training cohort and 
Philips Epiq, Philips Affiniti, and Philips IE33 (Philips Medical Systems, Best, 
The Netherlands) in the testing cohort. These TTE assessments were per-
formed by clinical technicians, who followed the recommendations of the 
ESC guidelines,11,12 European Association of Cardiovascular Imaging,13

and standard operating procedure.14 The TTE images were analysed 
with vendor-specific software including GE EchoPAC (GE Vingmed 
Ultrasound AS) in the training cohort and Xcelera (Philips Medical 
Systems) and TomTec 2D Cardiac Performance Analysis (Munich, 
Germany) in the testing cohort.

The initial TTE assessment was performed qualitatively by a clinical tech-
nician or cardiology resident in routine clinical practice, not performed spe-
cifically for this study. Semi-quantitative and quantitative measurements of 
atrial and ventricular dimensions, right ventricular (RV) function, and valve 
stenosis or regurgitation were obtained if indicated, especially if clinical de-
cisions were based on these findings.11–13 In apical two-chamber and four- 
chamber images, tracings of the LV endocardial borders were performed. 
The Simpson’s biplane method was used to estimate the end-diastolic 

Figure 1 Inclusion flowchart. EHR, electronic health records; CCS, chronic coronary syndrome; TTE, transthoracic echocardiography. *The clinical 
characteristics of patients without transthoracic echocardiography (n = 535) and patients with complete transthoracic echocardiography (n = 1984) 
were comparable, as shown in Supplementary material online, Table S2.
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Table 1 Baseline characteristics of patients in the training set

Characteristics All patients (N = 775) Alive (N = 670) Dead (N = 105) P-value

Follow-up (years), median (Q1, Q3) 6.46 (5.48, 6.89) 6.55 (5.89, 6.97) 2.27 (1.15, 3.44) <0.001

Age (years), median (Q1, Q3) 66.00 (58.00, 73.00) 65.00 (57.00, 72.00) 71.00 (64.00, 78.00) <0.001

Male, n (%) 445 (57.4) 383 (57.2) 62 (59.0) 0.797
Risk factors

Hypertension, n (%) 462 (59.6) 397 (59.3) 65 (61.9) 0.683

Diabetes, n (%) 232 (29.9) 190 (28.4) 42 (40.0) 0.021
Dyslipidaemia, n (%) 260 (33.5) 231 (34.5) 29 (27.6) 0.203

Current or former smoker, n (%) 280 (36.1) 235 (35.1) 45 (42.9) 0.151

Family history of CAD, n (%) 257 (33.2) 233 (34.8) 24 (22.9) 0.021
Medical history

Myocardial infarction, n (%) 206 (26.6) 166 (24.8) 40 (38.1) 0.006

Recent ACS eventa, n (%) 11 (1.4) 9 (1.3) 2 (2.0) 0.326
PCI, n (%) 244 (31.5) 206 (30.7) 38 (36.2) 0.315

CABG, n (%) 75 (9.7) 56 (8.4) 19 (18.1) 0.003

Valvular repair or replacement, n (%) 27 (3.5) 19 (2.8) 8 (7.6) 0.028
Atrial fibrillation/flutter, n (%) 88 (11.4) 64 (9.6) 24 (22.9) <0.001

Stroke, n (%) 40 (5.2) 29 (4.3) 11 (10.5) 0.016

COPD, n (%) 58 (7.5) 34 (5.1) 24 (22.9) <0.001
Peripheral arterial disease, n (%) 40 (5.2) 26 (3.9) 14 (13.3) <0.001

Clinical examination

Chest pain, n (%) 427 (55.1) 382 (57.0) 45 (42.9) 0.009
Dyspnoea, n (%) 203 (26.2) 163 (24.3) 40 (38.1) 0.004

Other cardiac symptoms, n (%) 156 (20.1) 138 (20.6) 18 (17.1) 0.490

Systolic blood pressure (mmHg), mean (SD) 141.02 (21.79) 141.16 (21.26) 140.17 (24.83) 0.687
Heart rate (b.p.m.), mean (SD) 71.74 (13.81) 70.97 (13.46) 76.34 (15.00) 0.001

BMI (kg/m2), mean (SD) 27.89 (5.64) 28.01 (5.51) 27.12 (6.33) 0.163

Laboratory parameters
eGFR (mL/min/1.73 m2)b, mean (SD) 69.34 (21.00) 71.41 (19.68) 56.32 (24.30) <0.001

Total cholesterol (mmol/L), mean (SD) 4.57 (1.22) 4.59 (1.22) 4.43 (1.24) 0.262

HDL-cholestrol (mmol/L), mean (SD) 1.32 (0.44) 1.31 (0.42) 1.37 (0.56) 0.271
LDL-cholestrol (mmol/L), mean (SD) 2.93 (1.14) 2.96 (1.14) 2.72 (1.15) 0.071

Triglyceride (mmol/L), mean (SD) 1.55 (1.13) 1.54 (1.17) 1.56 (0.89) 0.925

Echocardiographic measurement
Left ventricular function, n (%) <0.001

Normal 614 (79.2) 557 (83.1) 57 (54.3)

Mildly impaired 109 (14.1) 81 (12.1) 28 (26.7)
Moderately impaired 46 (5.9) 30 (4.5) 16 (15.2)

Severely impaired 6 (0.8) 2 (0.3) 4 (3.8)

Right ventricular dysfunction, n (%) 52 (6.7) 34 (5.1) 18 (17.1) <0.001
Right ventricular enlargement, n (%) 28 (3.6) 19 (2.8) 9 (8.6) 0.008

Left ventricular enlargement, n (%) 90 (11.6) 73 (10.9) 17 (16.2) 0.158

Left atrial enlargement, n (%) 338 (43.6) 281 (41.9) 57 (54.3) 0.023
Right atrial enlargement, n (%) 91 (11.7) 70 (10.4) 21 (20.0) 0.008

Moderate or severe aortic stenosis, n (%) 33 (4.3) 25 (3.7) 8 (7.6) 0.115

Moderate or severe aortic regurgitation, n (%) 19 (2.5) 14 (2.1) 5 (4.8) 0.191
Moderate or severe mitral regurgitation, n (%) 80 (10.3) 60 (9.0) 20 (19.0) 0.003

Moderate or severe mitral stenosis, n (%) 2 (0.3) 2 (0.3) 0 (0.0) 1.000

Moderate or severe pulmonary regurgitation, n (%) 4 (0.5) 2 (0.3) 2 (1.9) 0.161
Moderate or severe pulmonary stenosis, n (%) 1 (0.1) 1 (0.1) 0 (0.0) 1.000

Moderate or severe tricuspid regurgitation, n (%) 56 (7.2) 37 (5.5) 19 (18.1) <0.001

Continued 
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and end-systolic LV volumes, through which LV ejection fraction (LVEF) 
was calculated. Atrial and ventricular enlargements were defined as an in-
crease in the size of their respective chambers. Specifically, left atrial en-
largement was defined as a left atrial volume index >34 mL/m2. Right 
atrial enlargement was defined as a right atrial volume index ≥30 mL/m2 

for male patients and ≥28 mL/m2 for female patients. Left ventricular en-
largement was defined as a LV end-diastolic dimension >58.4 mm for 
male patients and >52.2 mm for female patients. Right ventricular enlarge-
ment was defined as a RV basal diameter ≥42 mm.13,15 The results were 
documented in a TTE report,13 which was supervised by a dedicated im-
aging cardiologist who examined the TTE images and made corrections 
to the TTE report if needed.

The TTE reports were de-identified, and one report was selected for 
each patient that was closest to the date of the outpatient visit. The follow-
ing data were extracted from the TTE reports and recorded in the registry: 
left and right atrial and ventricular enlargements, LV and RV functions, and 
severity of aortic stenosis, aortic regurgitation, mitral stenosis, mitral regur-
gitation, tricuspid regurgitation, pulmonary stenosis, and pulmonary regur-
gitation. Left ventricular dysfunction was defined as mildly to severely 
impaired LV function (LVEF ≤51% for male and ≤53% for female). 
Moderately and severely impaired LV function was defined as an LVEF of 
30–41% and <30%, respectively.16 The estimated glomerular filtration 
rate (eGFR) was calculated with the Chronic Kidney Disease 
Epidemiology Collaboration creatinine equation.17

Available data and standard risk scores
The following data were available for the training and testing cohorts and 
were used for model training: demographic data, cardiovascular risk factors, 
medical history, clinical examination, laboratory measurements, and echo-
cardiographic data. A total of 43 features were used for training, of which 
14 features were echocardiographic features. The Framingham risk score18

and ESC Systematic Coronary Risk Evaluation [SCORE2 (<70 years)/ 
SCORE2-OP (≥70 years)] risk19,20 were calculated to estimate the 
10-year cardiovascular risk for each patient. The variables included in these 
risk scores are age, gender (only in Framingham risk score), geographical re-
gion (only in SCORE2/SCORE2-OP), systolic blood pressure, diabetes 

(only in SCORE2/SCORE2/OP), smoking status, blood pressure treatment 
(only in Framingham risk score), and total-cholesterol and HDL-cholesterol.

Feature imputation and selection
Missing values in the training and testing cohorts were imputed by multiple 
imputation by chained equation with a linear regression model in 10 itera-
tions. This process was repeated for the data of both the training and the 
testing cohorts separately. An eXtreme Gradient Boosting (XGBoost) 
model was trained to predict 5-year mortality. The eXtreme Gradient 
Boosting is a non-linear model that employs an ensemble of decision tree 
models, which has shown good performance in diverse classification pro-
blems.21,22 A grid search with five times five-fold cross-validation was con-
ducted on the data of the training cohort to tune the hyperparameters of 
XGBoost (see Supplementary material online, Table S1). To obtain the op-
timal set of features and minimize the risk of overfitting, the tuned XGBoost 
model was trained using a 10 times 10-fold cross-validation strategy. This 
involved multiple training cycles in which the model was trained on 90% 
of the training data and validated on the remaining 10%. This process was 
repeated 10 times with other randomization of the data to obtain a reliable 
performance estimate. The feature that most frequently exhibited the low-
est importance in the 10 iterations of cross-validation, as observed by the 
features’ importance function of XGBoost, was excluded from the subse-
quent rounds of model training. To reduce the risk of overfitting and 
enhance the model’s generalizability, the minimal set of features was 
selected at the point where the model’s performance began to decline.

Model training and testing
The ML model was trained with the selected features using 10-fold cross- 
validation, with the area under the receiver operating characteristic curve 
(AUC) as the optimization metric. The model was recalibrated using the 
training data to further improve the calibration (agreement between the 
observed and the predicted risk of mortality) and was subsequently tested 
on the testing set. In the testing set, the model was evaluated a thousand 
times on randomly selected bootstrap samples to obtain a reliable estimate 
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Table 1 Continued  

Characteristics All patients (N = 775) Alive (N = 670) Dead (N = 105) P-value

Diagnostic modalities
Exercise ECG, n (%) 133 (17.2) 123 (18.4) 10 (9.5) 0.036

Stress CMR, n (%) 61 (7.9) 54 (8.1) 7 (6.7) 0.766

Myocardial perfusion scan, n (%) 298 (38.5) 259 (38.7) 39 (37.1) 0.850
CT coronary angiography, n (%) 176 (22.7) 147 (21.9) 29 (27.6) 0.244

Invasive coronary angiography, n (%) 463 (59.7) 394 (58.8) 69 (65.7) 0.217

Baseline medication
Antiplatelet therapy, n (%) 516 (66.6) 442 (66.0) 74 (70.5) 0.424

Anticoagulants, n (%) 102 (13.2) 77 (11.5) 25 (23.8) 0.001

ACE-inhibitor/ARB, n (%) 387 (49.9) 327 (48.8) 60 (57.1) 0.138
Beta-blockers, n (%) 468 (60.4) 398 (59.4) 70 (66.7) 0.191

Nitrates or other antianginal drugs, n (%) 211 (27.2) 178 (26.6) 33 (31.4) 0.356

Calcium antagonists, n (%) 249 (32.1) 213 (31.8) 36 (34.3) 0.692
Diuretics, n (%) 219 (28.3) 172 (25.7) 47 (44.8) <0.001

Statins, n (%) 490 (63.2) 422 (63.0) 68 (64.8) 0.809

Insulin, n (%) 95 (12.3) 74 (11.0) 21 (20.0) 0.015
Other oral diabetic drugs, n (%) 179 (23.1) 151 (22.5) 28 (26.7) 0.419

ACE, angiotensin-converting enzyme; ACS, acute coronary syndrome; ARB, angiotensin receptor blocker; BMI, body mass index; CABG, coronary artery bypass grafting; CAD, coronary 
artery disease; CMR, cardiac magnetic resonance; COPD, chronic obstructive pulmonary disease; CT, computed tomography; ECG, electrocardiography; eGFR, estimated glomerular 
filtration rate; PCI, percutaneous coronary intervention; VHD, valvular heart disease. 
aWithin 3 months preceding the presentation at the outpatient clinic. 
bCalculated with the Chronic Kidney Disease Epidemiology Collaboration creatinine equation.
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Table 2 Baseline characteristics of patients in the training and testing cohorts

Characteristics Training set (N = 775) Testing set (N = 478) P-value

Follow-up (years), median (Q1, Q3) 6.46 (5.48, 6.89) 6.34 (5.35, 6.92) 0.403

Age (years), median (Q1, Q3) 66.00 (58.00, 73.00) 66.00 (58.00, 75.00) 0.208

Male, n (%) 445 (57.4) 290 (60.7) 0.282
Risk factors

Hypertension, n (%) 462 (59.6) 246 (51.5) 0.006

Diabetes, n (%) 232 (29.9) 122 (25.5) 0.105
Dyslipidaemia, n (%) 260 (33.5) 127 (26.6) 0.011

Current or former smoker, n (%) 280 (36.1) 179 (37.4) 0.682

Family history of CAD, n (%) 257 (33.2) 155 (32.4) 0.836
Medical history

Myocardial infarction, n (%) 206 (26.6) 134 (28.0) 0.620

Recent ACS eventa, n (%) 11 (1.4) 6 (1.2) 0.404
PCI, n (%) 244 (31.5) 190 (39.7) 0.003

CABG, n (%) 75 (9.7) 68 (14.2) 0.018

Valvular repair or replacement, n (%) 27 (3.5) 14 (2.9) 0.709
Atrial fibrillation/flutter, n (%) 88 (11.4) 53 (11.1) 0.958

Stroke, n (%) 40 (5.2) 25 (5.2) 1.000

COPD, n (%) 58 (7.5) 32 (6.7) 0.680
Peripheral arterial disease, n (%) 40 (5.2) 17 (3.6) 0.236

Clinical examination

Chest pain, n (%) 427 (55.1) 293 (61.3) 0.036
Dyspnoea, n (%) 203 (26.2) 169 (35.4) 0.001

Other cardiac symptoms, n (%) 156 (20.1) 101 (21.1) 0.723

Systolic blood pressure (mmHg), mean (SD) 141.02 (21.79) 137.66 (22.67) 0.029
Heart rate (b.p.m.), mean (SD) 71.74 (13.81) 70.27 (13.92) 0.130

BMI (kg/m2), mean (SD) 27.89 (5.64) 27.48 (4.62) 0.294

Laboratory parameters
eGFR (mL/min/1.73 m2)b, mean (SD) 69.34 (21.00) 67.46 (20.83) 0.130

Total cholesterol (mmol/L), mean (SD) 4.57 (1.22) 4.50 (1.22) 0.414

HDL-cholestrol (mmol/L), mean (SD) 1.32 (0.44) 1.35 (0.49) 0.317
LDL-cholestrol (mmol/L), mean (SD) 2.93 (1.14) 2.78 (1.11) 0.063

Triglyceride (mmol/L), mean (SD) 1.55 (1.13) 1.69 (0.96) 0.054

Echocardiographic measurement
Left ventricular function, n (%) <0.001

Normal 614 (79.2) 301 (63.0)

Mildly impaired 109 (14.1) 105 (22.0)
Moderately impaired 46 (5.9) 54 (11.3)

Severely impaired 6 (0.8) 18 (3.8)

Right ventricular dysfunction, n (%) 52 (6.7) 59 (12.3) 0.001
Right ventricular enlargement, n (%) 28 (3.6) 18 (3.8) 1.000

Left ventricular enlargement, n (%) 90 (11.6) 27 (5.6) 0.001

Left atrial enlargement, n (%) 338 (43.6) 111 (23.2) <0.001
Right atrial enlargement, n (%) 91 (11.7) 28 (5.9) 0.001

Moderate or severe aortic stenosis, n (%) 33 (4.3) 27 (5.6) 0.325

Moderate or severe aortic regurgitation, n (%) 19 (2.5) 17 (3.6) 0.335
Moderate or severe mitral regurgitation, n (%) 80 (10.3) 31 (6.5) 0.026

Moderate or severe mitral stenosis, n (%) 2 (0.3) 3 (0.6) 0.585

Moderate or severe pulmonary regurgitation, n (%) 4 (0.5) 0 (0.0) 0.290
Moderate or severe pulmonary stenosis, n (%) 1 (0.1) 0 (0.0) 1.000

Moderate or severe tricuspid regurgitation, n (%) 56 (7.2) 31 (6.5) 0.699
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of performance. The ML model was trained using Python version 3.8 on a 
Windows-based computer (CPU: 2.3 GHz, RAM: 8 GB).

The impact of a feature on the ML model’s outcome was further 
illustrated with Shapley Additive exPlanations (SHAP) plots.23 These plots 
provide insight into the decision-making process of the model, even for a 
specific patient, by illustrating both the importance and the impact direction 
(positive/negative) of a feature compared with a baseline value.

Statistical analysis
Descriptive statistics were expressed as mean values with standard devi-
ation (SD) for normally distributed data and a median with an interquartile 
range for non-normally distributed data. Nominal or ordinal data were ex-
pressed with numbers with percentages. The Shapiro–Wilk test was used 
to test for normality. The Student’s t-test or Mann–Whitney U test was per-
formed for between-group comparisons of continuous data, as appropri-
ate. For categorical variables either a Pearson’s χ2 test or a Fisher’s exact 
test was performed.

The ML-based risk score was compared with the performance of 
the following benchmark scores: (i) LV dysfunction; (ii) Framingham risk 
score;18 (iii) SCORE2/SCORE2-OP;19,20 and (iv) a Cox-based risk score, a 
commonly used model in survival analysis.24 The AUC values of these scores 
were reported with corresponding 95% confidence intervals (CIs). The 
AUC of the ML model was compared with the AUC of the traditional risk 
scores according to DeLong’s test.25 To derive the Cox-based risk score, 
a multivariable Cox survival analysis was performed on data in the training 
set using stepwise backward selection minimizing the Akaike information cri-
terion. With this approach, the most significant predictors were selected in 
the final Cox model, and the inclusion of non-significant factors was avoided. 
The natural logarithm of the adjusted hazard ratio for each selected variable 
served as a coefficient in the Cox-based risk score. To calculate the 
Cox-based risk for each patient, the coefficients were multiplied by the cor-
responding data values, and the resulting products were summed. Precision- 
recall curves were plotted, which provide an insight into the performance of 
the model, especially when the number of patients in the classes (mortality/ 
non-mortality) are imbalanced.

The calibration of the models was assessed by plotting the predicted risk 
against the true proportion of mortality across multiple risk categories. In a 
calibrated model, the predicted proportion of mortality matches the true 
proportion in each category. The Brier score was calculated as a quantita-
tive measure of the accuracy of the model’s predictions. The Brier score 
ranges between 0 (accurate prediction) and 1 (inaccurate prediction).

The prognostic value of the ML score was further evaluated using survival 
analysis. A cut-off value was determined for the ML score at which the true- 
positive rate minus the false-positive rate was maximal. Patients in the test-
ing set with an ML score greater than the cut-off value were classified as 
high-risk patients, while patients with an ML score equal to or lower than 
the cut-off value were classified as low-risk patients. Kaplan–Meier curves 
were plotted to analyse the survival of patients categorized into high-risk 
and low-risk groups. The prognostic value of the ML score was compared 
with LV dysfunction by calculating the unadjusted hazard ratios and the log- 
rank test.

This study meets all CODE-EHR minimum framework standards for 
the use of healthcare data for clinical research.26 Statistical analyses were 
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Table 2 Continued  

Characteristics Training set (N = 775) Testing set (N = 478) P-value

Diagnostic modalities
Exercise ECG, n (%) 133 (17.2) 84 (17.6) 0.912

Stress CMR, n (%) 61 (7.9) 7 (1.5) <0.001

Myocardial perfusion scan, n (%) 298 (38.5) 186 (38.9) 0.918
CT coronary angiography, n (%) 176 (22.7) 146 (30.5) 0.003

Invasive coronary angiography, n (%) 463 (59.7) 338 (70.7) <0.001

Baseline medication
Antiplatelet therapy, n (%) 516 (66.6) 297 (62.1) 0.123

Anticoagulants, n (%) 102 (13.2) 69 (14.4) 0.580

ACE-inhibitor/ARB, n (%) 387 (49.9) 227 (47.5) 0.434
Beta-blockers, n (%) 468 (60.4) 254 (53.1) 0.014

Nitrates or other antianginal drugs, n (%) 211 (27.2) 151 (31.6) 0.112

Calcium antagonists, n (%) 249 (32.1) 132 (27.6) 0.104
Diuretics, n (%) 219 (28.3) 129 (27.0) 0.672

Statins, n (%) 490 (63.2) 293 (61.3) 0.532

Insulin, n (%) 95 (12.3) 55 (11.5) 0.758
Other oral diabetic drugs, n (%) 179 (23.1) 74 (15.5) 0.001

ACE, angiotensin-converting enzyme; ACS, acute coronary syndrome; ARB, angiotensin receptor blocker; BMI, body mass index; CABG, coronary artery bypass grafting; CAD, coronary 
artery disease; CMR, cardiac magnetic resonance; COPD, chronic obstructive pulmonary disease; CT, computed tomography; ECG, electrocardiography; eGFR, estimated glomerular 
filtration rate; PCI, percutaneous coronary intervention; VHD, valvular heart disease. 
aWithin 3 months preceding the presentation at the outpatient clinic. 
bCalculated with the Chronic Kidney Disease Epidemiology Collaboration creatinine equation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Follow-up of patients in the training and 
testing sets

Characteristics Training set 
(N = 775)

Testing set 
(N = 478)

P-value

Revascularization, n (%) 199 (25.7) 172 (36.0) <0.001
Valvular repair or 

replacement, n (%)

18 (2.3) 12 (2.5) 0.983

Mortality, n (%) 105 (13.5) 71 (14.9) 0.574

Treatment and mortality during the 5-year follow-up period for patient in the training 
and testing sets.
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performed in Python version 3.8 and RStudio version 2022.07.0 (RStudio 
Team, Boston, MA, USA) using R-version 4.1.3 (R Core Team, Vienna, 
Austria). A P-value <0.05 was considered statistically significant.

Results
Study population
A total of 2845 patients with CCS were screened in both tertiary cen-
tres. Among them, 1988 patients had an outpatient visit and underwent 
TTE between 2014 and 2021. Patients who were excluded due to the 
absence of a TTE assessment (n = 535) had baseline characteristics 
comparable with patients with a TTE assessment (see Supplementary 
material online, Table S2). The only significant difference was in age, 
which was higher in the group without a TTE assessment (68 vs. 65 
years, P < 0.001). After an exclusion of 735 patients who did not 

have an outpatient visit before 2017 (n = 731) or did not have complete 
TTE acquisition (n = 4), 1253 patients were included (775 patients in 
the training set and 478 patients in the testing set). The flowchart is de-
picted in Figure 1.

Baseline characteristics and follow-up
The baseline characteristics of the patients in the training and testing 
sets are shown in Tables 1 and 2, respectively. Patients in the training 
set had a median age of 66 years, and 58% of them were male. 
Additional invasive coronary angiography was most frequently (60%) 
performed in the diagnostic process, followed by a myocardial perfu-
sion scan (39%) and computed tomography (CT) coronary angiography 
(23%). Hypertension was the most common risk factor (60%), followed 
by smoking (36%) and dyslipidaemia (34%). Prior myocardial infarction 
was reported in 206 patients (27%). Acute coronary syndrome was 

Figure 2 Number of features versus discriminative performance of machine learning model. The first model was trained with all features shown on 
the x-axis using a 10 times 10-fold cross-validation strategy on the training set. The feature that most frequently exhibited the lowest importance in the 
10 iterations of cross-validation, as indicated by the features importance function of eXtreme Gradient Boosting, was excluded from the subsequent 
model training process. The minimal set of features was selected at which the model’s discriminative performance began to decline. The performance of 
the model began to decline when fewer than nine features were included in the model, as indicated by the arrow. Only features surrounded by the box 
were included in the final model. AF, atrial fibrillation/flutter; AR, moderate or severe aortic regurgitation; AS, moderate or severe aortic stenosis; AUC, 
area under the receiver operating characteristic curve; AVR, surgical aortic valve replacement; BMI, body mass index; CABG, coronary artery bypass 
graft; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; LA, left atrial; LV, left ventricular; MI, myocardial in-
farction; MR, moderate or severe mitral regurgitation; MS, moderate or severe mitral stenosis; MVR, surgical mitral valve replacement; PAD, peripheral 
arterial disease; PCI, percutaneous coronary intervention; PR, moderate or severe pulmonary regurgitation; PS, moderate or severe pulmonary sten-
osis; PVR, surgical pulmonary valve replacement; RA, right atrial; RV, right ventricular; TAVR, transcatheter aortic valve replacement; TEER, transcath-
eter edge-to-edge repair; TR, moderate or severe tricuspid regurgitation; TVR, surgical tricuspid valve replacement; VHD, moderate or severe valvular 
heart disease; VHS, valvular heart surgery.
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reported in 11 patients (1%) during the 3 months preceding the pres-
entation at the outpatient clinic. Revascularization was performed by 
percutaneous coronary intervention in 244 patients (32%) and by cor-
onary artery bypass grafting (CABG) in 75 patients (10%). Patients had 
a mean body mass index (BMI) of 28 kg/m2, and chest pain was re-
ported in 427 patients (55%). Left ventricular dysfunction was reported 
in 161 patients (21%), with severe dysfunction in 6 (1%) patients. 
During the 5-year follow-up period, 199 patients received revasculari-
zation (26%), 18 patients received valvular heart repair or replacement 
(2%), and 105 (14%) patients died (Table 3). A total of 2% of the data 
were missing, as shown in Supplementary material online, Table S3.

Feature selection
In the final ML model, a total of nine features were included. The dis-
criminative performance of the ML model began to decline when fewer 
than nine features were included in the ML model, as demonstrated in 
Figure 2. The clinical features included in the final ML model were eGFR, 
age, heart rate, BMI, chronic obstructive pulmonary disease, atrial fibril-
lation/flutter atrial, and peripheral arterial disease. In addition, the TTE 
features, LV dysfunction and moderate or severe tricuspid regurgita-
tion, were included in the model. The final ML model was trained using 
these nine features and subsequently evaluated on the testing set.

Prediction of mortality
The ML model [AUC: 0.79 (95% CI 0.78–0.81)] demonstrated superior 
discriminative performance compared with LV dysfunction [AUC: 0.64 
(95% CI 0.63–0.66)], Framingham risk score [AUC: 0.62 (95% CI 0.60– 
0.63)], SCORE2/SCORE2-OP [AUC: 0.67 (95% CI 0.65–0.68)], and 
Cox-based risk score [AUC: 0.76 (95% CI 0.75–0.78), all P < 0.001]. 
The discriminative performance of the models is shown in Figure 3. 

Compared with the traditional risk scores, the precision-recall curve 
of the ML model showed the best trade-off between precision and re-
call across different classification thresholds (see Supplementary 
material online, Figure S1). The variables in the final Cox-based model 
included age, diabetes, current or former smoker, chronic obstructive 
pulmonary disease, chest pain, renal function (eGFR < 60 mL/min/ 
1.73 m2), LV dysfunction (mildly to severely impaired function), and at-
rial fibrillation/flutter.

External validation
The baseline characteristics and follow-up of patients in the testing set 
are shown in Tables 2 and 3, respectively. Patients in the testing set had 
comparable characteristics with those in the training set in terms of age, 
gender, and laboratory parameters. In the diagnostic process of patients 
in the testing set, additional invasive coronary angiography (71 vs. 60%) 
and CT coronary angiography (31 vs. 23%) were more frequently per-
formed compared with the training set. Stress cardiac magnetic imaging 
was performed more frequently in the training set (2 vs. 8%). Patients in 
the testing set had lower rates of hypertension (52 vs. 60%) and dysli-
pidaemia (27 vs. 34%) compared with the training set, but higher 
rates of revascularization (percutaneous coronary intervention: 
40 vs. 32%, CABG: 14 vs. 10%) and LV dysfunction (37 vs. 21%). 
Revascularization was more often reported in patients in the testing 
set during the 5-year follow-up period (36 vs. 26%). Mortality was re-
ported in 71 patients (15%) in the testing set, which was comparable 
with patients in the training set. A total of 4% of the data were missing, 
as shown in Supplementary material online, Table S3.

In external validation, the highest AUC was observed for the ML 
model [AUC: 0.78 (95% CI 0.72–0.84)], followed by the Cox-based 
score [AUC: 0.71 (95% CI 0.64–0.77), P = 0.002], SCORE2/ 
SCORE2-OP [AUC: 0.69 (95% CI 0.63–0.75), P = 0.03], Framingham 

Figure 3 Discriminative performance of the machine learning model and traditional risk scores. The false-positive rate is plotted against the true- 
positive rate across a range of classification thresholds for the machine learning model (eXtreme Gradient Boosting) and traditional risk scores (training 
set: left figure, testing set: right figure). The machine learning model exhibited a superior discriminative performance compared with the traditional risk 
scores for both the training set (n = 775, all P < 0.001) and the testing set (n = 478, all P < 0.03). AUC, area under the receiver operating characteristic 
curve; LV, left ventricular; ROC, receiver operating curve; XGBoost, eXtreme Gradient Boosting.

178                                                                                                                                                                                     M.A. Molenaar et al.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztae001#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztae001#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztae001#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztae001#supplementary-data


risk score [AUC: 0.67 (95% CI 0.60–0.74), P = 0.006], and LV dysfunc-
tion [AUC: 0.59 (95% CI 0.53–0.66), P < 0.001; Figure 3).

Individual risk prediction: explainable 
machine learning
As depicted in Figure 4, eGFR, age, and LV dysfunction were the 
most important features in the final ML model. The individual 
risk predictions of two patients (high and low risks) in the testing 
set are shown in Figure 5. As illustrated in this figure, the contribu-
tion of each feature to the output of the model was different for 
each patient.

Calibration
The predicted probabilities from the ML model were aligned with the 
observed mortality rates in each risk category. The Brier scores were 
0.08 (95% CI 0.07–0.10) for the training set and 0.10 (95% CI 0.09– 
0.12) for the testing set, as shown in Supplementary material online, 
Figure S2.

Risk stratification by the machine learning 
model
A probability cut-off value of 14% was chosen to distinguish high-risk 
from low-risk patients. At this specific cut-off value, the ML score de-
monstrated a good prognostic value [unadjusted hazard ratio: 4.7 
(95% CI 3.1–7.2)], as shown in Figure 6. The ML score exhibited super-
ior discriminative ability compared with LV dysfunction [unadjusted 
hazard ratio: 1.9 (95% CI 1.3–3.0)] in distinguishing individuals at high 
and low risks of mortality.

Discussion
This study demonstrates that an explainable ML model using TTE and 
clinical data can accurately identify CCS patients with a high risk of 
5-year mortality. The employed ML model, trained on 775 patients, 
had a prognostic value superior to LV dysfunction and other traditional 
risk scores. These findings suggest that ML may support clinicians in as-
sessing the individual risk of mortality of CCS patients.

Machine learning for risk stratification
The prevalence and mortality rates of CCS are exhibiting an upward 
trend, posing a major challenge for risk stratification of these patients.27

To allocate healthcare resources to patients with a greater risk of car-
diovascular events, accurate risk stratification is essential. However, in 
our study, risk stratification utilizing the gold standard LV function de-
monstrated a low predictive power. The incorporation of multiple vari-
ables as observed in the Framingham risk score, SCORE2/SCORE2-OP, 
and Cox model score resulted in more accurate discrimination com-
pared with LV function, but not to the same extent as the ML model. 
In external validation, the ML model exhibited the highest discrim-
inative performance, which suggests that risk stratification of CCS 
patients necessitates models that can incorporate non-linear rela-
tionships and complex interactions.

To our knowledge, this is the first study that investigated the per-
formance of explainable ML in patients with CCS using TTE and clin-
ical data. The use of TTE data in prediction models offers several 
advantages since it is widely used, non-invasive, and inexpensive.3

Previous studies have included data from other imaging modalities 
in their ML models, which showed performances in line with our 
findings. Motwani et al.8 trained an ML model to predict 5-year mor-
tality in 10 030 patients with suspected CCS who underwent CCTA. 

Figure 4 Shapley Additive exPlanations plot of feature importance in the final machine learning model. The importance of features is shown in in-
creasing order on the y-axis (estimated glomerular filtration rate is the most important). The relative impact of these features on the model output is 
depicted on the x-axis (the right of 0.0 means increased risk and the left of 0.0 means reduced risk). The value of the feature is shown in colors. For 
example, a low estimated glomerular filtration rate is associated with a higher risk of mortality (on the right side of the x-axis), while a high estimated 
glomerular filtration rate (on the left side of the x-axis) has a protective effect. eGFR, estimated glomerular filtration rate; SHAP, Shapley Additive 
exPlanations.
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Both clinical and CCTA data were included in the ML model, which 
exhibited a higher AUC (0.79) compared with the Framingham risk 
score and CCTA severity scores. More recently, Pezel et al.7 trained 
an ML model to predict mortality using clinical and stress magnetic 
resonance (CMR) in 31 752 patients with suspected or known 
CCS. The authors showed that the ML model was able to predict 
10-year mortality more accurately (AUC 0.76) compared with trad-
itional risk scores. These studies emphasize the potential role of 
ML in addressing the challenge of overseeing the growing number 
of imaging and clinical variables for risk assessment of the individual 
patient.7

The feature moderate or severe tricuspid regurgitation was included 
as a predictor in the ML model. In a prior study,4 we demonstrated the 
prognostic value of tricuspid regurgitation in patients with CCS, inde-
pendent of LV dysfunction. These findings emphasize the importance 
of incorporating echocardiographic features of cardiac structure and 
function in risk prediction models.

Explainable machine learning
In this study, a tree-based ML model was trained that provides informa-
tion about the model’s decision-making by means of SHAP values. 

Figure 5 Feature contribution to predict five-year mortality in a machine learning model. Individual predictions are shown for an 81-year-old male 
patient (top figure) who died within 1 year after presenting at the outpatient clinic and for a 54-year-old female patient (bottom figure) who was alive 
after the 5-year follow-up period. The impact of the features on the output of the machine learning model is ranked from top (most impact) to bottom 
(least impact). The size and direction of the arrows indicate how each variable impacts 5-year mortality. An arrow pointing to left indicates a reduction in 
risk and arrow pointing to the right indicates an increase in risk. The final mortality prediction for the individual patient is determined by the summed 
impact of all features. eGFR, estimated glomerular filtration rate.
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To date, there is an ongoing debate whether currently available explain-
ability techniques are sufficient and a prerequisite to inform clinicians 
about decisions for the individual patient.28 Explanations regarding 
the model’s output are only approximations, and the underlying model 
may be incorrect, which introduces bias in explainability techniques. 
Despite these acknowledged limitations, it is important to recognize 
that the explainability technique used in this study is one of the most 
effective approaches currently available to provide an insight into the 
decision-making process of the model.29 To further enhance trust-
worthiness, further efforts are needed to provide information about 
the certainty of a decision.

Study limitations
Several remarks can be made about this study. Patients without a TTE 
assessment at the investigated centres were excluded from analysis, 
which may have led to an unrepresentative CCS population. However, 
these patients had comparable baseline characteristics with those with 
TTE assessment, which reduces the risk of selection bias. The TTE assess-
ments in this study were conducted as part of standard clinical practice. 
The reproducibility of these TTE assessments was not evaluated. In our 
study, BMI was chosen as an established risk factor as recommended by 
the ESC guidelines, despite the growing evidence that waist-to-height ra-
tio may be a more accurate predictor of mortality.10,30–32

The developed ML model was trained to predict all-cause 5-year 
mortality. The cause of mortality could not be obtained for all patients 
and was therefore not further differentiated. There is currently a lack 
of traditional 5-year mortality risk scores for patients with CCS. 
Therefore, we did the same as Motwani et al.8 did, who compared 
the ML score with traditional risk scores that are designed to estimate 
the 10-year risk of cardiovascular events. The number of patients in-
cluded in this study was limited to patients from two tertiary centres 
and was low compared with that in previous ML studies. The strength 
of our study was the testing of the ML model in an external centre, 
which is a prerequisite to determine the generalizability of a prediction 
model.33 To prevent the model from overfitting, we iteratively elimi-
nated the least important features until the model’s performance began 
to decline. The final ML model generalized well (AUC testing set 0.78) 
on unseen data and outperformed the LV function and other traditional 
risk scores. Despite the lack of quantitative parameters of TTE 

(e.g. parameters of diastolic function) and the limited number of variables 
in the ML model, its performance remained consistent in the testing set 
even when there were minor differences in patient characteristics com-
pared with those in the training set. Datasets with a larger number of pa-
tients and the inclusion of quantitative parameters of TTE may facilitate 
the identification of more complex patterns related to mortality, which 
may further enhance the risk prediction in patients with CCS.

Our study primarily focused on the potential of ML-based mortality 
prediction using clinical and TTE data, and a comparison between this 
ML–TTE score and ML-based mortality prediction models on CCTA or 
CMR data was not within the scope of our research. A comparative 
analysis between ML-based TTE prediction and ML-based CCTA and 
CMR scores could provide insights into their relative performance 
for mortality prediction. In addition, combining these multimodal data 
in ML models may further enhance risk prediction. Once such a model 
is implemented in a clinical setting and prospectively validated; the ef-
fectiveness of ML-based risk stratification could be evaluated in rando-
mized controlled trials.34

Conclusions
This study demonstrates that an explainable ML model using TTE and clin-
ical data can accurately identify CCS patients with a high risk of 5-year 
mortality, with a prognostic value superior to those of LV dysfunction 
and other traditional risk scores. These findings are of clinical relevance 
since they indicate that ML may support clinicians in assessing the individual 
risk of mortality in CCS patients. Larger datasets are needed to train and 
validate an ML model for patients with CCS using clinical and TTE data.
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Health.
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