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Abstract. MicroRNAs (miRNAs), a class of short, 
single‑stranded non‑coding RNAs, regulate and control 
gene expression in eukaryotes by degrading mRNA at the 
post‑transcriptional level. Regulation by miRNAs involves a 
plethora of biological processes, such as cell differentiation, 
proliferation, metastasis, metabolism, apoptosis, tumorigenesis 
and others. miRNAs also represent a powerful tool in disease 
diagnosis and prognosis. The miR‑17‑92 cluster, one of the 
most extensively investigated microRNA clusters, comprises 
six mature miRNA members, including miR‑17, miR‑18a, 
miR‑19a, miR‑19b, miR‑20a and miR‑92a. Originally identi-
fied as being involved in tumorigenesis, it is currently evident 
that the expression of the miR‑17‑92 cluster is upregulated in 
a wide range of tumor cells and cancer types; thus, this cluster 
has been identified as a potential oncogene. Considering the 
growing interest in the field of miR‑17‑92 research, we herein 
review recent advances in the expression and regulation of this 
cluster in various cancer cells, discuss the proposed mecha-
nism of action for tumorigenesis and tumor development, and 
propose clinical and therapeutic applications for miR‑17‑92 
cluster members, such as potential cancer biomarkers.
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1. Introduction

MicroRNAs (miRNAs) are a class of single‑stranded, 
non‑coding small RNAs, ~22 nucleotides (nt) in length, that 
are able to bind to target mRNAs via partial or complete 
complementary base pairing. miRNAs regulate gene expres-
sion and may inhibit oncogenes or tumor‑suppressor genes 
at the post‑transcriptional level (1). miRNAs take the RNA 
induced silencing complex (RISC) to the target mRNA 
containing complementary sequences, and induce its degrada-
tion (2). miRNAs are derived from the transcription of a set 
of protein‑coding genes, but are structurally and functionally 
different from the mRNA transcribed by the common gene. 
In particular, each miRNA originates from a longer primary 
transcript, referred to as pri‑miRNA, which is transcribed in 
the nucleus from genomic DNA by the RNA polymerase II. 
The pri‑miRNA is then cleaved by the specific endonuclease 
Drosha into a pre‑miRNA hairpin consisting of ~70  nt 
and containing the sequence complementary to the target 
mRNA (3). This pre‑miRNA hairpin is transported into the 
cytoplasm by the nuclear export protein exportin 5 and cleaved 
by Dicer to form a short double‑stranded molecule, in which 
each strand is a mature miRNA (Fig. 1).

To date, ~8,000 genes coding for miRNAs have been iden-
tified in various organisms, such as plants, viruses and animals, 
including 1,000 human miRNAs that have been confirmed (4). 
It has been demonstrated that one single miRNA may regu-
late the expression of >200 target genes, and the expression 
of certain target mRNAs may also be regulated by several 
miRNAs. Overall, over one‑third of structural human genes 
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were found to be regulated by miRNAs  (5). miRNAs are 
involved in the regulation of a plethora of biological processes, 
such as cell differentiation, proliferation, metastasis, metabo-
lism, apoptosis, tumorigenesis, angiogenesis and others. 
Considering their roles, it is not surprising that abnormal 
expression of miRNAs is associated with several pathologies, 
thus making miRNAs useful clinical biomarkers that may be 
used in the diagnosis, treatment and prognosis of tumors (6). 
As a consequence, numerous studies have demonstrated that 
miRNAs are directly implicated in the occurrence and devel-
opment of cancer, thus attracting even more interest in the 
research field.

Approximately 60% of miRNAs may express indepen-
dently, 15% as a cluster, and 35% cannot express, being located 
in introns. Clustered miRNAs have demonstrated a coop-
erative function in regulating gene expression (7). In 2005, 
He et al first discovered the miR‑17‑92 cluster, an oncogenic 
gene in human B‑cell lymphomas (8). The aim of the present 
review was to summarize the functions and mechanisms 
through which the miR‑17‑92 cluster is involved in cancer, thus 
providing a theoretical basis to study the effect and molecular 
mechanism of the miR‑17‑92 cluster in regulating the develop-
ment of prostate cancer cells.

2. Characteristics of the miRNA‑17‑92 cluster

miRNA clusters are mainly expressed in vertebrates and 
mammals, and result from genome duplication (9). As a conse-
quence, miRNAs were classified as clusters due to their high 
sequence homology. The miR‑17‑92 cluster is a typical highly 
conserved polycistronic miRNA cluster, which is located in 
the human chromosome 13 open reading frame 25 (C13orf25), 
encoding six mature miRNAs, including miR‑17, miR‑18a, 
miR‑19a, miR‑19b, miR‑20a and miR‑92a (10). Both human 
miR‑17 and miR‑20a were included in the miR‑17 family due 
to their high sequence homology (Fig. 2).

In detail, the miR‑17‑92 cluster has two paralogue gene clus-
ters named miR‑106a‑363 and miR‑106b‑25. The miR‑106A‑363 
cluster encodes for miR‑106a, miR‑18b, miR‑20b, miR‑19b‑2, 
miR92a‑2 and miR‑363; the miR‑106b‑25 cluster encodes 
for miR‑106b, miR‑93 and miR‑25 (Fig. 2). According to the 
homology of the seed‑sequence, all these miRNAs have been 
grouped into four families, namely the miR‑17, miR‑92, miR‑18 
and miR‑19 families (11). The miRNA sequences of the three 
clusters miR‑17‑92, miR‑106b‑25 and miR‑106b‑363 were 
found to be highly similar, with overlapping functions (Fig. 2). 
Previous studies have demonstrated that murine knockout 
models for the miR‑17‑92 cluster died soon after birth due to 
lung function insufficiency and ventricular septal defects. The 
simultaneous deletion of both miR‑17‑92 and miR‑106b‑25 
caused severe apoptosis of fetal liver cells and central nervous 
system cells in mice. However, the simultaneous or separated 
deletion of miR‑106b‑25 and miR‑106a‑363 did not affect 
the individual development (12). These results indicated that 
there are some overlapping roles in members of the miR‑17 
and miR‑92 families within the miR‑17‑92 and miR‑106b‑25 
clusters, while the miR‑18 and miR‑19 families, only present 
in the miR‑17‑92 cluster, play a critical role in developmental 
processes. A recent study analyzed the expression of the 
miR‑17‑92 and miR‑106b‑25 clusters in spermatogonial stem 

cells, demonstrating that the miR‑106b‑25 cluster may be 
upregulated in germ cells without affecting spermatogonial 
development when the miR‑17‑92 cluster is deleted (13). This 
indicated that the miR‑17‑92 and miR‑106b‑25 clusters may 
synergistically regulate reproductive development.

3. Expression and regulation of the miRNA‑17‑92 cluster 
in tumor cells

Expression and functions of miR‑17/20a. The miRNA‑17‑92 
cluster may be highly expressed in a wide range of tumor cells 
and types of cancer, such as lung, breast, pancreatic, prostate and 
thyroid cancer, as well as lymphomas (7,14). Therefore, it is also 
referred to as ‘oncomiR1’. The majority of the previous studies 
have been aimed at studying the potential carcinogenicity of 
the miR‑17‑92 cluster, but this cluster also possesses antitumor 
properties. For example, the miR‑17 component acts as a tumor 
suppressor in breast and prostate cancer by individually targeting 
AIB1 and PCAF (15,16). Of note, the development of erythroleu-
kemia induced by miR‑92a was inhibited by the co‑expression 
of miR‑92a and miR‑17, indicating that the expression of miR‑17 
may inhibit the carcinogenesis induced by miR‑92a  (17). 
Moreover, it has been demonstrated that miR‑17‑5p is able 
to induce prostate tumor growth and invasion by regulating 
TIMP3 (18). In addition, miR‑20a may have different functions 
in various pathological processes, with a dual behavior (acts as 
an oncogene or tumor suppressor). In fact, several studies have 
demonstrated that miR‑20a was found to be upregulated in the 
serum of hepatitis C virus‑infected individuals, and in uveal 
melanoma, osteosarcoma, neuroglioma, undifferentiated thyroid 
cancer, cervical, gastric and prostate cancer, while it was down-
regulated in breast, liver and pancreatic cancer cells (19‑26).

Expression and functions of miR‑19/miR‑92a/miR‑18a. Several 
studies reported miR‑19, one of the major oncogenes in the 
miR‑17‑92 cluster, to be highly expressed in gastric and pros-
tate cancer (27). In addition, miR‑18a was found to be highly 
expressed in breast, nasopharyngeal, prostate and colorectal 
cancer (28). In glioma, colorectal adenoma, renal clear cell 
carcinoma, small‑cell lung cancer, hepatocellular carcinoma, 
multiple myeloma and non‑Hodgkin lymphoma, the transcrip-
tional level of miR‑92a was found to be higher compared with 
that of other miRNAs present in the miR‑17‑92 cluster (29‑31). 
However, the expression of the same miRNA in breast cancer 
tissues was lower compared with normal tissues. Further studies 
have also suggested that the expression level of miR‑92a may be 
associated with the size of the tumor and lymph node metastasis.

Recent evidence demonstrated that the expression of miR‑17, 
miR18a and miR‑19a increased during tumor angiogenesis, 
displaying proangiogenic functions through the regulation of 
the target protein kinase JAK1, while miR‑92a decreased and 
inhibited vascular network formation by regulating integrin α5 
(ITGα5) (32). In fact, the overexpression of miR‑17, miR‑18a 
and miR‑20a partially restored the impaired endothelial 
network formation, but suppressed angiogenic sprout formation 
in zebrafish (33). There have been no related studies on human 
cells and tissues to date; however, this evidence suggests that 
miR‑92a is a negative regulator of angiogenesis.

The function of miRNAs as tumor suppressors is similar 
to that of tumor suppressor genes: Their downregulation or 
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inactivation directly leads to the occurrence and development of 
cancer. However, only few studies provided evidence enabling 
a better understanding of the main function of the miR‑17‑92 
cluster, considering that it may promote carcinogenesis as well 
as act as a tumor suppressor. Our study group aimed to inves-
tigate the effectiveness of the miR‑17‑92 cluster as a diagnostic 
biomarker in different stages of prostate cancer development, 
as well as the molecular mechanism through which this cluster 
regulates prostate cancer cell growth, migration and invasion, 
with the aim to determine its potential use in clinical practice.

4. Mechanism of action of the miR‑17‑92 cluster in 
tumorigenesis and tumor development

Mechanism of action of the miR‑17‑92 cluster in tumori‑
genesis. Tumorigenesis is associated with a disorder of the 
mechanism that maintains normal cell activity. It is associ-
ated with multiple complex processes, such as excessive cell 
proliferation, and interruptive apoptosis and differentiation, 
among others. miRNAs play an important role in tumorigen-
esis and tumor development, participating in various stages of 
these processes. For example, a disorder in the regulation of 
the interactions among miRNAs and target genes may lead to 
the occurrence of a tumor. In cancer, the different regulation 
of targeting genes allows miRNAs to have various biological 
functions, as oncogenes or tumor suppressors.

The miR‑17‑92 cluster plays a crucial role in tumorigenesis, 
mainly via the activation of oncogenes and the inactiva-
tion of tumor suppressor genes. The expression of cell cycle 
regulatory genes plays an important role in tumorigenesis. 
For example, it has been demonstrated that the miR‑17‑92 
cluster can inhibit the expression of the tumor suppressor p21 

and the apoptotic gene Bim in lymphoma (34). Furthermore, 
miR‑20a acts as an oncogene and, through inhibition of the 
expression of early growth response (EGR)2, it may promote 
cell proliferation and induce cell cycle progression in osteosar-
coma (21). Accordingly, miR‑20a regulates carcinogenesis in 
gastric cancer cells though the EGR2 signaling pathway (25). 
By contrast, miR‑17‑5p exerts an antitumor effect by inhibiting 
the expression of AIB1 in breast cancer (15,35).

The miRNA‑17‑92 cluster promotes tumor cell prolif-
eration and apoptosis by regulating different target genes and 
signaling pathways. Several transcription factors regulate the 
miR‑17‑92 cluster, affecting its carcinogenic activity. The first 
confirmed miR‑17‑92 transcription factor was MYC, which is 
involved in multiple mechanisms regulating gene expression. 
Overexpressed in approximately half of human cancers, MYC 
binds to specific genomic sites directly activating miR‑17‑92 
expression. MYC may also inhibit specific target genes, such as 
Sin3b, Btg1 and the apoptosis‑regulating factor Bim (14,36). In 
neuroblastoma cells, the miR‑17‑92 cluster is upregulated via 
MYCN (37). Along with MYC, p21 represents an important 
target of the miRNA‑17‑92 cluster. The expression of p21 may 
be inhibited by c‑Myc, which promotes tumor cell proliferation 
and, thus, tumor growth. It has been demonstrated that miR‑20 
affects the regulatory factor CDKN1A/p21, which is activated 
by transforming growth factor (TGF)‑β, thus preventing 
the antiproliferative effect induced by TGF‑β in colorectal 
cancer (38). In addition, the transcription factors E2F1, E2F2 
and E2F3, which are members of the E2F family, have been 
identified as target genes of miR‑17 and miR‑20a (39‑41). In 
fact, the suppression of miR‑17‑92 in cervical carcinoma led to 
the upregulation of E2F1 (24). Overall, it may be argued that the 
regulation of gene expression by miRNAs may be implemented 
through mechanisms similar to those of transcription factors.

The regulation of almost all cellular processes occurs through 
several signaling pathways. The Janus kinase/signal transducer 
and activator of transcription (JAK‑STAT) pathway plays a 
pivotal role in the mechanism of action of the miR‑17‑92 cluster. 
In multiple myeloma, miR‑17‑92 enhances cell proliferation 
and inhibits cell apoptosis by inhibiting the tumor suppressor 
gene SOCS‑1 and activating the JAK‑STAT pathway  (42). 
Recent studies have revealed that phosphoinositide‑3 kinase 
(PI3K)/AKT/mammalian target of rapamycin is another 
important axis that regulates tumor development by inhibiting 
apoptotic and activating anti‑apoptotic factors, thus promoting 
cell survival. Once activated, AKT regulates cell proliferation, 
growth and survival by phosphorylating different downstream 
targets, such as enzymes, kinases, transcription factors and 
others. The activation of this pathway may downregulate the 
expression of the tumor suppressor gene p53, thus inhibiting 
apoptosis. Another tumor suppressor gene is phosphatase and 
tensin homolog (PTEN), a phosphatase of phosphatidylinositol 
(3,4,5)-trisphosphate, which is the first to be found in the tumor 
suppressor gene and, through downregulation of the PI3K/
AKT signaling pathway, promotes apoptosis, thus acting as a 
tumor suppressor (Fig. 3). The miR‑17‑92 cluster activates the 
AKT̸glycogen synthase kinase pathway through downregula-
tion of the expression of PTEN, and promotes cell proliferation 
and angiogenesis throught the PI3K/AKT pathway (43,44). The 
expression of the pro‑apoptotic factor Bim may be inhibited 
by the miR‑17‑92 cluster, thus blocking apoptosis (34). Bim is 

Figure 1. Pri‑miRNA is transcribed in the nucleus by the RNA polymerase II 
from a protein‑coding gene and subsequently processed by the type  III 
RNase Drosha into pre‑miRNA. The pre‑miRNA is then transported to the 
cytoplasm by exportin 5 and cleaved by Dicer into a double‑stranded mol-
ecule in which each strand is a mature miRNA.
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also a target of miR‑92a, and it is associated with the tumor 
malignancy in colon adenoma (30).

Mechanism of action of the miR‑17‑92 cluster in tumor devel‑
opment
Effect of the miR‑17‑92 cluster on cancer stem cells. Cancer 
stem cells (CSCs), also referred to as tumor‑initiating cells, 

represent the origin of the primary tumor, with their capacity of 
self‑renewal and multiple differentiation potential. CSCs play 
a crucial role in the occurrence, development, metastasis and 
recurrence of tumors. However, there is currently controversy 
regarding CSCs, although a growing volume of experimental 
evidence (e.g., flow cytometry, sorting technologies and 
animal models) support the CSC theory (45). CSCs maintain 

Figure 2. Schematic representation of the structure of the miR‑17‑92, miR‑106b‑25 and miR‑106b‑363 clusters. miR‑17, miR‑20a, miR‑106a, miR‑20b, miR‑106b 
and miR‑93 are labeled as green and grouped in the miR‑17 family. miR‑92, miR‑18 and miR‑19 families are labeled as blue, yellow and pink, respectively.

Figure 3. Principal target genes and signaling pathways involved in the miR‑17‑92 cluster regulation network. Janus kinase/signal transducer and activator of 
transcription (JAK‑STAT), transforming growth factor (TGF)‑β and phosphoinositide-3 kinase (PI3K)/AKT signaling pathways regulate tumor cell prolifera-
tion and apoptosis. Green arrows, activating effect; red lines, inhibitory effect. PTEN, phosphatase and tensin homolog; mTOR, mammalian target of rapamycin.
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tumor cell viability by self‑renewal and their unlimited prolif-
eration ability. Specific miRNAs and long‑chain non‑coding 
RNAs regulate certain characteristics of tumor stem cells, 
including asymmetric cell division, high tumorigenicity, 
drug resistance, invasion and metastasis (46). Zagorac et al 
reported that the genetic targeting of DNMT1 through epigen-
etic reactivation of the miR‑17‑92 cluster in reprogrammed 
pancreatic cancer stem cells reduced their self‑renewal (47). 
In addition, the overexpression of miR‑17‑92 reduced CSC 
self‑renewal capacity in vivo by targeting multiple signaling 
cascade members, such as NODAL/ACTIVIN/TGF‑β1, and 
directly inhibiting the downstream targets p21, p57 and TBX3. 
miR‑17‑92, thus, represents a potential target for the prognosis 
of pancreatic cancer and may provide a guide to diagnosis and 
treatment (48).

Therefore, the reduction or elimination of the self‑renewal 
ability of CSCs by miRNAs, such as the miR‑17‑92 cluster, 
may represent a promising new direction towards designing 
novel cancer therapies.

Epithelial‑to-mesenchymal transition (EMT) and its role 
in tumor development. Epithelial and mesenchymal cells are 
the two main types of cells in human tissues. Epithelial cells 
exhibit polarity, and are connected to each other through adhe-
sions, bridging and gap junctions. Conversely, mesenchymal 
cells do not exhibit polarity, lack intercellular junctions, and 
are able to migrate through the extracellular matrix. EMT is 
a biological process during which epithelial cells transform 
to cancer cells with mesenchymal characteristics, such as 
the ability to invade and migrate under physiological and 
pathological conditions. The expression of E‑cadherin and 
markers of mesenchymal cells (N‑cadherin, vimentin and 
fibronectin) represent the main characteristics of EMT, along 
with decreased cell adhesion (49). EMT is critical for normal 
embryonic development, wound healing, tissue regeneration, 
organ fibrosis, and it also occurs during tumor development, 

invasion and metastasis (50). A study on colon and pancre-
atic cancer reported the presence of a mutual feedback loop 
between members of the miR‑200 family and ZEB1, which is 
involved in the invasion and metastasis induced by EMT (51). 
The expression of miR‑200 family members was significantly 
associated with the expression of E‑cadherin, thus inhibiting 
the expression of ZEB1 and SIP1. By contrast, ZEB1 binds 
directly with the promoter region of miR‑200, thus inhib-
iting the expression of genes and forming a double negative 
feedback pathway. Increased expression of miR‑19 is able 
to trigger EMT in lung cancer cells, reduce cell adhesion, 
and enhance cell migration and invasion through regulating 
epithelial and mesenchymal proteins (52). In colon cancer, 
miR‑17 induces EMT consistently with the cancer stem cell 
phenotype by regulating CYP7B1 expression (53). The expres-
sion of the miR‑17‑92 cluster is correlated with inhibition of 
EMT by reducing the expression of mesenchymal markers, 
such as N‑cadherin, vimentin, Twist1, Slug and TCF8/ZEB1, 
and by promoting the expression of the epithelial marker 
E‑cadherin (54).

The miRNA‑17‑92 cluster facilitates tumor cell migra‑
tion, invasion and metastasis. The miR‑17‑92 cluster, acting 
as an oncogene, induces tumor cell invasion and metastasis 
by regulating its target genes. miR‑19 may contribute to the 
development of c‑Myc‑induced lymphoma, particularly by 
playing a key role in stimulating lymphoma cell migration, 
invasion and metastasis (27). Similarly, miR‑19a/b has been 
found to be upregulated in metastatic gastric cancer, in which 
it promotes cell migration, invasion and metastasis, by regu-
lating the tumor suppressor MXD1, a c‑Myc antagonist (55). 
It has been demonstrated that miR‑92a directly targets the 
E‑cadherin (CDH1) gene, which is associated with human 
esophageal squamous cell carcinoma  (56). In aggressive 
leukemia, such as erythroleukemia caused by the activation 
of the Fli‑1 gene by the Friend virus, miR‑92a may accel-
erate the development of the Friend virus by regulating the 
p53 pathway  (57). However, Ohyagi‑Hara et al confirmed 
that miR‑92a can directly target ITGα5 and decrease the 
expression of ITGα5 in ovarian cancer, thus inhibiting tumor 
cell adhesion, metastasis and proliferation (58). mir‑20a can 
promote cell invasion and migration by targeting the ABL2 
gene in prostate cancer, and TIMP2 and ATG7 in glioma stem 
cells and ovarian cancer (22,26,59). miR‑20a was found to be 
highly expressed in undifferentiated thyroid carcinoma, and 
plays an antitumor role in thyroid cancer. Its effect is mainly 
exerted through the inhibition of the proliferation and inva-
sion of thyroid cancer cells by targeting the LIMK1 gene (23). 
Reversely, STAT‑3 downregulation inhibited malignant 
pleural mesothelioma cell invasion and tumor migration by 
miR‑17 (Fig. 4) (60). All the abovementioned studies demon-
strated that the miR‑17‑92 cluster may play different roles in 
several cancer tissues, but its mechanism of action remains 
to be elucidated by further studies. However, these findings 
provide novel insights to the treatment of different cancers.

5. Clinical applications and perspectives for the 
miRNA‑17‑92 cluster

miRNAs are key players in biological processes such as cell 
proliferation, differentiation, tumorigenesis, immune regulation 

Figure 4. Target genes and signaling pathways regulated by the miR‑17‑92 
cluster that are involved in tumor cell migration, invasion and metas-
tasis. Green arrows, activating effect; red lines, inhibitory effect. TGF, 
transforming growth factor; STAT, signal transducer and activator of 
transcription; CDH, cadherin; TIMP, tissue inhibitor of metalloproteinases; 
MXD1, MAX dimerization protein 1; LIMK1, LIM domain kinase 1; EMT, 
epithelial‑to‑mesenchymal transition.
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and several others. A number of studies have demonstrated 
specific expression of members of the miRNA‑17‑92 cluster 
in various diseases, particularly in different types of cancer, 
suggesting that the miRNA‑17‑92 cluster may represent a new 
direction for the diagnosis and treatment of cancer. Monitoring 
the expression changes of the members of the miRNA‑17‑92 
cluster under specific tumor conditions may be a powerful tool 
for the early detection of cancer. The miRNA‑17‑92 cluster is 
also predicted to provide important supplementary tools for 
tumor classification, determination of the treatment plan and 
analysis of prognosis by clinicians. For example, the use of 
miR‑17 antagonists represents a novel therapeutic approach to 
the treatment of chronic lymphocytic leukemia (61). In animal 
models, the intravenous injection of anti‑miR‑17‑92 may cure 
allograft medulloblastoma by decreasing cell proliferation and 
suppressing tumor growth (62). Experiments on evaluating the 
effects of the overexpression and silencing of the miRNA‑17‑92 
cluster in the embryonic and postnatal mouse heart demonstrated 
that this cluster may induce the proliferation of cardiac muscle 
cells. This technology may become a therapeutic target method 
for myocardial repair and regeneration (63). Recently, a close 
association was demonstrated between miR‑92a and lymphoma 
metastasis in colorectal cancer, indicating that miR‑92a may be a 
potential marker for colorectal cancer (64). Overall, the use of the 
miRNA‑17‑92 cluster in clinical practice represents a promising 
tool, considering the accumulating evidence on its specific func-
tions. The study of miRNAs with clinical aims may pave the way 
to major advances in cancer treatment in the near future.
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