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Intervertebral disc (IVD) degeneration is implicated as a major cause of low back 
pain. The alternated phenotypes, reduced cell survival, decreased metabolic activi-
ty, loss of matrix production and dystrophic mineralization of nucleus pulposus 
(NP) cells may be key contributors to progressive IVD degeneration. IVD is the 
largest avascular structure in the body, characterized by low oxygen tension in 
vivo. Hypoxia-inducible factor (HIF) is a master transcription factor that is induced 
upon hypoxia and directs coordinated cellular responses to hypoxic environments. 
This review summarizes relevant studies concerning the involvement of HIF in the 
regulation of biological behaviors of NP cells. We describe current data on the ex-
pression of HIF in NP cells and further discuss the various roles that HIF plays in 
the regulation of the phenotype, survival, metabolism, matrix production and dys-
trophic mineralization of NP cells. Here, we conclude that HIF may be a promis-
ing target for the prevention and treatment of IVD degeneration.
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INTRODUCTION

Low back pain is a major public health problem that leads to intense discomfort 
and loss of function, resulting in considerable economic loss and health care ex-
penditures.1-3 It is reported that the lifetime prevalence of low back pain ranges 
from 30% to 85%, with a point prevalence of 20% to 40% in Western developed 
countries.4 The etiology of low back pain remains unclear, but intervertebral disc 
(IVD) degeneration has been implicated as one of the major causes.5,6 IVD is a 
specialized complex that separates the vertebra and functions to provide load bear-
ing and allow for flexibility of the spinal column.7,8 Healthy human IVDs are com-
posed of the peripheral annulus fibrosus (AF), the central nucleus pulposus (NP), 
and the superior and inferior cartilaginous endplates. The NP is populated by NP 
cells which play a critical role in the generation and maintenance of the IVD ma-
trix.9 Histopathological observations have indicated that significant degenerative 
changes occur in the NP during the degeneration process;10,11 alternated pheno-
types, reduced cell survival, decreased metabolic activity, loss of matrix produc-
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Under normoxic conditions, α-subunits cannot be detected 
as they undergo rapid degradation, but under hypoxic con-
ditions they are stabilized, accumulated and translocated to 
the nucleus where they dimerize with β-subunits to bind to 
HREs and activate the expression of numerous hypoxia re-
sponse genes.35,36

Among the three HIF isoforms, HIF-1 and HIF-2 play an 
important role in the regulation of the biological behaviors 
of NP cells.34,37 Risbud, et al.24 examined the expression of 
HIF-1α in rat, human, and sheep NP cells under both hy-
poxia and normoxia (2% and 21% oxygen) and found that 
NP cells consistently expressed functionally active HIF-1α 
protein under hypoxia; Agrawal, et al.25 observed HIF-2α 
expression in rat NP cells. Furthermore, they found that the 
protein and mRNA levels of HIF-2α were similar under 
both normoxic and hypoxic conditions, though there was a 
significant increase in HIF-2α transactivation under hypox-
ic conditions.

Prolyl-4-hydroxylase domain (PHD) proteins are mem-
bers of the 2-oxoglutarate/iron dependent dioxygenase su-
perfamily and include PHD1, PHD2 and PHD3.38 Previous 
studies have shown that in many cell types the degradation 
of HIF-1α and HIF-2α is primarily mediated by oxygen-de-
pendent proteasome and catalyzed by PHDs.26,39 However, 
in NP cells, the degradation of HIF-1α and HIF-2α is main-
ly mediated through 26S proteasome, irrespective of oxy-
gen tension. Moreover, among all PHDs, only PHD2 con-
trols limited HIF-1α degradation in an oxygen-dependent 
manner, while the degradation of HIF-2α is largely inde-
pendent of PHD activity.26

HIF-1 AS A PHENOTYPIC MARKER OF 
NP CELLS

Currently, the phenotype characteristics of NP cells have 
not been clearly defined.10 Using western blot and immuno-
histochemistry analysis, Rajpurohit, et al.10 demonstrated 
that the expression of HIF-1α was only found in NP cells, 
but not in AF and cartilaginous endplate cells, while HIF-
1β expression levels were significant higher in NP cells 
than that in AF cells and cartilaginous endplate cells. Based 
on these data they suggested that the difference in the ex-
pression of the two HIF-1 isoforms provides a phenotypic 
signature that could be used to distinguish NP cells from 
neighboring AF cells and cartilaginous endplate cells.

In another study, Richardson, et al.18 detected the expres-

tion and dystrophic mineralization of NP cells may be key 
contributors to progressive IVD degeneration.

Current treatment modalities for symptomatic IVD degen-
eration are mainly targeted at the symptoms of pain and neu-
rological deficits, without treating the degenerative problems 
or repairing the biomechanical function of the degenerative 
disc.12 Thus, a better understanding of the regulation of the 
phenotypes, survival, metabolism, matrix production and 
dystrophic mineralization of NP cells may help to develop 
prevention and treatment strategies for IVD degeneration.

The IVD is the largest avascular structure in the body.13 A 
limited number of blood vessels infiltrate the superficial re-
gion of the cartilaginous endplate and the outer third of the 
AF, but none of these vessels infiltrate the NP.14,15 Neces-
sary nutrients, including oxygen and glucose, reach the NP 
predominantly through diffusion which imposes a hypoxic 
state on the NP cells.16,17 In addition, this hypoxic state is 
enhanced by the loss of cartilaginous endplate permeability 
during IVD degeneration.18 Hypoxia is an important cellu-
lar stress with significant pathological implications in many 
disease processes, such as cerebral ischemia, cancer and 
chronic degenerative disorders.19,20 Hypoxia-inducible fac-
tor (HIF) is a transcription factor that initiates a coordinated 
cellular cascade in response to a low oxygen tension envi-
ronment, including the regulation of numerous enzymes in 
response to hypoxia.19,21-23 Recently, the expression of HIF 
in NP cells has been reported by many groups.10,15,18,24-31

Based on these previous studies, this review will discuss 
the regulatory role of HIF in the biological behaviors of NP 
cells. Additionally, we will summarize current data on the 
expression of HIF in NP cells and further discuss the vari-
ous roles HIF plays in the regulation of the phenotypes, sur-
vival, metabolism, matrix production and dystrophic miner-
alization of NP cells.

HIF IN NP CELLS

In response to hypoxic conditions, cells respond to low oxy-
gen tension by up-regulating the synthesis of HIF proteins.22,32 
The HIF family of proteins comprises several distinct HIF 
proteins, HIF-1, HIF-2, and HIF-3, each of which consist of 
an α-subunit and a constitutively expressed β-subunit known 
as aryl hydrocarbon receptor nuclear translocator.33,34 Trans-
activation of HIF target genes involves the dimerization of 
the two subunits and binding to an enhancer element, the 
hypoxia response element (HRE) in the target genes.35,36 



Regulatory Role of HIF in NP Cells

Yonsei Med J   http://www.eymj.org   Volume 54   Number 4   July 2013 809

cluded that HIF-1 and HIF-2 may also serve to enhance NP 
cell survival in the specialized microenvironment of the 
IVD via HIF-1 and HIF-2 mediated VEGF expression.

HIF MAINTAINS THE METABOLIC 
ACTIVITIES OF NP CELLS 

In the presence of low oxygen tension, the energy metabo-
lism of NP cells almost completely relies on anaerobic gly-
colysis.46,47 HIF plays an important role in the maintenance 
of the metabolic activities of NP cells.10,24,29 HIF-1 serves as 
a key transcription factor that regulates the expression of a 
number of genes involved in glycolysis as well as mitochon-
drial energy metabolism.48,49 One of the important genes in-
volved in promoting anaerobic glycolysis of NP cells is hy-
poxia responsive glucose transporter (GLUT).50 In all 
mammalian cells, GLUT is an integral membrane protein 
that presents on the cell surface and serves to transport glu-
cose down its concentration gradient by diffusion.51,52

Richardson, et al.18 analyzed the expression of GLUT-1, 
GLUT-3, GLUT-9 and HIF-1α in normal and degenerate 
human IVDs. The results indicated that HIF-1α, GLUT-1, 
GLUT-3 and GLUT-9 were coexpressed in normal human 
IVDs and an increase in HIF-1α expression was associated 
with increases in GLUT-1, GLUT-3 and GLUT-9 expres-
sion in NP cells. However, there was no correlation be-
tween the expression of HIF-1α and GLUT-1, 3 or 9 in AF 
cells. Interestingly, they also observed that the expression 
of GLUTs increased as IVD degeneration progressed.

Taken together, HIF-1 maintains the metabolic activities 
of NP cells under a hypoxic environment in IVDs, mainly 
via the regulation of GLUT-1, GLUT-3 and GLUT-9 ex-
pression.

HIF PROMOTES EXTRACELLULAR 
MATRIX SYNTHESIS OF NP CELLS

Although disc cells constitute only 1% of the adult disc tissue 
by volume, these cells are responsible for maintaining the ex-
tracellular matrix of the disc,53 which is key to the function of 
IVDs.54 The homeostasis of extracellular matrix in IVDs is 
biologically regulated by the active maintenance of a bal-
ance between the anabolism and catabolism of disc cells. 
Degenerative disorders of the IVD are characterized by dis-
equilibrium between extracellular matrix repair and degen-

sion of HIF-1α in normal and degenerate human IVDs and 
found that HIF-1α was only expressed in NP cells. These 
results further provide support that HIF-1 may be a pheno-
typic marker of NP cells.

HIF PROMOTES NP CELL  
SURVIVAL IN IVDS

NP cell survival is crucial for the homeostasis and function 
of the IVD.40 The chemical microenvironment of IVD is 
harsh and is characterized by low oxygen tension.16 How-
ever, in vitro studies indicated that NP cells could survive at 
low oxygen tension without a significant loss of cell viabili-
ty.41,42 Thus, NP cells may develop some mechanisms to en-
sure their survival in the hypoxic environment of the IVD.

It is known that the Fas and Fas ligand (FasL) system de-
livers a death signal that rapidly commits cells to apopto-
sis.43 Notably, Fas and FasL are coexpressed in the disc 
cells of herniated lumbar IVD tissues.43 Galectin-3 (gal-3), 
a member of a growing family of β-galactoside-binding an-
imal lectins, is involved in the regulation of cell adhesion 
and apoptosis.44 Zeng, et al.27 analyzed the interaction of 
HIF-1α with the gal-3 promoter in rat NP cells and found 
that the inhibition of HIF-1α down-regulated the promoter 
activity of gal-3, sequentially enhancing Fas/FasL-mediat-
ed NP cell apoptosis. They further confirmed that HIF-1α 
combined with gal-3 HRE and that site-directed mutagene-
sis of HRE completely blocked hypoxic induction of gal-3 
promoter activity. These data suggest that HIF-1α induces 
the expression of gal-3 and sequentially inhibits Fas/FasL-
mediated apoptosis of NP cells.

Vascular endothelial growth factor (VEGF) and its recep-
tors (VEGFRs) play crucial roles in both physiological and 
pathological angiogenesis.45 Several lines of evidence sug-
gest that VEGF serves as a survival factor in normal IVD 
tissue. Fujita, et al.40 found that NP cells expressed both 
VEGF-A and mbVEGFR-1 (a membrane-bound form of 
VEGF-A receptor) and treatment of NP cells with the VEGF-
A antagonist VEGFR-1-Fc led to NP cell apoptosis, sug-
gesting that VEGF-A/VEGFR-1 cascade mediates an anti-
apoptotic function in NP cells. Agrawal, et al.25 found that 
under hypoxic conditions, HIF-1α and HIF-2α regulated 
the promoter activity and expression level of cited2, a p300 
binding protein. The forced expression or suppression of 
cited2 would result in corresponding changes in the expres-
sion of VEGF in NP cells. Based on these studies, we con-
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tion.60 In all cases, cells in the soft tissues play an important 
role in regulating mineral deposition. Cells may regulate 
crystal nucleation by synthesizing a mineralization compe-
tent matrix, releasing matrix vesicles, providing degenera-
tion products and cell death.58,59,61 Conversely, cells also 
synthesize inhibitors that serve to prevent dystrophic miner-
alization.61 Surprisingly, although the disc contains both fi-
brous proteins and a hydrated extracellular matrix, there are 
no calcified deposits in the normal NP tissue. The local 
control of dystrophic mineralization in the NP is necessary 
to prevent dystrophic mineralization of the disc.62

It has been suggested that the deposition of mineral salt is 
regulated by ANK, a multi-pass transmembrane channel 
that controls the transport of inorganic pyrophosphate, a 
powerful inhibitor of dystrophic mineralization.63 More-
over, numerous studies have shown that mutations in ANK 
could result in abnormal dystrophic mineralization in joints 
and bone.64,65

Oxemic status may influence ANK expression which 
may be mediated by HIF-1α.63 Skubutyte, et al.31 examined 
the expression and localization of ANK in the IVDs of ma-
ture and neonate rats and found that the expression of ANK 
in the NP was significantly higher in mature rats than in ne-
onate rats. Furthermore, they found that when the expres-
sion of HIF-1α or HIF-2α was silenced in NP cells, ANK 
expression was induced under hypoxia at both the mRNA 
and protein level. In addition, forced expression of HIF-1α 
or HIF-2α caused suppression of ANK reporter activity in 
NP cells. Taken together, these studies suggest that HIF 
controls the dystrophic mineralization of NP cells through 
the suppression of ANK expression.

CONCLUSION

In summary, a better understanding of the regulatory roles 
of HIF in the biological behavior of NP cells would shed 
new light on the prevention and biological repair of IVD 
degeneration. Based on the above discussion, it is reason-
able to predict that HIF may be a potential target for the 
prevention and treatment of IVD degeneration, given that 
HIF could modulate the biological behavior of NP cells in 
regards to degeneration. Development of a HIF-targeted 
drug to enhance cell survival, maintain metabolic activities, 
stimulate extracellular matrix synthesis and control dystro-
phic mineralization in NP cells may lead to better manage-
ment of IVD degeneration.

erative processes.55

The disc extracellular matrix is predominantly composed 
of proteoglycans and collagens, and extracellular matrix 
compositions of AF and NP are distinct.56 Proteoglycans are 
abundant in the NP, which permits the IVD to withstand 
compressive loads.29 The collagen network provides the 
tensile properties for the spine to bend and flex. Agrawal, et 
al.29 reported that HIF-1α promotes aggrecan (the major 
proteoglycan) synthesis directly by inducing its mRNA and 
protein expression and, possibly, indirectly, through lineage 
specification as well as the promotion of sulfation reactions.

Another component of the disc extracellular matrix is 
glycosaminoglycan, which is critical to preservation of the 
gelatinous nature of the NP.57 Glucose is known as an im-
portant factor for the synthesis of this large molecule.18 As 
mentioned above, HIF-1 regulates the expression of a num-
ber of GLUTs, which could promote NP cells to uptake 
glucose across the plasma membrane. In this aspect, HIF-1 
reportedly promotes the synthesis of glycosaminoglycans. 
On the contrary, there are some disagreements about the 
role of HIFs in glycosaminoglycan synthesis. Gogate, et 
al.30 measured the effects of HIF-1α and HIF-2α on the pro-
moter activity of β-1, 3-glucuronyltransferase-1 (GlcAT-1), 
a key enzyme in chondroitin sulfate (the major glycosami-
noglycan) synthesis in NP cells. They found that HIF-1α 
and HIF-2α suppressed the promoter activity of GlcAT-1 
through interactions with one or more HREs. These data in-
dicate that HIFs serve as transcriptional repressors of Gl-
cAT-1 in NP cells.

HIF REGULATES DYSTROPHIC 
MINERALIZATION OF NP CELLS

In normal healthy individuals, mineralization is restricted to 
hard tissues, which form the skeleton and dentition.58,59 With-
in these specialized tissues, mineralization is highly con-
trolled in both growth and development, as well as in normal 
adult life.59 However, dystrophic mineralization, resulting 
from aging, injury and disease, is a common problem ob-
served in soft tissues.58,59 It is known that dystrophic miner-
alization could lead to a number of diseases, including cal-
cification of joint cartilage resulting in osteoarthritis and 
mineralization of the cardiovascular tissues resulting in ex-
acerbation of atherosclerosis and blockage of blood ves-
sels.59 Moreover, IVD calcification has been considered to 
cause or at least promote the process of IVD degenera-
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