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ABSTRACT

Herein, we report the identification of RNA hair-
pin loops that bind derivatives of kanamycin A,
tobramycin, neamine, and neomycin B via two-
dimensional combinatorial screening, a method
that screens chemical and RNA spaces simulta-
neously. An arrayed aminoglycoside library was
probed for binding to a 6-nucleotide RNA hairpin
loop library (4096 members). Members of the loop
library that bound each aminoglycoside were
excised from the array, amplified and sequenced.
Sequences were analyzed with our newly developed
RNA Privileged Space Predictor (RNA-PSP) pro-
gram, which analyzes selected sequences to
identify statistically significant trends. RNA-PSP
identified the following unique trends: 5’UNNNC3’
loops for the kanamycin A derivative (where N is
any nucleotide); 5’UNNC3’ loops for the tobramycin
derivative; 5’UNC3’ loops for the neamine derivative;
and 5’UNNG3’ loops for the neomycin B derivative.
The affinities and selectivities of a subset of the
ligand–hairpin loop interactions were determined.
The selected interactions have Kd values ranging
from 10 nM to 605 nM. Selectivities ranged from 0.4
to >200-fold. Interestingly, the results from RNA-
PSP are able to qualitatively predict specificity
based on overlap between the RNA sequences
selected for the ligands. These studies expand the
information available on small molecule–RNA motif
interactions, which could be useful to design ligands
targeting RNA.

INTRODUCTION

Because RNA folds into three-dimensional structures,
it has many diverse and essential roles in biology
beyond serving as a passive carrier of genetic information.
For example, viral RNAs regulate viral replication (1) and
microRNAs regulate gene expression (2). Their malfunc-
tion can cause diseases such as cancer (3). Riboswitches
also regulate gene expression but do so in response to the
concentration of metabolites in cells. Since many ribo-
switches have been identified in bacteria, they are also
antibacterial drug targets (4,5). Additional functional
roles for RNA are being identified through genomic
sequencing efforts (6). These examples illustrate the inter-
est in developing compounds that target RNA to either
harness their therapeutic potential or to more thoroughly
define RNA’s cellular functions.

Despite this interest, there has been limited progress
in finding compounds that target RNA with high affinity
and specificity. This is best illustrated by the observation
that high-throughput screening provides lower hit rates
for RNA targets than their protein counterparts (7).
Nonetheless, several ligands have been identified that
bind RNA targets using these and other methods (8–12),
and high throughput screening currently remains the
most common approach used to identify ligands that
bind RNA.

Identifying compounds that bind RNA targets could be
hampered by low hit rates from high throughput screening
because the wrong chemical space for the RNA or the
wrong RNA space for the chemical library is being
probed. At present, there is not enough information
about the chemical space appropriate for RNA targeting
endeavors and about the RNA scaffolds that are
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targetable in order to improve hit rates. If enough infor-
mation of this type were available, it could serve as a plat-
form to facilitate the rational and modular design of
ligands targeting RNA, analogous to those used in poly-
amide targeting of DNA (13).

In order to gather information about RNA motif-small
molecule interactions, we developed an approach termed
two-dimensional combinatorial screening (2DCS) that
probes RNA and chemical spaces in parallel (14). In
2DCS, a library of ligands is arrayed onto an agarose
microarray surface and incubated with an RNA motif
library (such as 1, Figure 1) under conditions of high
oligonucleotide stringency using competitor oligonucleo-
tides (2–4, Figure 1). Once a ligand binds to members
of the library, the bound RNA is excised from the array
surface, amplified, cloned and sequenced. The output of
2DCS is a database of RNA motif-ligand partners.
Previously, this approach was used to screen libraries
of internal loops for binding aminoglycosides (14) and a
6-nucleotide hairpin loop library for binding 60 acylated
kanamycin and neamine derivatives (15). In our earlier
report, the 60 acylated kanamycin A and neamine deriva-
tives were displayed in a manner that mimics modification
of the aminoglycosides by 60 aminoglycoside acetyltrans-
ferase (AAC) enzymes (16,17).

In this report, 2DCS was used to probe the interactions
of a library of four arrayed aminoglycosides to a
6-nucleotide hairpin loop library. The aminoglycosides
arrayed were: 600-azido-kanamycin A (5), 600-azido-
tobramycin (6), 5-O-(2-azidoethyl) neamine (7) and 500-
azido neomycin B (8) (Figure 2A). In contrast to our
earlier report on aminoglycoside–hairpin interactions,
these aminoglycosides are displayed on the microarray
in a manner that mimics their biological presentation to
the bacterial rRNA A-site (18). That is, the positions in
the aminoglycosides that were functionalized for immobi-
lization do not make direct contacts with the A-site, at
least for the kanamycin and tobramycin derivatives. In
our previous studies, the aminoglycosides were immobi-
lized through a 5-hexynoate linker that was installed by

acylation of the aminoglycoside’s 60NH2, which forms
direct contacts with the A-site RNA.
In all previous studies using 2DCS, the RNA loop struc-

ture preferences were manually identified. To streamline
trend identification, the RNA Privileged Space Predictor
(RNA-PSP) computer program was developed to auto-
mate statistical analysis and is disclosed here for the first
time. RNA-PSP determined that the following amino-
glycoside–hairpin loop interactions have the highest sta-
tistical confidence: for 5, 50UNNNC30 loops (where N
represents any nucleotide, two-tailed p-value <0.00001);
for 6, 50UNNC30 loops (two-tailed p-value=0.0006); for
7, 50UNC30 loops (two-tailed p-value=0.0001); and for 8,
50UNNG30 loops (two-tailed p-value=0.0071). By cross-
analyzing the trends for all aminoglycosides, overlap
between the RNA space identified for two or more ligands
can be identified. If overlap is present, it qualitatively
indicates that the RNAs would not be particularly specific
for an aminoglycoside. In contrast, lack of overlap indi-
cates that the RNAs could be specific for a particular
aminoglycoside. These results contribute to the develop-
ment of a database of RNA hairpin loop–ligand partners
and further lay a foundation for the rational and modular
design of small molecules that target RNA (19).

MATERIALS AND METHODS

Synthesis

All azido-aminoglycosides were synthesized from the cor-
responding parent aminoglycoside in the free base form
according to previously published procedures (14,20,21).

Syntheses of the dye-functionalized aminoglycosides
(5–8-TMR). Boc-protected azido-aminoglycosides were
reacted with propargylamine via a Huisgen dipolar
cycloaddition reaction (HDCR), a variant of ‘click chem-
istry’ (22), as previously described (14). The product of
this reaction was dissolved in N,N-dimethylformamide
(DMF) with 10% N,N-diisopropylethylamine (DIPEA)
and reacted with 5-carboxytetramethylrhodamine, succini-
midyl ester (5-TAMRA, SE, Invitrogen). Compounds
were lyophilized and purified by preparative thin layer
chromatography (TLC). Product bands were visualized
with UV light and were excised from the plate. The prod-
uct was extracted from the silica gel by vortexing in
methanol for 10min. Samples were lyophilized and depro-
tected by tumbling in 500 ml of a 1:1 trifluoroacetic acid
(TFA): dichloromethane (DCM) mixture for 30min at
room temperature. Samples were then lyophilized and
purified by HPLC. Complete synthetic details for each
dye-labeled aminoglycoside are available in the
Supplementary Data.

Synthesis of the triazole-functionalized TAMRA, TMR-
triazole. An alkyne-functionalized rhodamine dye was
synthesized by dissolving 5-TAMRA, SE (52.7 mg,
100 nmol) in DMF with 10% DIPEA and reacting it
with propargylamine (12.8 ml, 200 nmol). After sonicating
the reaction at room temperature for 3 h, it was lyophi-
lized and the solid washed with water to remove unreacted

5’-GGGAGA GCAAGG-3’

C

A
G

A

A
A

A
AU

U

G

G
G

U

U

U
U

U
U

G

U

C
C
G

d(AT)11

d(GC)11

5’-GGGAGA GCAAGG-3’

C

C
C

A

A
A

A
AU

U

U

U
U

U

U

U
G

G
G

G

G

G
A
U

N N
N N

N N

1 2

4

3

Position 1 Position 6

Figure 1. Secondary structures of the hairpin loop library (1, 4096
members) and competitor oligonucleotides 2–4. The boxed nucleotides
highlight the randomized region; for simplicity, only this region is
shown for the selected hairpins (Figure 6). The competitor oligonucleo-
tides 2–4 were used in 5000 times excess over 1 to ensure RNA–ligand
interactions occur within the randomized region.
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propargylamine. The product was dissolved in dimethyl-
sulfoxide (DMSO) and reacted with 3-azidopropylamine
(0.02 ml, 200 nmol) (23) for 3 h in the presence of 1mM
CuSO4, 1mM ascorbic acid and 100 mM tris(benzyltriazo-
lylmethyl)amine (TBTA, dissolved in 4:1 butanol: DMSO)
(24). The sample was lyophilized and purified by HPLC.
Complete synthetic details are in the Supplementary Data.

Construction of azido-aminoglycoside microarrays

Azido-aminoglycosides were immobilized onto alkyne-
funtionalized microarrays via a HDCR. Alkyne-function-
alized microarray slides were constructed as previously
described (20,21). Serial dilutions of the aminoglycoside
derivatives were spotted in 10mM tris(hydroxymethyl)a-
minomethane-hydrochloride (Tris–HCl) (pH 8.5), 100 mM
TBTA, 1mM CuSO4, 1mM ascorbic acid and 10% gly-
cerol. The slides were placed into a humidity chamber for
3 h, washed with water and dried at room temperature.

General nucleic acids

All DNA oligonucleotides were purchased from
Integrated DNA Technologies, Inc. and used without
purification unless noted otherwise. The RNA competitor
oligonucleotides were purchased from Dharmacon
(Lafayette, Colorado) and deprotected according to the
manufacturer’s standard procedure. All aqueous solutions
were made with diethylpyrocarbonate (DEPC)-treated
NANOpure water.

RNA library and competitor oligonucleotides

The RNA 6-nucleotide hairpin loop library (1, Figure 1)
(15,25) was synthesized by in vitro transcription from the
corresponding DNA template using a Stratagene
RNAMaxx High Yield transcription kit. This DNA tem-
plate was synthesized using custom mixing at the random-
ized positions to ensure that there was equivalent
representation of each nucleotide. Internally labeled hair-
pin loop library was synthesized and purified as previously
described (15).
Competitor oligonucleotides were used in order to select

interactions between the ligand and the randomized region
of the hairpin RNA. Oligonucleotide 2 is a mimic of the
stem; the sequence was changed so that it does not bind to
RT–PCR primers but maintains similar nearest neighbors.
Competitors 3 and 4 are DNA oligonucleotides.

RNA transcription and purification

Selected RNA hairpins were transcribed using a
Stratagene RNAMaxx transcription kit according to the
manufacturer’s protocol using 10 ml of the amplified DNA
from the PCR reaction of a synthetic DNA template.
After transcription, 1 unit RQ1 RNase-free DNase I
(Promega) was added, and the sample was incubated
at 378C for an additional 1 h. The transcribed RNAs
were then purified by gel electrophoresis on a denaturing
15% polyacrylamide gel. The RNAs were visualized
by UV-shadowing and extracted into 300mM NaCl by
tumbling overnight at 48C. The resulting solution was
concentrated with 2-butanol and ethanol precipitated.

Concentration was determined by measuring the absor-
bance at 260 nm and by using the corresponding extinc-
tion coefficient. Extinction coefficients were determined
using HyTher version 1.0 (Nicolas Peyret and John
SantaLucia, Jr, Wayne State University) (26,27) and are
based on the absorbances of nearest neighbors (28).

RNA selection

Azido-aminoglycoside microarrays were pre-equilibrated
with 1� hybridization buffer (HB; 20mM N-(2-hydro-
xyethyl)piperazine-N0-2-ethanesulfonic acid (Hepes),
pH 7.5, 150mM NaCl, 5mM KCl, 1mM MgCl2) supple-
mented with 40 mg/ml BSA for 30min at room tempera-
ture. The remainder of the experiment was completed as
previously described (14,15) with 10 pmol of internally
labeled hairpin loop library (1) and 50 nmoles of each
competitor oligonucleotide (2–4, Figure 1).

RT–PCR amplification

RT–PCR reactions were completed as previously
described (20). The RT–PCR product was then cloned
into pGEM T Vector (Promega) according to the manu-
facturer’s standard protocol. Sequencing was completed
by Functional Biosciences (Madison, WI).

Determination of trends in selected hairpins

The program RNA-PSP (v. 1.0) was used to extract the
selected sequences from the raw sequencing data file for
both statistical analysis and RNA secondary structure pre-
diction (29,30). The RNA-PSP program was developed to
identify trends in selected sequences and determine their
statistical significance. This was completed by comparing
the occurrence of the trend within a selected mixture of
sequences to the occurrence of that trend within the entire
6-nucleotide hairpin loop library (1, Figure 1). RNA-PSP
ranks the most statistically significant trends by perform-
ing a Z-test using Equations (1) and (2) (31):

� ¼
n1p1 þ n2p2
n1 þ n2

1

Zobs ¼
ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1��Þðð1=n1Þ þ ð1=n2ÞÞ
p 2

where n1 is the size of Population 1 (the selected mixture),
n2 is the size of Population 2 (1; 4096), p1 is the observed
proportion of Population 1 (selected mixture) displaying
the trend, and p2 is the observed proportion for
Population 2 (entire library) displaying the trend. The
Z-scores are then manually converted to the correspond-
ing two-tailed p-value (Figure 4).

Fluorescence binding assays

Dissociation constants from direct assays were determined
as previously described (14,20) using a Bio-Tek FLX-800
plate reader and 50 nM of the corresponding fluorescently
labeled aminoglycoside (5-TMR, 6-TMR, 7-TMR or
8-TMR, Figure 2A). The excitation and emission
filters used were 530/25 and 590/35, respectively, and the
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sensitivity was set to 70. An average of a 40% decrease in
fluorescence intensity was observed. The resulting curves
were fit to Equation 3 (32):

I ¼ I0 þ 0:5�" ½FL�0 � ðð½FL�0 þ ½RNA�0KtÞ
2

�
�4½FL�0½RNA�0Þ

0:5Þ
3

where I is the observed fluorescence intensity, I0 is the
fluorescence intensity in the absence of RNA, �e is the
difference between the fluorescence intensity in the absence
of RNA and in the presence of infinite RNA concentra-
tion and has units of M–1, [FL]0 is the concentration of
the fluorescently labeled aminoglycoside, [RNA]0 is the
concentration of the selected hairpin loop(s) or control
RNA, and Kt is the dissociation constant.

Control experiments were performed in the same
manner for binding to TMR-triazole, which contains
the dye and the triazole linkage but no aminoglycoside
(Supplementary Data). No change in fluorescence is
observed when up to 2 mM of the selected RNA hairpin
mixture is added to 50 nM TMR-triazole. These results
show that the change in fluorescence is due to binding of
the aminoglycoside to the oligonucleotides and not the
binding of the dye.

Competition experiments were also performed as pre-
viously described (14,15) using 1.1mM, 0.4 mM, 1.0 mM
and 0.15 mM of the library of RNAs selected for 5, 6, 7
and 8, respectively. These are the concentrations at which
the direct fluorescence binding curves reached saturation.
The selected RNA libraries were incubated with 50 nM of
5-TMR, 6-TMR, 7-TMR or 8-TMR, and increasing con-
centrations of the free base form of the aminoglycoside.

The expected increase in fluorescence was observed and
the resulting curves were fit to Equation (4) (20):

� ¼
1

2½FL�0
Kt þ

Kt

Kd
½Ct�0 þ ½RNA�0 þ ½FL�0

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Kt� þ

Kt

Kd
½Ct�0 þ ½RNA�0 þ ½FL�0

� �2

�4½FL�0½RNA�0

s #

þ A 4

where � is the fraction of the fluorescently labeled ami-
noglycoside bound, Kt is the dissociation constant deter-
mined by direct binding assay, Kd is the dissociation
constant of the competing unlabeled aminoglycoside,
[FL]0 is the total concentration of the fluorescently labeled
aminoglycoside, [Ct]0 is the total concentration of compet-
ing aminoglycoside, A is the fraction of fluorescently
labeled aminoglycoside that is bound at infinite concen-
tration of unlabeled competitor with values ranging
between 0 and 0.1, and [RNA]0 is the total concentration
of the hairpin of interest.

RESULTS

Selection of aminoglycoside structures

We identified the hairpin loops that bind azido-aminogly-
coside derivatives of kanamycin A (5), tobramycin (6),
neamine (7) and neomycin B (8) (Figure 2A) simulta-
neously via microarray. These ligands are known to bind
bacterial rRNA A-sites (33) and other RNAs (34). Thus,
defining the RNA hairpin loops that bind these ligands
could provide insights into the optimal RNAs that they
should be used to target.
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Figure 2. (A, top) Chemical structures of the azido-aminoglycosides used to study RNA–ligand interactions: 5 (kanamycin A derivative), 6 (tobra-
mycin derivative), 7 (neamine derivative), 8 (neomycin B derivative). The 2-deoxystreptamine ring common to all four aminoglycosides is highlighted
in blue. (A, bottom) Immobilization of 5–8 via 1, 3 Huisgen dipolar cycloaddition (14,21) on alkyne-displaying microarrays for 2DCS or conjugation
to 50-TAMRA (TMR, red ball) to study binding affinities. AmG refers to aminoglycoside. (B) Image of a microarray displaying compounds 5–8 that
was hybridized with oligonucleotides from Figure 1 before (top) and after excision of the bound RNAs (bottom). Circles indicated the positions
where the RNAs were excised. (C) Plot of the data for binding of 32P-internally labeled 1 to array immobilized 5–8 in the presence of competitor
oligonucleotides 2–4. Plots were normalized to the highest signal for binding 8.
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In order to implement 2DCS, a chemical handle on the
ligands is required to allow precise immobilization onto a
microarray surface. In the cases of 5–8, an azide chemical
handle was installed to anchor ligands onto alkyne-
functionalized surfaces via a Huisgen dipolar cycloaddi-
tion reaction (HDCR) (35). The position of azido group
functionalization in 5–8 was chosen based on the ease of
modifying a primary hydroxyl group (21,34,36) and on the
interactions of these ligands with mimics of the bacterial
A-site. For example, crystal structures of a bacterial A-site
mimic complexed with kanamycin A and tobramycin
show that the 600-OH, which is the position that was
functionalized with our chemical handle, does not form
direct contacts with the RNA (18,37). Neamine (7) and
neomycin B (8) mimics were modified at the 5- and
500-OH positions, respectively (18). The 5-OH of neamine
forms an intramolecular hydrogen bond to the 20NH2 in a
crystal structure with a mimic of the bacterial rRNA A-
site. The 500-OH in neomycin B forms an intramolecular
hydrogen bond to the 20NH2 and an intermolecular
hydrogen bond with N7 on G1491 (18). Thus, to varying
degrees, the ligands represent therapeutically relevant
forms of these drugs, at least for the A-site. The 60-N-5-
hexynoate kanamycin A and neamine ligands used in pre-
vious 2DCS studies with RNA hairpins did not as the
60NH2 forms direct contacts with the A-site (18).

2DCS of aminoglycoside–RNA hairpin loop interactions

Serial dilutions of 5–8 were spotted onto array surfaces
and immobilized using a HDCR. For each aminoglyco-
side, five ligand loadings or concentrations were arrayed
onto the surface (Figure 2B). The arrays were then probed
for binding to the 32P-internally labeled 6-nucleotide hair-
pin loop library 1 (Figure 1). The library contains 1536
predicted 4- and 2560 predicted 6-nucleotide hairpins,
assuming that hairpins that can form canonical pairs at
positions 1 and 6 (AU, GC, GU) are 4-nucleotide loops.
To ensure that the interactions probed are to the random
region in 1, competitors 2–4 (Figure 1) were used in 5000
times excess over 1 and 5-fold excess over the total amount
of ligand delivered to the array surface. Based on previous
studies, �10% of the ligand delivered (200 nl) at 5mM

concentration is actually immobilized (38). Since a 4096
member RNA library was probed for binding an array
with five different loadings of four aminoglycosides, this
2DCS experiment probed 81 920 types of interactions in
duplicate and in parallel on a single array surface.

The array was imaged and the amount of RNA bound
to each ligand was normalized to the highest loading of
the neomycin B derivative, 8 (Figure 2C). Not surpris-
ingly, the aminoglycosides with the most amino groups,
6 and 8, gave the highest signals. Signals above back-
ground were observed for delivery of as little as 20 pmol
of ligand onto the surface. The lowest loading spot that
gave signal above background for each aminoglycoside
was excised from the array as indicated in Figure 2B.
The RNAs at lower ligand loading were excised because
previously it was shown that RNAs harvested from lower
ligand loadings are higher affinity (20).

RNA mixtures are generally selective for the
corresponding aminoglycoside

The binding affinities of the mixtures of RNA selected to
bind each aminoglycoside were determined using a fluor-
escence-based assay with TAMRA-labeled derivatives of
the aminoglycosides (5-TMR, 6-TMR, 7-TMR and
8-TMR, Figure 2A) (20). Table 1 provides a summary of
the binding affinities. The mixtures of RNAs selected by 5,
6, 7 and 8 bind to their TAMRA-labeled aminoglycosides
with Kd values of 200, 110, 350 and 20 nM, respectively. In
contrast, binding affinities of the entire library, 1, to the
TAMRA-labeled aminoglycosides are much weaker; the
highest affinity interaction is between 1 and 8-TMR with
a Kd of >1100 nM. Comparison of the affinities of the
selected hairpin RNA mixtures to the affinities of a
mimic of the bacterial rRNA A-site for the ligands
shows that interactions are in general higher affinity for
the selected RNAs than the A-site (39). The exception is
neomycin B (8), which binds similarly to both the bacterial
A-site mimic and the selected hairpins.

In order to determine if conjugation to TAMRA affects
the binding affinity of each aminoglycoside derivative, two
sets of experiments were completed—competition experi-
ments with unlabeled aminoglycosides and direct binding

Table 1. Binding affinities of the mixtures of selected RNAs and 1 & 2 to different aminoglycosides and their selectivitiesa

Aminoglycoside studied
for binding

Aminoglycoside from which RNAs were harvestedb Other RNAs

5 6 7 8 1 2 A-sitec

5-TMR 200� 46; — 130� 30; 0.7 >2000d; >10e 900� 157; 5 >2000d >2500d 18 000
6-TMR >2000d; >19e 110� 44; — 1020� 168; 10 105� 78; 1 >1300d >2500d 1500
7-TMR 1000� 100; 3 130� 30; 0.4 350� 51; — 130� 67; 0.4 >5000d >1200d 7800
8-TMR 680� 296; 34 100� 5; 5 1050� 264; 52 20� 4; — >1100d >2500d 19

All affinities are reported in nM.
aSelectivities (given after semicolon) were calculated by dividing the Kd for the other aminoglycoside by the Kd for the aminoglycoside for which the
mixture was selected.
bThese are the mixtures of RNAs that were selected to bind each aminoglycoside.
cBinding affinities of the bacterial rRNA A-site were measured using surface plasmon resonance (SPR) with the RNA immobilized on the SPR
chip (39).
dThese values are the lower limit of the dissociation constant because the binding curves did not reach saturation at these concentrations.
eThese values represent the lower limit of specificity.
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assays with a triazole-functionalized TAMRA, TMR-

triazole. Competition assays were completed by titrating
the corresponding parent aminoglycoside (which does
not contain the azide handle) into solutions of the
selected RNA library equilibrated with the fluorescently
labeled aminoglycoside derivative. Results show that
the TAMRA dye and triazole ring decrease affinity by
about 5-fold for 5-TMR, increase affinity about 3-fold
for 6-TMR, decrease affinity by about 5-fold for
7-TMR, and has no effect on affinity for 8-TMR. These
values are consistent with a previous report that found
that conjugation of TAMRA to a kanamycin and a
neamine derivative affected binding affinity by about
4-fold (15). The affinity of the triazole-functionalized
dye, TMR-triazole, for the selected mixtures of RNAs
was also determined (Table 1). There was �5% change
in fluorescence when up to 2 mM RNA is added to a solu-
tion of TMR-triazole, indicating that the aminoglycoside
is required for binding.

The specificity of each hairpin mixture was deter-
mined by measuring the binding affinities for all of the
arrayed ligands. Previous studies have shown that RNA
internal loop–ligand interactions identified by 2DCS
were selective (14). In these studies, the RNA hairpin
loop–ligand interactions have varying levels of specificity
(Table 1).

The hairpin mixture selected for 5 binds with a similar
affinity to the tobramycin derivative, 6. Structurally, 5 and
6 are similar in size and linkages between rings. However,
6 contains a hydrogen instead of a hydroxyl group at the
30 position and an amino group instead of a hydroxyl
group at the 20 position. In contrast, the RNA mixture
selected to bind 5 is >10-fold selective over the neamine
derivative, 7. This value represents a lower limit since no
change in fluorescence was observed when up to 2 mM of
the RNA mixture selected to bind 5 was added to 7-TMR.
The kanamycin hairpin mixture is also 5-fold selective
over the neomycin derivative, 8, despite the fact that 8

has two more amino groups than 5. This suggests that
binding of 5 to the hairpins is not purely electrostatic in
nature.

Interestingly, the hairpin mixture selected to bind 6,
the tobramycin derivative, also displays varying levels of
specificity that are different than the hairpin mixture
selected to bind 5. For example, the hairpins selected to
bind 6 bind >19-fold more weakly to 5, the kanamycin
derivative. This is in contrast to the mixture selected to
bind 5, which binds to 5 and 6 similarly. The 6-mixture is
also about 10-fold more specific over the neamine deriva-
tive, 7, while exhibiting no specificity over the neomycin
derivative, 8.

The RNAs selected to bind the neamine derivative, 7,
are the least specific. Although the mixture binds 7 3-fold
more tightly than 5, the mixture binds �3-fold more
weakly to 6 and 8. The RNA mixture selected to bind 8,
however, is the most selective. This mixture binds 34-fold
more weakly to 5, 52-fold more weakly to 7, and 5-fold
more weakly to 6. Taken together, the binding data for the
mixtures suggest overlapping RNA hairpin loop space for
some of the aminoglycosides.

RNA-PSP

The RNA mixtures were then sequenced to identify the
hairpin loops that bound 5–8. The computer program
RNA-PSP was developed to address the need for fast
and accurate statistical analysis of selected RNAs.
RNA-PSP, developed on a Microsoft Visual Basic 2008
platform, allows direct input of sequence files from any
selection. The inputted sequence file is then analyzed to
extract the sequences of the variable region for each
selected library member. For the automated extraction
of selected sequences, users specify the constant and the
variable regions of the library, allowing RNA-PSP to sort
through a sequencing file and identify embedded RNAs
from the selection. An image of the user interface and a
representative schematic of the fundamental algorithm are
shown in Figures 3 and 4, respectively.
Once the selected structures are extracted by the pro-

gram, it generates all possible combinations of sequences
from the original library and stores the results. For exam-
ple, in the 6-nucleotide hairpin library 1, there are 4096
possible hairpins. The representation of a trend in selected
hairpins is then compared to the representation of that
trend in all library members. Z-scores [Equations (1)
and (2)] are computed and converted into two-tailed
p-values.
It is critical that Z-scores be determined for all trends

within the selected sequence mixtures in order to define
privileged RNA space. The corresponding two-tailed
p-value quantitatively assesses whether the trend truly
represents privileged RNA space. That is, if the following
null hypothesis is invoked: ‘Ligands tested are com-
pletely unbiased for the RNAs which they bind’, then
we expect to find a selected mixture of RNAs that pre-
cisely represents the entire library. The two-tailed p-value
describes the probability that the actual sequence results
obtained can occur if this hypothesis were true. For exam-
ple, for trends with two-tailed p-values <0.05, we can
reject the null hypothesis with >95% confidence. In the
context of 2DCS, two-tailed p-values represent a direct
assessment of the likelihood that an identified trend is
due to a real preference for the ligand to bind RNAs
that contain it.
As an initial test of the accuracy with which statistical

analysis can be completed using RNA-PSP, the selected
sequences from a previous 2DCS selection to identify the
hairpins that bind 60-N-5-hexynoate neamine (15) were
uploaded into RNA-PSP and analyzed. The most signifi-
cant trend identified by RNA-PSP was 50GC30 or 50CG30

steps, with a two-tailed p-value <0.0001. Comparison of
this result to those determined by manual analysis and
computation in the previous study showed that these
two analyses are in agreement. Thus, RNA-PSP produced
complete and accurate results from automated statistical
analysis in seconds compared to the days required for
manual computation. This program is available for down-
load free of charge from the Disney Lab web site (http://
www.nsm.buffalo.edu/Research/rna/).
The RNA-PSP program determined the following

trends in hairpin loops to have the highest statistical
confidence for binding each aminoglycoside: for 5,
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Figure 4. RNA-PSP program used to find and rank trends found within selected mixtures of sequences. (a) File containing complete DNA sequences
with embedded selected hairpins is uploaded into RNA-PSP; (b) The randomized motif is identified within the RNA sequence; (c) Each random
motif is located in the sequencing file, extracted, and stored as a member of Population 1. Each sequence is listed as a combination of A/U/G/C in
order 50 to 30 in the randomized sequence (e.g. CUGGCA); (d) The entire library of all possible motifs is generated and stored as Population 2; (e)
Populations are compared, and statistical Z-scores are calculated for all trends. Trends are then sorted and ranked according to Z-score; (f) Z-scores
are manually converted to two-tailed p-values and statistically significant trends with >95% confidence level are displayed.
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Figure 3. User interface for RNA-PSP. The control panel on the left-hand side of the screen allows control over search parameters including: (i)
ability to define the random motif region by size and type; (ii) ability to define conserved regions in RNAs selected, providing a guide for automated
searching and extracting of all random motif sequences from a file; (iii) automated or manual input of random motif sequences; (iv) ability to display
both positive and negative Z-scores; and (v) ability to save the complete analysis to a text file.
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50UNNNC30 loops (two-tailed p-value <0.0001); for 6,
50UNNC30 loops (two-tailed p-value=0.0006); and for
7, 50UNC30 loops (two-tailed p-value=0.0001). The
second highest statistical confidence was 50UNNG30

loops (two-tailed p-value=0.0071) for 8. In addition
to this sequence analysis, the secondary structures
of each selected RNA hairpin loop were predicted using
the RNAstructure program (29,30). Coupling structure
prediction with statistical analysis showed that there is
no preference for predicted 4- or 6-nucleotide hairpin
loops for any aminoglycoside. A list of all selected
hairpins for each aminoglycoside and more details of the
statistical analysis are available in the Supplementary
Data.

RNA-PSP identifies overlap in RNA space that
correlates with specificity

A cross-analysis was also completed to determine if there
was overlap between statistically significant trends for all
aminoglycosides (Figure 5). This analysis revealed that the
trend 50UNY30 was statistically significant for three of
the aminoglycosides: 6, two-tailed p-value=0.0324; 7,
two-tailed p-value=0.0008; and 8, two-tailed p-value=
0.0028. This trend is not significant for 5 (two-tailed
p-value=0.1425). There are additional trends that

overlap as depicted in Figure 5. Two-tailed p-values for
all statistically significant trends are available in the
Supplementary Data. Comparison of the RNA motifs
that bind compounds 5–7 show that they prefer hairpin
loops that have a U 50 to a C, but the numbers of
bases separating the two nucleotides differ. Unique
trends were identified by comparing the statistically
significant trends for a selected aminoglycoside mixture
with the statistically significant trends identified for the
other aminoglycosides. RNA-PSP identified the following
trends that were the most statistically significant and
unique for binding 6, 7 and 8: for 6, 50CNNA30 and
50ANNC30 loops (two-tailed p-value=0.0444); for 7,
50RNNNNA30 loops (where R is a purine; two-tailed
p-value=0.0285); for 8, 50UNNG30 loops (two-tailed
p-value=0.0071). Although 50UNNNC30 is unique to 5,
there are many similar trends in 6, for example YNNNY
(two-tailed p-value=0.0151) and YNNNC (two-tailed
p-value=0.0160).

Affinities of selected hairpin loop–aminoglycoside
partners

Dissociation constants were measured for the individual
loop–ligand partners that were predicted to bind tightly
and specifically according to the statistical data. This pre-
diction was based on the identification of loops displaying
the most statistically significant trend that was also unique
to the aminoglycoside of interest. In general, the Kd values
observed for the individual hairpins selected for each ami-
noglycoside are consistent with those measured for the
mixtures (Figure 6 and Tables 1 and 2).
For the kanamycin A derivative, 5, binding affinities

were determined for six hairpins that display the most
statistically significant trend, 50UNNNC30 (two-tailed
p-value< 0.0001). Dissociation constants range from 140
to 605 nM (Figure 6), in good agreement with the dissoci-
ation constant of 200 nM for the mixture. Four of the
hairpin loops, Kan HP1, Kan HP3, Kan HP4 and Kan
HP6 have similar affinities and bind mostly tightly to 5.
They also share sequence similarities. For example, in
addition to displaying the 50UNNNC30 consensus trend,
all have U as the first nucleotide in the hairpin loop (not
necessarily the first nucleotide of the sequence). The loop
sequences of Kan HP1 and Kan HP4 are even more simi-
lar: both have the sequence 50UGCRCY30 (where Y is a
pyrimidine). The two loops with the lowest affinities, Kan
HP2 and Kan HP5, have the 50U of the 50UNNNC30

consensus trend as the second nucleotide in predicted
6-nucleotide hairpin loops. Binding of 5-TMR to Kan
HP2 and Kan HP5 is about 4-fold weaker than the hair-
pins that have a U as the first nucleotide in the loop.
Careful examination of Kan HP3, Kan HP4 and Kan

HP6 revealed that they have the potential to form
duplexes or kissing complexes (40). In order to determine
if kissing complexes were formed under the conditions
used in 2DCS and binding affinity measurements, optical
melting experiments were completed. Previous studies
have shown that optical melts of kissing complexes have
two transitions. The transition at the lower temperature is
concentration dependent and represents the dissociation

Figure 5. Venn diagram of the statistically significant trends indentified
in the RNA sequence space selected to bind the four aminoglycoside
derivatives. Overlapping trends are shown in bold. The most statisti-
cally signifcant trend for the kanamycin A derivative, 5, is
50UNNNC30; for the tobramycin derivative, 6, 50UNNC30; for the nea-
mine derivative, 7, 50UNC30; and for the neomcyin B derivative, 8,
50UNNG30.
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Figure 6. The secondary structures of a subset of the RNA hairpin loops that were selected to bind 5, 6, 7 and 8. The nucleotides shown are derived
from the boxed region in 1 (Figure 1). The affinities (in nM) for the respective aminoglycoside are shown below the hairpin structure. Statistical
analysis shows that kanamycin A binds 50UNNNC30 loops (A), tobramycin binds 50UNNC30 loops (B), neamine binds 50UNC30 loops (C), and
neomycin B binds 50UNNG30 loops (D). Nucleotides highlighted in red have the statistically most significant trend for that aminoglycoside.

Table 2. Binding affinities and selectivities of individual hairpin loops selected from 5, 6, 7 and 8

Dissociation constants (nM); selectivitya

Hairpin loop 5-TMR 6-TMR 7-TMR 8-TMR

Selected from 5

Kan HP1 140� 11; — 210� 10; 1.5 >1000b; >7c >1000b; >7c

Kan HP3 170� 111; — 275� 35; 1.6 790� 59; 5 100� 19; 0.6
Kan HP6 210� 5; — 130� 16; 0.6 >1300b; >7c 190� 57; 1

Selected from 6

Tob HP1 250� 102; 8 35� 15; — 635� 200; 19 >2000b; >59c

Tob HP2 >2300b; >10c 235� 118; — >2300b; >10c >1500b; >6c

Tob HP3 >2000b; >18c 100� 13; — >1500b; >15c 200� 69; 2

Selected from 7

Nea HP1 400� 182; 2 260� 67; 1 185� 10; — 205� 27; 1
Nea HP2 220� 148; 1 140� 26; 0.4 375� 158; — 540� 127; 1.4
Nea HP6 390� 134; 1 110� 27; 0.4 265� 36; — >2000b; >8c

Selected from 8

Neo HP3 >2000b; >200c 64� 15; 6 >2000b; >200c 10� 1; —
Neo HP4 >700b; >57c 180� 52; 15 >900b; >72c 12� 4; —
Neo HP5 >1000b; >67c 170� 61; 11 >1200b; >80c 15� 5; —

aSelectivities (given after semicolon) were calculated by dividing the Kd for the other aminoglycoside by the Kd for
the aminoglycoside for which the mixture was selected.
bThese values are the lower limit of the dissociation constant because the binding curves did not reach saturation
at these concentrations.
cThese values represent the lower limit of specificity.
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of the hairpin dimers. The transition at higher temperature
is the melting of the hairpin and is concentration indepen-
dent (40). For both hairpins tested (Kan HP3 and Kan
HP4), there is only a single transition at all concentrations
tested (0.5–8 mM, a 16-fold concentration range). The
melting temperatures are also independent of concentra-
tion. Taken together, these results indicate that Kan HP3
and Kan HP4 fold into hairpin structures that do not form
kissing complexes under conditions used for selections or
determination of binding affinity. It should be noted that
the concentration of 1 used in the 2DCS selection is
25 nM, or 6 pM of each unique hairpin. Data and exper-
imental procedures for optical melting experiments are
available in the Supplementary Data.

The most statistically significant trend identified for
the hairpins that bind 6 is 50UNNC30 (two-tailed
p-value=0.0006). Therefore, six loops with this trend
were further studied (Figure 6). As was also the case for
the RNAs selected to bind 5, the range of dissociation
constants for the individual hairpins selected to bind 6

(35–235 nM) is in good agreement with the dissociation
constant for the mixture (110 nM). Both predicted
4- and 6-nucleotide hairpins were identified (Figure 6),
although there is no statistically significant preference
for either when compared to the percentages of 4- and
6-nucleotide hairpins in the entire library. The sequence
for Tob HP1 appeared twice in the sequencing data.
Interestingly, it is also the highest affinity loop with a Kd

of 35 nM. The other hairpins selected to bind 6-TMR are
3- to 7-fold lower affinity than Tob HP1. In addition to
the most statistically significant trend for 6, 50UNNC30,
some of the individual hairpins also contained the most
statistically significant trend that is also unique for 6, or
50CNNA30 and 50ANNC30 loops. These include Tob HP2,
Tob HP3, Tob HP4 and Tob HP5.

Consistent with the data collected for 5 and 6, the
range of binding affinities for the individual hairpins
selected to bind 7 (185–415 nM) mirrors the dissociation
constant for the mixture (350 nM). The highest affinity
loop for 7, Nea HP1 (Figure 6), displays both the most

statistically significant trend, 50UNC30, and the most sta-
tistically significant unique trend, 50RNNNNA30. This
loop appeared twice in the sequencing data and has a Kd

of 185 nM. There are several other hairpin loops, however,
that have similar affinities including Nea HP3, Nea HP4,
and Nea HP6. This is in contrast to the results with 6 in
which the loop that appeared twice in the sequencing
data was the highest affinity hairpin selected by 3-fold.
Nea HP1, Nea HP3, and Nea HP4 display both the
50UNC30 and 50RNNNNA30 trend perhaps suggesting
that both are required for binding. However, Nea HP6,
which also binds with similar affinity, only contains the
50RNNNNA30trend.
The affinities of some of the individual hairpins selected

to bind the neomycin B derivative, 8, were also
determined. All five hairpins display the most statisti-
cally significant unique trend, 50UNNG30 (Figure 6).
Consistent with the mixture, the affinities of the loops
selected to bind 8 are higher than the other hairpin–
aminoglycoside interactions. The exception is Tob HP1,
which has a similar affinity for 6. As was the case for
the other aminoglycosides, some of the sequences form
predicted 4-nucleotide hairpins. However, there is no cor-
relation between predicted size and affinity as expected
from the statistical analysis. For the 4-nucleotide loops,
there is also no difference in affinity between hairpins in
which the 50UNNG comprises only loop nucleotides and
hairpins in which the 50U or 30G is predicted to form a
base pair.
For comparison, binding affinities were determined for

a hairpin loop not selected to bind any of the arrayed
aminoglycosides (9; Figure 7). Hairpin loop 9 contains
the same stem as the hairpin loop library (1) with a
GAAA tetraloop closed by a CG base pair. As expected,
9 binds much more weakly than the selected hairpins to all
of the aminoglycosides. No change in fluorescence was
observed when up to 2.5 mM of 9 was added to compounds
5-TMR, 6-TMR and 8-TMR. 7-TMR did not reach satur-
able binding up to 2.5 mM of 9, but the fluorescence did
change by �20%.
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To investigate if cassette nucleotides contribute to the
binding affinities of 5–8-TMR, minimized constructs were
designed in which half of the stem and the dangling ends
were deleted (Figure 7). Optical melting experiments were
completed to confirm that mini-Kan HP1, mini-Tob HP1,
mini-Nea-HP1 and mini-Neo HP2 form hairpins. There
is only a single transition at all concentrations tested
(0.5–56mM, 112-fold concentration range), and the melt-
ing temperatures of the four hairpin loops are independent
of concentration. The dissociation constants for all mini-
mized constructs are similar to the dissociation constants
for the hairpins displayed in the original cassette
(1) (Figure 7). The dissociation constant for mini-Neo
HP2 had the largest difference from its parent hairpin
with an �5-fold higher dissociation constant. It has been
shown in previous studies that cassette nucleotides do not
significantly contribute to binding (14,15). Thus, the RNA
motif–ligand pairs of this 2DCS are portable to other
larger RNAs containing similar hairpins.

Selectivity of individual RNA hairpin–aminoglycoside
interactions

As with the mixtures of selected structures, the binding
affinities of some of the individual sequences for all four
arrayed aminoglycosides were measured to determine spe-
cificity. The results are summarized in Table 2. In general,
the selectivities of the individual loops reflect the specifi-
cities of the corresponding mixtures (Table 1).
For the hairpins selected to bind 5, all of the hairpins

bind 5 (the kanamycin A derivative) and 6 (the tobra-
mycin derivative) similarly, which was also observed for
the mixtures. In contrast, the hairpins selected to bind 5
discriminate against 7. For example, Kan HP1 and Kan
HP6 bind at least 7-fold more tightly to 5 than the nea-
mine derivative, and Kan HP3 binds 5-fold more tightly.
Only one of the three hairpins used to gain insight into
selectivity, Kan HP1, binds to 5 more tightly than 8. This
is somewhat surprising since the mixture of hairpins
selected for 5 bind 5-fold more weakly to 8. However,
the lack of specificity of Kan HP3 can be explained by
an overlap in sequence space. It contains the trend for
both 5 (50UNNNC0) and 8 (50UNNG30). Kan HP3 is a
member of the ultrastable UNCG tetraloop family, and
binds all four aminoglycoside derivatives in this study with
sub-micromolar affinities. The dissociation constants for
5, 6, 7 and 8 are 170, 275, 790 and 100 nM, respectively.
The individual hairpins that bind 6 are selective, even

more so than the corresponding mixture. Tob HP1 binds 6
8-fold more tightly than 5; 19-fold more tightly than 7;
and >59-fold more tightly than 8. Tob HP2 is also selec-
tive for 6 by >10-fold over 5 and 7 and by >6-fold over 8.
Tob HP3 shows at least 15-fold selectivity over 5 and 7 but
only binds 2-fold more tightly to 6 than 8. Taken together,
the hairpins selected to bind 6 bind with high affinity
and specificity over both 5 and 7. The selectivity of the
hairpins for 6 over 8 (the neomycin derivative) is variable,
ranging from 2- to >59-fold. However, there was no dif-
ference in the affinity of the mixture selected for the tobra-
mycin derivative between 6 and 8. This suggests overlap
between the RNA space that both ligands prefer that was

present in the mixture but not in the individuals hairpins.
Thus, determining the most statistically significant and
unique trend in the sequencing data allows for compu-
tation to identify the most selective RNA motif–ligand
interactions.

As was the case for the mixture of RNAs selected to
bind 7, the individual hairpins showed very little specificity
for binding. Nea HP1, Nea HP2 and Nea HP6 bind
all four aminoglycosides with the same affinity with one
exception. Although Nea HP6 has the same approximate
affinity for 5, 6, and 7, it binds much more weakly to 8, by
at least 8-fold. This is likely because Nea HP6 only con-
tains a trend unique to 7, 50RNNNNA30 (Figure 5).

The hairpins selected to bind 8 overall have the highest
levels of selectivity, ranging from 6-fold to >200-fold. The
lowest specificities observed were between the 8-selected
hairpins and 6, ranging from 6- to 15-fold. The hairpins
discriminate between 5 and 7 by at least 57-fold. Neo HP3
is able to distinguish between 8 and both 5 and 7 by
>200-fold. A similar trend is observed for Neo HP4
and Neo HP5 which bind >57-fold more weakly to 5
and >72-fold more weakly to 7. The selectivities of the
individual hairpins for 8 over 5 and 7 are similar to
the selectivity of hairpin mixture (Table 1). However, the
selectivity of the individual 8-selected hairpins over the
tobramycin derivative (6) is better than the selectivity
observed for the mixture. The mixture binds 8 only
�5-fold more tightly than 6 while Neo HP4 and Neo
HP5 bind at least 15- and 11-fold more tightly, respec-
tively. Again, this can be explained by the lack of overlap
of the individual sequences: Neo HP4 and Neo HP5 con-
tain the trend unique for 8 (50UNNG30) and do not contain
the most statistically significant trend for 7 (50UNNC30).
Although 50UNNC30 is a statistically significant trend for
8, it is not the most statistically significant one.

DISCUSSION

Comparison to previous aminoglycoside–RNA studies

Previous studies of aminoglycoside–RNA interactions
have investigated validated RNA targets such as the pro-
karyotic A-site RNA (41–44), HIV trans-activation
response element (TAR) RNA (45), rev-responsive ele-
ment (RRE) RNA (46–48), and group I introns (49,50).
Despite these efforts to understand RNA–aminoglycoside
interactions, no general sequence preferences were identi-
fied. In order to identify optimal sites within a large RNA
for binding aminoglycosides and aminoglycoside deriva-
tives, we have probed an aminoglycoside library for bind-
ing libraries of small RNAs that contain internal loops
and hairpin loops (14,15,20).

In this study, RNA space and chemical space were
probed simultaneously to identify aminoglycoside deriva-
tive–RNA hairpin loop partners. In general, the hairpin
loops and internal loops selected to bind 5 are similar in
sequence and affinity. The internal loops selected to bind
5 are pyrimidine-rich (two-tailed p-value of 0.0373). The
consensus hairpin loop sequence for 5 is 50UNNNC30. The
internal loop mixture selected for 5 had a dissociation
constant of 75 nM while the individual loops had Kd
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values between 64 and 250 nM (14). However, the internal
loops are more selective than the hairpins. Selectivities of
the internal loops ranged from 4- to 35-fold with an aver-
age selectivity of 14-fold. A selection of RNAs that bind
kanamycin completed by Goertx et al. also contains the
hairpin consensus sequence selected for binding 5 (51).

Hairpin loops have also been selected to bind a different
kanamycin derivative, 60-N-5-hexynoate kanamycin A
(15). Interestingly, the hairpins selected for this derivative
bind with similar affinities but differ in the consensus
trend—an adenine in position 1 separated by at least 2
nucleotides from a cytosine (two-tailed p-value of
0.0010). Thus, the site of immobilization changes the hair-
pin loop preference for kanamycin derivatives.

The most statistically significant trends identified for
5 and 6 differ by only one nucleotide: 50UNNNC30 and
50UNNC30, respectively. Despite the similarity, the mix-
ture for 6 binds >19-fold more weakly to 5. Therefore, 5
can accommodate the 50UNNC30 trend identified for 6,
but 6 cannot accommodate the 50UNNNC30 trend identi-
fied for 5. This could be due to another trend also present
in hairpins that bind 6: 50CNNA30 and 50ANNC30.

A selection of internal loops that bind the tobramycin
derivative 6 was also completed by 2DCS. The trend
identified for the internal loops was different from the
trend for hairpins—guanine across from guanine (two-
tailed p-value=0.0109). The mixture of selected internal
loops binds 6 similarly with a dissociation constant of
50 nM. As in the case of the hairpin loops reported
herein, the internal loops that bind 6 are most selective
over 5 and 7 (at least 11-fold) and less selective over 8
(5-fold). Tobramycin aptamers have been identified and
contain the most statistically significant trend identified
in these studies (52–54). NMR studies of a tobramycin–
RNA aptamer containing 50UNNC30 showed strong
NOEs between all the rings of the tobramycin aminogly-
coside and the uracil and cytosine nucleotides present in
the hairpin loop (53).

The affinities for the internal loops and hairpins selected
to bind 7 by 2DCS are similar—350 and 200 nM, respec-
tively (14). A trend was identified for 7 and hairpin loops,
50UNC30; however, a trend for internal loops could not be
identified. Many of the internal loops contain an adenine
across from a guanine although it was not statistically
significant. Interestingly, another statistically significant
trend for the hairpins that bind 7 is 50RNNNNA30.
Many of the hairpins selected to bind 7 contain a guanine
in position 1 and an adenine in position 6 (Figures 1 and
6).

Hairpin loops that bind another neamine derivative,
60-N-5-hexynoate neamine, were identified in a previous
study; the privileged hairpin loops contained both 50GC
and 50CG steps (15). In this study, Nea HP6 also contains
this trend and binds with similar affinity to 7 (Figure 6) as
the hairpins identified to bind 60-N-5-hexynoate neamine.
It does not, however, contain the 50UNC30 trend identified
by RNA-PSP. Nea HP6 was also the most selective for 7
as it binds 2-fold more weakly to 6 and >8-fold more
weakly to 8 (Table 2). This is perhaps not surprising
based on the overlap in sequence space of 50UNY30

but not 50RNNNA30 for 7 and 8 (Figures 5 and 6).

As observed with 5, the site of functionalization, and
hence immobilization, tunes the privileged sequence
space for an aminoglycoside derivative.
The hairpin loops selected by 8 bind more tightly than

the internal loops from our previous 2DCS experiment
by �8-fold (14). The privileged hairpin loops have the
sequence 50UNNG30 while the privileged internal loops
have a guanine across from adenine (two-tailed
p-value=0.0019). In general, the individual hairpin
loops and internal loops are specific for 8 with the least
specific interaction for a hairpin due to overlap with 6 and
the least specific interaction for an internal loop due
to overlap with 7.
The structure of a neomycin B aptamer has been solved

(55) and has a similar affinity as the hairpin loops reported
herein. The aptamer forms a GAGA hairpin closed by a
GC pair. Adjacent to the loop closing pair in the stem are
three consecutive GU pairs. Neomycin B forms contacts
with the GU pairs, the GC closing pair, and guanine and
adenine residues in the hairpin loop. The hairpin loop
from this study that is most similar to such an arrange-
ment is Neo HP5.
The data reported herein and from our previous studies

(15,20,56) suggest that it is likely that many loops present
in biological RNAs should bind aminoglycosides with
high affinity. In fact, they should bind preferentially over
the A-site, their known therapeutic target (33). However,
the A-site is not the only binding site for aminoglycosides
even in the ribosome. It has been shown that binding
of aminoglycosides to RNA helix 69 (H69) in the large
subunit prevents ribosome recycling (57). Side effects asso-
ciated with the clinical use of aminoglycoside antibiotics
(58,59) also point to binding of other RNAs or biomole-
cules. It is likely that the ribosomal A-site is the most
occupied target for aminoglycosides in vivo for many rea-
sons: (i) the relative abundance of rRNAs compared to
pre-mRNAs and other non-coding RNAs (60); (ii) the
slower turnover rate of rRNAs compared to other
RNAs (61); and (iii) the potential inaccessibility of some
loops due to formation of tertiary contacts or interactions
with protein.

CONCLUSIONS

These results have identified the privileged RNA hairpins
loops that bind derivatives of four aminoglycosides
(Figure 6). The RNA–ligand interactions bind with nano-
molar affinities and are generally selective for the corres-
sponding aminoglycoside. The combination of 2DCS and
efficient statistical analysis by RNA-PSP streamlines the
identification of RNA–ligand partners. The development
of RNA-PSP has been essential for analysis of sequencing
data to identify unique trends in the loops selected to bind
each aminoglycoside. More importantly, it identified
trends that overlap between aminoglycosides in order to
predict or understand selectivity (Figure 5). RNA-PSP can
be used to analyze any nucleic acid selection and is
available free of charge at the Disney Lab web site
(http://www.nsm.buffalo.edu/Research/rna/). These stu-
dies have the potential to elucidate new RNA targets for
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aminoglycosides and further accelerate the rational design
of drugs that target RNA.
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