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Abstract
Purpose  Medulloblastoma, the most common primary pediatric malignant brain tumor, originates in the posterior fossa of 
the brain. Pineoblastoma, which originates within the pineal gland, is a rarer malignancy that also presents in the pediatric 
population. Medulloblastoma and pineoblastoma exhibit overlapping clinical features and have similar histopathological 
characteristics. Histopathological similarities confound rapid diagnoses of these two tumor types. We have conducted a 
pilot feasibility study analyzing the molecular profile of archived frozen human tumor specimens using mass spectrometry 
imaging (MSI) to identify potential biomarkers capable of classifying and distinguishing between medulloblastoma and 
pineoblastoma.
Methods  We performed matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spec-
trometry imaging on eight medulloblastoma biopsy specimens and three pineoblastoma biopsy specimens. Multivariate 
statistical analyses were performed on the MSI dataset to generate classifiers that distinguish the two tumor types. Lastly, 
the molecules that were discriminative of tumor type were queried against the Lipid Maps database and identified.
Results  In this pilot study we show that medulloblastoma and pineoblastoma can be discriminated using molecular profiles 
determined by MSI. The highest-ranking discriminating classifiers of medulloblastoma and pineoblastoma were glycer-
ophosphoglycerols and sphingolipids, respectively.
Conclusion  We demonstrate proof-of-concept that medulloblastoma and pineoblastoma can be rapidly distinguished by using 
MSI lipid profiles. We identified biomarker candidates capable of distinguishing these two histopathologically similar tumor 
types. This work expands the current molecular knowledge of medulloblastoma and pineoblastoma by characterizing their 
lipidomic profiles, which may be useful for developing novel diagnostic, prognostic and therapeutic strategies.
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Introduction

Medulloblastoma (MB) is the most common primary pedi-
atric malignant brain tumor, originates in the posterior 
fossa, and has high-grade embryonal features [1, 2]. Based 

on DNA aberrations and molecular profiling, MB tumors 
are subgrouped as either: Wnt-signaling pathway (WNT)-
activated; Shh-signaling pathway (SHH)-activated, further 
subdivided into wild-type or mutant TP53; group 3; group 
4 [3, 4]. Interestingly, there have been occasional reports 
whereby MB tumors may be misclassified as pineoblas-
toma (PB) when diagnosed based on histopathology with-
out molecular or radiological information [5]. PB are rare 
malignancies that occur in the pineal gland [6]. Like MB, 
these tumors tend to occur in pediatric patients and display 
high-grade embryonal morphology [6]. PB has a propensity 
to spread through the cerebrospinal fluid and is associated 
with a poor prognosis [6].
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Despite MB subgrouping, therapies for both MB and PB 
rely on maximal surgical resection with adjuvant radiother-
apy and/or conventional cytotoxic chemotherapy [7, 8]. With 
the push to develop targeted and personalized therapeutics, 
a central focus is the discovery of biomarkers for improving 
clinical diagnoses, prognostic characterization, and predic-
tion of therapeutic response [9, 10].

Abnormal lipid metabolism is a characteristic of cancer 
cells [11–13], and the potential to harness lipids for disease 
biomarkers has been investigated [14–16]. The differential 
abundance of various lipids is closely linked to key bio-
logical processes such as cellular signaling, cell membranes 
assembly, cell–cell interactions, and chemical-energy stor-
age [17]. Advantages of using lipids as biomarkers include 
the well-established role of lipids in disease pathogenesis, 
including cancer [18–20]; stability of lipids when samples 
are archived at − 80 °C, thus allowing large scale studies 
of multiple patients [21]; and existence of well-established 
methods for lipid analysis by mass spectrometry (MS) and 
mass spectrometry imaging (MSI) [22].

Mass spectrometry techniques, like matrix-assisted laser 
desorption/ionization (MALDI), are utilized for lipid analy-
ses. Molecules, including lipids, can be spatially resolved 
by MALDI MSI, which yields mass spectra in respect to 
specific coordinates of a sample to provide high spatial reso-
lution maps of the distribution and relative intensity of mol-
ecules in tissue samples and allows comparison with con-
ventional histology images. These comparisons can inform 
the molecular characterization of different components of 
tumors, including the cancer cells and the tumor associated 
stromal elements [23–25]. Moreover, the identity of lipid 
molecules are discernable using high-resolution mass ana-
lyzers, such as Fourier transform ion cyclotron resonance 
(FT-ICR) mass analyzers, which are capable of determining 
mass-to-charge (m/z) ratios with a mass accuracy below 1 
part-per-million. An advantage of analyzing molecules with 
such high mass accuracy is the ability to infer the elemen-
tal composition of unknown species with high confidence. 
Using the proposed elemental composition, structural eluci-
dation of isobaric species can be achieved through the inter-
pretation of fragmentation patterns provided by tandem mass 
spectrometry (MS/MS) methods.

We have analyzed the metabolic profiles of high-grade 
embryonal tumors by high mass resolving MALDI 9.4T FT 
ICR MSI and applied multivariate statistical analyses, prin-
cipal component (PCA) and receiver operating characteristic 
(ROC), to generate a list of candidate biomarkers with clas-
sifying power for MB and PB. We aimed to identify potential 
biomarkers for rapid diagnostic applications for distinguish-
ing MB and PB. Furthermore, the comprehensive lipidomic 
analysis of MB and PB generated in this pilot study may 
yield insights into disease pathogenesis, and may provide 
lipid-based signatures for patient specific treatment.

Materials and methods

Samples

Human tissue samples (eight MB and three PB) were 
obtained surgically at time of initial diagnosis and before 
treatment, under IRB-approved protocols with informed con-
sent. Samples were snap frozen and stored at − 80 °C. MB 
samples had previously been sub-classified using expression 
profiling data [26].

Tissue preparation and staining

Tissue sections were prepared using a Microm HM550 
cryostat (Thermo Fisher Scientific, Kalamazoo, MI) with 
microtome chamber and specimen holder at − 20  °C. 
Twelve-micron thick sections were mounted onto ITO-
coated microscopic slides (Bruker Daltonics, Billerica, MA) 
for MALDI MSI or standard glass slides for hematoxylin 
and eosin (H&E) staining and allowed to dry 10 min in a 
desiccator.

Histopathology evaluation

H&E stained sections were imaged at ×40 magnification 
using a Zeiss Z1 Observer microscope (Zeiss, Oberkochen, 
Germany) operating with Zen Pro Software (Zeiss, 
Oberkochen, Germany). Histopathological features in H&E 
stained sections were characterized by a board-certified 
neuropathologist.

MALDI MS imaging

Matrix deposition

2,5-Dihydroxy benzoic acid (2,5-DHB, 160 mg/mL solution 
in methanol/0.1% TFA 70:30 vol/vol) or 1,5-diaminonaph-
talene (1,5-DAN, 20 mg/mL solution in acetonitrile/H2O 
70:30 vol/vol) was deposited using a HTX TM-Sprayer 
(HTX Technologies, Chapel Hill, NC): flow rate, 90 µL/
min; spray nozzle velocity, 1200 mm/min; spray nozzle tem-
perature, 75 °C; nitrogen gas pressure, 10 psi; track spac-
ing, 2 mm; number of passes, 4. 2,5-DHB, 1,5-DAN, and 
TFA were obtained from Sigma-Aldrich (St. Louis, MO). 
Methanol, H2O, and acetonitrile were obtained from Fisher 
Scientific (Waltham, MA).

Mass spectrometry

Mass spectra were acquired using a 9.4T SolariX Fourier 
transform mass spectrometer (Bruker Daltonics, Billerica, 
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MA). Images were acquired with a pixel step size for the sur-
face raster set to 150 µm in FlexImaging 4.0 (Bruker Dalton-
ics, Billerica, MA). Using serially sectioned tissue samples 
one image was acquired in positive ion mode and a second 
image acquired in negative ion mode. Laser power was set to 
20% for positive mode and 15% for negative mode. Acqui-
sition range was set to m/z 100–3000, 10 positions were 
sampled (25 shots/position at a laser frequency of 1000 Hz) 
within a given pixel for a total of 250 laser shots per pixel.

Imaging data processing and analysis

MALDI MS were analyzed using SCiLS Lab 2016b and 
2018 Pro software (Bruker, Germany). Data preprocessing 
steps were performed as follows: mass spectra normalized 
to total ion count (TIC), an m/z interval width of 0.001 Da 
was selected, and weak denoising was applied. The segmen-
tation pipeline was performed and resulted in an aligned 
peak list containing 143 m/z intervals. Multivariate analyses, 
including principle component (PCA) and receiver operating 
characteristic (ROC), were performed using the m/z inter-
vals generated from the aligned peak list. Note: no scaling 
was performed for PCA. Ions from the PCA loadings plot 
were shown as single ion images. In ROC, random spectra 
subsets from MB and PB were used to define each tumor 
class. The resultant ions (m/z measured values) with an area 
under the curve (AUC) value above 0.75 were considered 
as MB classifiers, while AUC values < 0.25 were consid-
ered as PB classifiers. Ions determined from ROC analysis 
were searched in Lipid Maps [27] to provide tentative peak 
assignments. For ions with more than one potential assign-
ment, assignment with lowest Δppm was chosen. Tentative 
peak assignments were made for ions with a Δppm < 2.0. 
ROC ions that met this criterion were visualized as single 
ion images. The total time used for the high spectral resolu-
tion mass spectrometry imaging experiments and multivari-
ate data analyses performed herein was approximately 72 h. 
However, a more rapid approach could be translated from 
these findings in which the time from sample acquisition 
(biopsy) to diagnosis (characterization by MALDI MSI) 
could be achieved in less than ten minutes.

Results

Discrimination of medulloblastoma 
and pineoblastoma

We performed MALDI MSI on MB and PB tissue sections 
to determine if the spectral profiles of the two tumor types 
differed. Following pathology review of post-analysis H&E 
stained sections, we focused the MALDI MSI data analyses 
on areas of dense tumor so as to identify molecules that 

were preferentially detected in tumor tissue. In brief, the MB 
tissue sections displayed varying histopathological features 
including regions of small, blue tumor cells, differentiated 
tumor, necrosis, and hemorrhage, and the PB tissue sections 
displayed regions of dense tumor and tumor infiltrating into 
normal tissue (Fig. 1).

We performed PCA using a preprocessed peak list, 
thereby taking into consideration the underlying variance 
patterns within the MALDI MSI data that may not be obvi-
ous from analysis of single ion images. Component one of 
PCA, which represents the most discriminating features in 
the MALDI MSI data, reflected 44.89% of the discrimina-
tory power of the model and separated MB from PB (Fig. 1). 
PCA component two, which represents the second greatest 
variance in the MALDI MSI data, reflected an additional 
23.50% of the discriminatory power of the model and also 
separated MB from PB.

We performed ROC analysis on the peak list to find 
potential biomarkers for these two tumor types. We calcu-
lated AUC values for each m/z interval and the calculations 
ranged from 0.97 to 0.03, where an AUC of 1.0 indicated 
a perfect classifier for MB and an AUC of 0.0 indicated a 
perfect classifier for PB (Online Resource Table 1). Sixty-
eight molecular ions had AUC values above 0.75 and were 
considered as potential classifiers of MB. Thirty ions had 
AUC values below 0.25 and were considered as potential 
classifiers of PB. The remaining 45 ions with AUC values 
falling between 0.75 and 0.25 were investigated as ions that 
are associated with cancer cells in general and that did not 
specifically discriminate MB and PB.

Identification of ions

Multivariate analysis of the MALDI MSI data from MB and 
PB revealed differences between these two tumor types. We 
queried the entire peak list of potential classifiers against 
known biomolecules in the Lipid Maps database, seeking to 
identify each of these molecules. We considered ions with 
m/z intervals with AUC > 0.75 or AUC < 0.25 as potential 
biomarkers of MB and PB, respectively. We also charac-
terized ions with AUC values between these thresholds 
(0.25–0.75). While such molecules do not discriminate MB 
and PB, they may still provide insights into the shared biol-
ogy of these tumors and be potentially useful diagnostically, 
providing guidance when determining intraoperative surgi-
cal margins.

This query resulted in 22 peak assignments based on cri-
teria outlined in the methodology section and categorized: 
10 ions MB classifiers (Online Resource Table 2); two ions 
PB classifiers (Online Resource Table 3); 10 ions non-clas-
sifiers (Online Resource Table 4). Glycerophosphoglycer-
ols comprised the largest number of assignments for MB 
classifiers, with five of 10 ions belonging to this class of 
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Fig. 1   Histological characterization of medulloblastoma and pineo-
blastoma compared to principal component analysis of the mass 
spectrometry imaging dataset. a Tissue sections were hematoxy-
lin and eosin stained and optical images at ×40 magnification were 
assessed to delineate histopathological features, indicated by the 
dashed lines and arrows, where: tumor (T), differentiated tumor 
(DT), necrosis (N), hemorrhage (H), and cerebral cortex molecular 
layer (M). b Layout of specimens. c, d Display of the PCA results 
using a cool-to-warm intensity heat map for which the gradient blue-
white-red represents negative-to-positive degrees of variance for the 

separate components. Component 1 (c), representative of the great-
est variance of the MSI dataset, distinguished medulloblastoma from 
pineoblastoma as indicated by the overall abundance of red and blue 
present in the medulloblastoma specimens compared to white present 
in the pineoblastoma specimens. Component 2 (d), representative of 
the second greatest variance of the MSI dataset, also distinguished 
medulloblastoma from pineoblastoma observed by the overall red-
white present in the medulloblastoma specimens compared to the 
blue gradient present in pineoblastoma
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phospholipids. Of those five glycerophosphoglycerol spe-
cies, three were the top MB classifiers. The remaining five 
peak assignments for MB classifiers were identified as glyc-
erophosphocholines (3/10) and sphingolipids (2/10). The 
two PB classifiers belong to the phospholipid main class 
of sphingolipids. Non-classifier ions that do not distinguish 
tumor types, but could distinguish tumor from normal tis-
sue were identified as belonging to the phospholipid main 
classes of sphingolipids (4/10), glycerophosphoglycerols 
(3/10), glycerophosphocholines (2/10), and lysophospha-
tidic acids (1/10).

Differential ion intensities informed by multivariate 
analyses of MALDI MSI

To facilitate discovery of additional ions to the two tumor 
types, we focused on ions that contributed to the variance 
highlighted by PCA, but that were not identified in the Lipid 
Maps database. We show single ion images, indicating two 
ions higher in MB (m/z 798.5479 and m/z 770.5152) and 
two ions higher in PB (m/z 788.6226 and m/z 810.6072) 
(Fig. 2). Although these ions were not identified in our data-
base search, they may still be useful as potential biomarkers 
given that their AUC values fell within the specified thresh-
olds of AUC > 0.75 (MB classifier) or AUC < 0.25 (PB clas-
sifier) and their correlation with histopathology evaluation.

We next visualized the single ion images of the lipid 
species that we had identified as classifiers for MB and PB 
(Online Resources Tables 2 and 3, respectively) and assessed 
their spatial distribution and intensity. The highest ranking 
classifier for MB, a phosphoglycerol (PG) species, PG(38:5) 
(m/z 797.5336) with an AUC​max of 0.93, displayed an over-
all high signal intensity that was present homogeneously 
throughout dense tumor regions. Likewise, the second and 
third highest classifiers for MB, PG(36:4) ]m/z 771.5169 
(AUC​max = 0.89)] and PG(36:3) [m/z 773.5335 (AUC​
max = 0.86)], respectively, displayed similar single ion images 
with high signal intensities present homogeneously through-
out the dense tumor regions (Fig. 3). None of these ions were 
detected in PB tumor tissue. The single ion images of the 
two sphingolipids that we had identified as PB classifiers, 
namely HexCer(t36:2) [m/z 742.5824 (AUC​max = 0.04)] and 
CerP(d47:2) [m/z 836.6292 (AUC​max = 0.06)], revealed high 
signal intensity that was present homogeneously throughout 
dense tumor regions of PB tissue sections. Neither ion was 
detected in MB tissue sections (Fig. 4).

We explored the spatial distribution and intensity of the 
lipid species that we had characterized as non-classifiers 
by ROC analysis (Fig. 5). We selected ions with AUC​max 
approximately equivalent to 0.50 (best ranking non-clas-
sifiers) because they did not discriminate the tumor types 
and therefore might provide insights into common biologi-
cal features that are shared amongst the two different tumor 

types. The varying spatial distribution and signal intensity 
of these ions were more reflective of histopathology features 
rather than tumor type. For instance, the phosphocholine 
(PC) species, PC(34:2) [m/z 758.5702 (AUC​max = 0.51)], 
displayed higher signal intensity in regions of the tissue 
sections that were not considered to be regions of viable 
tumor, but more closely aligning to regions of necrosis or 
hemorrhage (Fig. 5a). In addition, for PG(37:0(OH)) [m/z 
809.5894 (AUC​max = 0.50)], we also observed higher signal 
intensity in regions of tissue that were not characterized as 
viable tumor, but the spatial distribution differed from that 
of PC(34:2) (m/z 758.5702) (Fig. 5b). On the other hand, 
PG(40:4) [m/z 827.5809 (AUC​max = 0.48)] displayed vary-
ing signal intensity with a spatial distribution throughout 
all of the tissue sections and its higher signal intensity more 
closely aligned to regions of viable tumor (Fig. 5c), thus 
representing a tumor marker for both MB and PB.

Discussion

Discrimination between medulloblastoma 
and pineoblastoma

While recent whole genome sequencing studies have 
allowed for the molecular classification of MB tumor types, 
histopathological review remains the first method for char-
acterizing a gross tumor sample once obtained by biopsy or 
resection. Histopathology results typically guide diagnosis 
and the recommended course of treatment. Histologically, 
MB and PB appear nearly indistinguishable as embryonal 
tumors, but have very different treatment plans and expected 
outcomes. Misdiagnoses of these tumor types based on his-
topathology have occurred [5], highlighting the need for 
a more rapid and accurate characterization method to dis-
criminate MB and PB. Mass spectrometry has been used to 
analyze human glioblastoma surgical samples to assist in 
decision making, particularly for classification of glioblasto-
mas with unknown isocitrate dehydrogenase (IDH) status by 
quantitatively monitoring surgically resected tissue for the 
presence of the onco-metabolite, 2-hydroxyglutarate, pro-
duced by IDH mutant glioblastomas [28–30]. The results 
described herein demonstrate the capability of discriminat-
ing MB and PB tumor types by characterizing their lipid 
profile using MALDI MSI. Multivariate analyses of the MSI 
dataset demonstrated the greatest variance between the two 
tumor types, as PCA components one and two which both 
differentiated MB and PB.

While PCA is a powerful tool to visualize underlying 
trends in MSI data, it is performed post-acquisition on pre-
processed MSI data and is not readily applicable to clinical 
applications requiring real-time feedback. Robust biomark-
ers capable of differentiating these two tumor types are 



274	 Journal of Neuro-Oncology (2018) 140:269–279

1 3

needed to facilitate rapid and accurate diagnoses. Further-
more, biomarker identification for discriminating these two 
tumor types is, to the best of our knowledge, an overlooked 
area. To address this unmet need, we used ROC analysis 
to extract the relationship of any given ion as a potential 

classifier of either MB or PB. Querying these ions against 
known lipid species using Lipid Maps database facilitated 
the discovery of potential diagnostic biomarkers. Ten lipid 
species were identified as potential classifiers of MB and 
two lipid species were identified as potential classifiers of 

Fig. 2   Single ion images generated from ions identified by principal 
component analysis (PCA) of the mass spectral imaging (MSI) data-
set. Results demonstrate the capability of using potential biomarkers 
to discriminate between medulloblastoma and pineoblastoma tumor 
types. Important to note that the ion intensity scales were adjusted 
relative to each individual ion intensity. a Displays intensity of an ion 
detected at m/z 798.5479 that was detected with higher intensity in 

all subgroups of medulloblastoma when compared to pineoblastoma. 
b Displays the intensity of an additional ion (m/z 770.5152) that was 
detected with higher intensity in all subgroups of medulloblastoma 
when compared to pineoblastoma. c and d Displays intensities of two 
ions detected with higher intensity in pineoblastoma when compared 
to medulloblastoma with m/z of 788.6226 and m/z 810.6072, respec-
tively
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PB. The classifiers identified in this study suggest particu-
lar classes of lipid species may be useful for distinguishing 
these two tumor types, specifically glycerophosphoglycerols 
and glycerophosphocholines for identifying MB and sphin-
golipids for PB.

Lipid aberrations facilitate biomarker identification

Important roles of lipids in cancer development and patho-
genesis, including their role in specific cell signaling path-
ways, such as SHH and WNT, have recently been identified 
[31–34]. Oxysterols have been implicated in the survival of 
SHH MB subgroup [35] and aerobic glycolysis, or the War-
burg effect, has been observed in the WNT MB subgroup 
[36–39]. While our results did not identify cholesterol or 
other sterol molecules, which may be related to the inher-
ent difficulty of analyzing these species by MALDI [40], 
PG species were the most abundant identified phospholipids 
in MB, followed by PC species. These results align with a 
recent study of metabolomics in embryonal tumors which 
measured PC as the second highest metabolite in MB, com-
pared to retinoblastoma and neuroblastoma, when metabo-
lism was analyzed by high resolution magnetic resonance 
spectroscopy (1H-MRS) [41]. Interestingly, lactate was 
the metabolite with the highest concentration in the three 

aforementioned tumor types [41] suggesting these tumors 
may be switching their metabolic preference to promote the 
production of biomass (i.e. result of the Warburg effect). To 
the best of our knowledge, glycerophosphoglycerols have not 
been implicated in MB, but have been positively associated 
with cancer cell migration [42]. Molecular and biochemi-
cal characterization of PB has been investigated to a lesser 
extent than MB. Our results indicate sphingolipids may be 
important as distinguishing biomarkers of PB. Sphingolipids 
have shown to be related to critical roles surrounding onco-
genesis, such as cell growth, proliferation, and death [43, 
44] and may be relevant to what the underlying molecular 
aberrations are in PB.

Mass spectrometry can distinguish 
medulloblastoma and pineoblastoma

Our results demonstrate a rapid and information-rich 
approach, mass spectrometry imaging, to distinguish these 
two tumor types based on differences in lipid profiles. This 
approach has identified interesting differences in lipid pro-
files, which could potentially be interesting from a biological 
and future drug therapeutic standpoint. However, one limita-
tion of this work is the lack of age-matched healthy control 
brain tissue. Thus, whether the differences observed here 

Fig. 3   Distribution and intensity of top three ranked potential medul-
loblastoma classifiers based on receiver operating characteristics 
(ROC) analysis. a The highest ranked classifier for medulloblas-
toma, PG(38:5) (m/z 797.5336), displayed homogeneous distribution 
closely related to regions of dense tumor in all subgroups of medullo-
blastoma. b The second highest medulloblastoma classifier, PG(36:4) 
(m/z 771.5169), showed similar distribution to PG(38:5) as it was 

also present in regions of dense tumor in all medulloblastoma sub-
groups. c The third highest medulloblastoma classifier, PG(36:3) (m/z 
773.5335), was also observed in all sections of medulloblastoma. The 
spatial distribution of these lipid species in medulloblastoma com-
pared to pineoblastoma suggest their potential value as medulloblas-
toma biomarkers
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are due to tumor type or the distinct anatomical location of 
samples analyzed will need further investigation.

MSI is particularly advantageous for spatially resolving 
molecules within samples allowing for label free molecular 
images that can be compared with more traditional histopa-
thology and immunohistochemistry assessment for initial 
validation. While we present the application of MALDI MSI 
of frozen tissue samples, it could be possible to translate 
this approach to ‘real-time’ MS analyses to assist in dis-
tinguishing MB from PB with the recent development of 
a more rapid MALDI-TOF instrument [45]. The near real-
time capability of MS to provide clinically relevant results 
(e.g. tumor versus healthy tissue and MB versus PB) would 
reduce the time between biopsy and diagnosis, allowing 
patients to be placed on relevant clinical trials sooner. Even 
though treatment may not be initiated sooner, knowing the 
subgroup of the MB for example, may enable the patient to 
be screened for a relevant clinical trial.

Conclusion

In summary, these results demonstrate a proof-of-concept 
for the feasibility of using a MS based approach to distin-
guish MB and PB, two histopathologically similar tumor 
types. Glycerophosphoglycerols were identified as the top 
MB classifiers while sphingolipids were identified as the 
top PB classifiers. The frozen patient samples used in this 
study is quite rare, limiting the conclusions that can be 
drawn. Future studies are needed to further validate our 
findings across a larger number of samples. In addition, 
more effort is warranted to explore the distinct metabo-
lomic signature profiles of MB and PB and whether such 
profiles can provide the framework for establishing rapid 
biochemical based diagnostic, prognostic, and predictive 
signatures.

Fig. 4   Distribution and intensity of potential pineoblastoma clas-
sifiers based on receiver operating characteristics (ROC) analysis. 
The two identified classifiers of pineoblastoma, HexCer(t36:2) (m/z 

742.5824) a and CerP(d47:2) (m/z 836.6292) b, displayed similar 
spatial distribution and intensity present in only the pineoblastoma 
specimens
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