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Abstract: In order to reduce the difficulty and risk of operation, decrease the preparation time and
improve the adsorption performance of magnetic nano-silicon adsorbent with core-shell structure,
a carboxylated CoFe2O4@SiO2 was prepared by EDTA-functionalized method using a safe, mild and
simple hydrothermal method. The results show that the prepared material of CoFe2O4@SiO2-EDTA
has a maximum adsorption capacity of 103.3 mg/g for mercury ions (Hg(II)) at pH = 7. The adsorption
process of Hg(II) is a chemical reaction involving chelation and single-layer adsorption, and follows
the pseudo-second-order kinetic and Langmuir adsorption isotherm models. Moreover, the removal
of Hg(II) is a spontaneous and exothermic reaction. The material characterization, before and after
adsorption, shows that CoFe2O4@SiO2-EDTA has excellent recyclability, hydrothermal stability and
fully biodegradable properties. To summarize, it is a potential adsorption material for removing
heavy metals from aqueous solutions in practical applications.
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1. Introduction

Currently, heavy metals, such as mercury, lead and copper, have extensively infiltrated natural
water bodies that are becoming increasingly polluted [1]. Industrial wastewater generated in coal
combustion and other industrial activities poses a threat to human health through bio-enrichment
of aquatic organisms and sewage irrigation [2,3]. Heavy metals are easily accumulated in the food
chain due to their non-degradable properties. Mercury pollution, in particular, is extremely dangerous
because of its persistence, fluidity, high bioaccumulation and uncontrollability [4]. Moreover, it seriously
jeopardizes the ecological environment, as well as human life and health [5]. Therefore, the World
Health Organization (WHO) and the Environmental Protection Agency (EPA) have listed mercury
as one of the most toxic elements of heavy-metal pollution [6]. The limits for mercury ions allowed
in drinking water and surface water discharge standards are 2 and 10 µg/L, respectively. Mercury
pollution is caused by industries, such as the chlor-alkali industry, plastics industry, dye chemicals
industry and electronics industry, as well as activities like amalgamation of alfalfa [7]. Note that mercury
exists in various chemical forms, including elemental mercury (Hg0), methylmercury (CH3Hg+) and
inorganic mercury (Hg(II)) in environment. Therefore, the economic and efficient removal of mercury
from water bodies in environmental field has become a top priority.
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Recently, many studies have focused on the development of effective and inexpensive
methods, such as reduction, precipitation, ion exchange, reverse osmosis, adsorption and membrane
separation [8–11]. Among these methods, the adsorption method has the advantages of high efficiency,
economy, flexibility and easy operation. Moreover, it has been widely used as one of the most effective
techniques for removing heavy metal ions. Furthermore, considerable attention has been focused on
the development of adsorbents such as activated carbon [12], carbon nanotubes [13], ion exchange
resins [14], chitosan [15] and graphene [16]. Among these absorbents, silica gel is a very popular
inorganic porous polymer that has high pore connectivity, large pore volume and high surface area;
therefore, it is one of the potential materials for adsorbing heavy metals [17,18]. The surface of silica
gel contains a large amount of silanol groups (Si–OH) so that various functional groups can be grafted
on it. Note that carboxyl groups (–COOH) is a common functional group that can adsorb mercury
ions (Hg2+) owing to its good coordination with heavy metal ions. Commonly grafted carboxyl
functional groups are obtained using sodium alginate [19], humic acid [20] and atom transfer radical
polymerization by grafting with polyacrylic acid [21,22]. Furthermore, in situ introduction technology
has been used to complete the modification of the carboxyl group [23]. Most carboxyl modification
methods are tedious and complicated. It is typically carried out with toxic, harmful or hazardous
solvents (triethylamine, thionyl chloride, methacrylic acid, etc.) as reaction medium [21]. Moreover,
both the adsorption effect after carboxyl modification and the stability of the synthetic material
are weak. Furthermore, conventional non-magnetic adsorption materials exhibit weak solid–liquid
separation after adsorption, which considerably limits their application in water treatment. To tackle
this limitation, researchers are now focusing on magnetic materials, which are considered to be green
(environmentally friendly) materials.

When the particle diameter (d) is smaller, the specific surface area is higher, which promotes
the diffusion of particles in the solution, therefore, it is preferred to use a small size adsorbent [24].
The preparation of iron-based materials (such as CoFe2O4) in particular is simple and inexpensive,
and it is not necessary to carry out the reaction process under nitrogen environment compared to
the preparation process of MnFe2O4 [25–27] and F3O4 [28]. The number of hydroxyl groups (M–OH)
on the surface of CoFe2O4 (38.1%) was higher than that of Fe3O4 (25.4%). the amount of M–OH has
an important influence on the performance of the adsorbent, and the material can easy be modified
with the more M–OH and CoFe2O4 (46.99 emu/g) has stronger magnetic properties than MnFe2O4

(32.0 emu/g) [29]. Moreover, most importantly, magnetic adsorbents are easily separated from water
under the action of an external magnetic field.

CoFe2O4 also has disadvantages that cannot be overcome by itself, such as low toxicity, corrosion
under acidic conditions, etc., and it is generally possible to improve its acid resistance and solve the
problem of low toxicity by forming a silica layer. In this study, a magnetic core of CoFe2O4 was
used as adsorbent carrier, which was coated with silica to form a magnetic matrix material with a
core-shell structure (CoFe2O4@SiO2) [30,31]. The combination of magnetic material in a silica shell
not only improves the specific surface area of the adsorbent material, but also enhances the acid
resistance of the magnetic nanomaterial. Simultaneously, to improve the above-mentioned defect
of carboxyl modification, ethylene diaminetetraacetic acid dianhydride (EDTA) was employed as
a chelating agent to introduce oxygen-containing functional groups. EDTA, which has a strong
stabilizing effect, excellent reproducibility and fully biodegradable properties, forms a very strong
complex with metal ions [32]. EDTA is used to bind metal ions in the practice of chelation therapy,
for example, for treating mercury and lead poisoning [33]. Compared to general carboxyl materials,
EDTA has additional carboxyl groups, and the adsorption effect of chelation is better than that of
traditional chemical. Moreover, the method used here has the advantages of reducing the solvent’s
toxicity, improving the safety of the experiment and controlling the reaction at room temperature
and pressure conditions, thus considerably improving the grafting rate and simplifying the reaction
conditions. Finally, the adsorbent of CoFe2O4@SiO2 modified by EDTA (CoFe2O4@SiO2-EDTA) was
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used to remove mercury ion (Hg(II)) from an aqueous solution. Finally, the adsorption kinetics,
thermodynamics, regeneration and mechanism were all examined.

2. Materials and Methods

2.1. Materials

Ethylene glycol (GC, >99 wt%) was purchased from Aladdin (China). Cobalt chloride
(CoCl2·6H2O), iron acetylacetonate, polyethylene glycol, ammonia water (25–28 wt%), tetraethyl silicate
(98 wt%), 3-aminopropyltriethoxysilane (APTES) and ferric chloride hexahydrate were purchased from
Macleans (China). Ethylene diaminetetraacetic acid dianhydride (EDTA anhydride), absolute ethanol
(C2H5OH), acetic acid (CH3COOH), hydrochloric acid (HCl), sodium hydroxide (NaOH) and nitric
acid (HNO3) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). These
reagents were all analytical reagents.

2.2. Preparation of CoFe2O4@SiO2

CoFe2O4 was prepared using hydrothermal synthesis. Briefly, 2.379 g of CoCl2·6H2O, 7.0634 g of
Fe(acac)3, 2.0 g of polyethylene glycol and 8.679 g of CH3COONa were mixed in 120 mL of ethylene
glycol and continuously stirred in a water bath at 313 K for 30 min. Then, the reaction was kept at
473 K for 16 h. The material was washed with ethanol and pure water and dried at 333 K. Next, 1.0 g of
the as-prepared CoFe2O4 was poured into pure water and sonicated for 20 min. The magnetic solution
was continued to be stirred for 30 min and heated to 353 K in a water bath. Subsequently, 2 mL of
ammonia water and 2 mL of tetraethyl orthosilicate (TEOS) were added and then the reaction was
executed at 353 K for 3 h. Finally, the solution was magnetically separated, washed with pure water,
and dried at 333 K.

2.3. Preparation of CoFe2O4@SiO2-EDTA

A total of 0.6 g of the as-prepared CoFe2O4@SiO2 was added into a 150 mL solution of ethanol
and pure water (4:1) at 313 K for 0.5 h. Then 2 mL of ammonia water was added to adjust the pH to 9,
and then 2 mL of TEOS was slowly added. After 1 h, 2 mL APTES was slowly added and the mixture
was continued stirring for 8 h. The solution was then magnetically separated, washed with pure water
and dried at 333 K. In this method, CoFe2O4@SiO2-NH2 was successfully prepared. Then, the amino
group bounded to the surface of the silica was reacted with 9 mmol of EDTA anhydride in 160 mL of
ethanol and acetic acid (1:1) at 343 K for 16 h. Then the magnetic separation material was washed with
pure water and dried it at 333 K to obtain CoFe2O4@SiO2-EDTA. Please see the synthesized schematic
diagram of CoFe2O4@SiO2-EDTA in Figure 1.

2.4. Sample Characterization

The appearance, structure and size of the material were characterized using transmission electron
microscopy (TEM, Tecnai G2 F30, Hillsboro, OR, USA) and scanning electron microscopy (SEM,
ZEISS-SUPRA 55, Jeona, Germany). X-ray diffraction (XRD, D8 Advance, Bruker, Karlsruhe, Germany)
was used to analyse the crystal structure of the material. The functional groups in the material were
characterized using Fourier transform infrared spectroscopy (FT-IR, Nicolet 6700, Thermo Scientific,
Waltham, MA, USA). The magnetic strength was measured using a vibrating sample magnetometer
(VSM, PPMS-9, Quantum Design, San Diego, CA, USA). The specific surface area (BET) was obtained
using an N2 adsorption-desorption apparatus (Autosorb-IQ2-MP, Quantachrome, Boynton Beach,
FL, USA). Finally, using X-ray photoelectron spectroscopy (XPS, Escalab 250xi, Thermo Scientific),
the binding energy of the elements contained in the materials was obtained.
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2.5. Batch Adsorption Experiments

Before each experiment, to prevent the hydrolysis of mercury ions, 0.1 mL of HCl and 10 mL of
HNO3 in 1000 mL pure water was used as a protective solution. A certain amount of HgCl2 was added to
the protective solution to obtain a 1000 mg/L mercury stock solution. The effect of CoFe2O4@SiO2-EDTA
on the adsorption of the mercury solution was studied at different pH levels. 0.01 g of the adsorbent
was added into an Erlenmeyer flask containing 100 mL Hg(II) solution (C0 = 20 mg/L), and then the pH
was adjusted to 2–7 using 0.1 mol/L HCl and 0.1 mol/L NaOH [34]. After shaking for 12 h, the mixture
was filtered through a 0.45 µm filter and analyzed by a cold atomic absorption spectrophotometry.
All experiments were performed in triplicate and then averaged. The kinetic adsorption experiment
was carried out under the conditions of initial concentration C0 = 20 mg/L, pH = 7, and temperature
(T) of 298 K with an adsorbent amount of 0.01 g. The contact times were 1, 3, 6, 10, 15, 30, 45, 60, 90,
120, 150, 180, 210, 240, 270, 300 and 360 min. Thermodynamic adsorption experiments were carried out
at 298, 308 and 318 K with an adsorbent amount of 0.01 g, pH = 7 and C0 of 10, 20, 30, 40 and 50 mg/g.
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Figure 1. Synthesized schematic diagram of CoFe2O4@SiO2-EDTA in this experiment. 
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Figure 1. Synthesized schematic diagram of CoFe2O4@SiO2-EDTA in this experiment.

3. Results and Discussion

3.1. Characterizations

From the SEM and TEM images (Figures 2 and 3), it can be known that the adsorbents of CoFe2O4,
CoFe2O4@SiO2 and CoFe2O4@SiO2-EDTA have the diameters of about 50–90, 90–130 and 110–200 nm.
In Figure 2a, CoFe2O4 nanomaterial is irregular, and its diameter is smaller than that of CoFe2O4@SiO2

in Figure 2b. The SEM image clearly shows that the surface of CoFe2O4@SiO2 is smoother than that of
CoFe2O4, which indicates that SiO2 is successfully supported on the surface of CoFe2O4.

After the material was modified by EDTA, its dispersibility was greatly improved with the material
becoming noticeably fluffy, as shown in Figure 2c. In the TEM image of Figure 2d, Black magnetic
is covered by outer silicon dioxide. Moreover, the transparent polymer coated with SiO2 and has a
distinct core-shell structure. The energy dispersive spectrometer (EDS) mapping technology was used
to analyse the elements contained in the material. Figure 3 shows the images of various elements in
the material of CoFe2O4@SiO2-EDTA. From the image, not only the elements of Co and Fe are evenly
distributed on the surface of the material, but also the other four elements of C, N, O and Si appear
correspondingly and are evenly distributed, which confirms that the EDTA is successfully loaded onto
the particles of the magnetic nanomaterial CoFe2O4@SiO2.
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Figure 4a shows the XRD patterns of the prepared materials CoFe2O4, CoFe2O4@SiO2 and
CoFe2O4@SiO2-EDTA, revealing their microcrystalline structure. The peak characteristics in the
XRD pattern of CoFe2O4 are consistent with the JCPDS file (22-1086) [35]. Moreover, the diffraction
peaks in the CoFe2O4@SiO2 and CoFe2O4@SiO2-EDTA are similar to those of CoFe2O4 and no other
peaks are observed, indicating that the crystal structure in the material is either silicon-coated or
carboxyl-functionalized. The functional groups and chemical bonds in the material were analyzed
using FT-IR spectroscopy. According to Figure 4b, the broad peaks at 3472 and 1612 cm−1 correspond
to the –OH stretching vibration peaks in the water molecules on the surface of the material [36].
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Figure 2. Scanning electron microscopy (SEM) images of CoFe2O4 (a), CoFe2O4@SiO2 (b), and
CoFe2O4@SiO2-EDTA (c); transmission electron microscopy (TEM) image of CoFe2O4@SiO2-EDTA (d).

In the CoFe2O4@SiO2 and CoFe2O4@SiO2-EDTA spectra, a new broad absorption peak at 1092
cm−1 is the stretching vibration peak of Si–O–Si [4], indicating that silica has been successfully coated on
CoFe2O4. In the CoFe2O4@SiO2-EDTA spectrum, there is no common carboxyl peak at 1732 cm−1, but
a new absorption peak appears at 1405 cm−1 [37]. This peak may be caused by EDTA modification of
–COO− and symmetrical stretching vibration of C–O in the group [38]. The newly emerging absorption
peak at 1623 cm−1 may be attributed to the presence of an amide bond [39]. The results indicate that
EDTA has been successfully grafted onto silica surface.
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Figure 3. SEM image of CoFe2O4@SiO2-EDTA (a); EDS mappings of C (b), N (c), O (d), Co (e), Si (f)
and Fe (g) of CoFe2O4@SiO2-EDTA.
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Figure 5 shows the hysteresis loops of the three materials. The saturation magnetizations of
CoFe2O4, CoFe2O4@SiO2 and CoFe2O4@SiO2-EDTA are 58.94, 11.94 and 7.65 emu/g, respectively.
CoFe2O4 shows typical super-paramagnetism. After coated by SiO2, the magnetic property of
CoFe2O4@SiO2 is obviously weakened due to the existence of silicon shell. After modified by
EDTA, the thickness of the surface organic portion of CoFe2O4@SiO2-EDTA increases, forming a
non-magnetic carboxylic acid functional layer. Although the magnetic properties are significantly
reduced, the magnetic material can still be easily separated from aqueous solution. Note that the
synthesis of the magnetic materials facilitates solid–liquid separation, making the entire adsorption
process more convenient.
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Figure 5. Vibrating sample magnetometer (VSM) of CoFe2O4, CoFe2O4@SiO2 and
CoFe2O4@SiO2-EDTA.

N2 desorption-desorption measurement was used to investigate the structural properties and
specific surface area (BET). Figure 6 shows the adsorption-desorption isotherm curves for the three
materials. The adsorption data are listed in Table 1. The BET value of CoFe2O4 decreases after the
loading of the silicon shell, possibly due to the dense silica coating, resulted in a decrease of the BET
value. After the modification of EDTA with the TEOS added as an active agent, the BET value slightly
decreases, probably because the functionalized groups and some extra silica occupy the surface. Due to
the extra fluffy silica on the surface, the pore size increases slightly (from 7.73 to 13.02 nm).
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From the XPS spectrum of Figure 7a, the peaks of Co 2p, Fe 2p and O 1s in CoFe2O4, can be
observed, and the Si 2p peak appears in the modified materials of CoFe2O4@SiO2 and CoFe2O4@SiO2.
The photoelectrons of N 1s and C 1s can be attributed to the peaks that occur after EDTA-modified
grafting. Moreover, high-resolution scanning of Co 2p, Fe 2p, Si 2p, N 1s, O 1s, and C 1s in the
material is sequentially performed. The peaks of Co 2p3/2 at 780.2 and 782.0 eV are shown in Figure 7b,
along with the bond energy of Co 2p1/2 at 796.5 eV with satellite characteristics at 786.5 and 803.4
eV, respectively.
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Table 1. N2 adsorption desorption isothermal data of the as-prepared materials.

Samples BET Values (m2/g) Total Pore Volumes (cm3/g) Pore Diameters (nm)

CoFe2O4 91.85 0.176 7.67
CoFe2O4@SiO2 83.02 0.160 7.73

CoFe2O4@SiO2-EDTA 20.09 0.065 13.02

Note that the peak at 796.5 eV is attributed to Co3+ oxide [40]. The primary peak of Fe 2p in
Figure 7c at 711.0 eV is attributed to Fe3+, whereas that at 724.3 eV belongs to Fe2+ [41]. Figure 7d
shows the change of Si before and after modification with EDTA. The peak of Si 2p appears at 103.2 eV
before modification and at 102.3 eV after modification. The significant decrease of the Si 2p peak after
modification can be explained by the successful grafting of EDTA. Figure 7e shows a scan of N 1s with
binding energies of C–N and N–H in the N element at 400.9 and 398.9 eV, respectively.

Figure 7f shows a high-resolution scan of O 1s, which contains four different binding energy
values: 532.4 and 531.9 eV correspond to carbon-based O–C=O and Si–O/C–O [42], respectively,
whereas 531.3 eV corresponds to the surface hydroxyl group O–H, and 530.4 eV corresponds to
Co–O/Fe–O [40,43]. In the C 1s scan of Figure 7g, the four different binding energy values observed at
283.5, 284.2, 285.2 and 287.5 eV correspond to C in C–Si, C–H, C–C/C–N and O–C=O, respectively. Thus,
through XPS characterization, SiO2 is supported onto CoFe2O4 and EDTA is successfully grafted [44].

As shown in Figure 8, the equipotential (pHiep) of the adsorbent is ~3.6; therefore, the material’s
surface is negatively charged at pH ≥ 3.6. According to the experimental results, the maximum
adsorption capacity of CoFe2O4@SiO2-EDTA at pH 7 is closely related to the electrostatic interaction
between the surface negative charge and the Hg2+ cation. When pH is lower than pHiep, the decrease
in the adsorption capacity of CoFe2O4@SiO2-EDTA can be attributed to the positive charge on the
surface of the material and the repulsive force between Hg2+ and the adsorbent.
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Figure 7. X-ray photoelectron spectroscopy (XPS) survey scan of (a) CoFe2O4, CoFe2O4@SiO2 and
CoFe2O4@SiO2-EDTA; high-resolution scan of Co 2p (b), Fe 2p (c), Si 2p (d), N 1s (e), O 1s (f) and C
1s (g).
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3.2. Adsorption Performance

3.2.1. Effect of EDTA Addition Amount

Generally, the amounts of EDTA and the added intermediate crosslinking agent of APTES
significantly affect the material properties (Figure 9). The adsorption amount of CoFe2O4@SiO2-EDTA
increases with increasing amounts of these additives. When the EDTA amount is 9 mmol, the adsorbent
has a maximum adsorption capacity of qe of 103.3 mg/g. However, when the amount is less than
9 mmol, then the active site of the functional group remains on the surface of CoFe2O4@SiO2 so that
the adsorption amount is reduced. Furthermore, when the amount added is greater than 9 mmol, the
excess amount of EDTA will self-condense in the material, resulting in the coverage of the active groups,
whereby the grafting ratio is lowered and the adsorption is decreased. Therefore, for subsequent
experiments, EDTA amount of 9 mmol was selected for the subsequent study.
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3.2.2. Effect of pH

As an important factor in adsorption, pH value directly affects the surface charge of the adsorbent
surface, the existence morphology of heavy metal mercury ions and the stability of the interaction
between the functional groups and the mercury ions. According to the data presented in Figure 10,
with increasing pH value, the adsorption capacity for mercury ions with CoFe2O4@SiO2 is always low,
but that of CoFe2O4@SiO2-EDTA quickly increases. At pH of 7, CoFe2O4@SiO2-EDTA has a maximum
capacity of 103.3 mg/g for Hg(II). When the pH is alkaline, there is no need for detection because
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the carboxylic acid in EDTA is neutralized under alkaline conditions, and the adsorption capacity is
considerably affected. Furthermore, a high pH value is not conducive for practical applications. At low
pH, the solution contains a large amount of H+, the EDTA functional group is completely protonated
and electrostatic repulsion occurs with the mercury ion, and EDTA exists in the form of –COOH while
there is shortage of coordination sites, which weakens the complexation between functional groups
and Hg2+, and leads to low adsorption capacity.
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As pH value is increased, the H+ in the carboxylic acid gradually dissociates from the functional
group, Until the EDTA functional group is completely deprotonated and exists in the form of –COO−,
and the competitiveness of H+ becomes weaker as its concentration decreases, thereby enhancing the
affinity of adsorbent towards Hg2+. Thus, the adsorption of Hg(II) by CoFe2O4@SiO2-EDTA is mainly
through ion exchange and chelation [45].

3.2.3. Effect of Dosage

As shown in Figure 11, the effect of adsorption capacity of mercury ions was researched with
different dosage of CoFe2O4@SiO2-EDTA under the same conditions. As the dosage is increased, the
adsorption capacity for Hg(II) is rapidly decreased, and the adsorption efficiency is rapidly increased.
Thus, the increase of dosage provides more active sites for the combination of –COOH and Hg(II),
resulting in a high removal rate. However, the effective utilization between the material and Hg(II) is
reduced, thereby decreasing the adsorption capacity.
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Figure 11. Effects of dosage with CoFe2O4@SiO2-EDTA as adsorbent (pH = 7, C0 = 20 mg/L, t = 6 h,
T = 298 K).

3.3. Adsorption Kinetics

Figure 12a shows the adsorption curve of Hg(II) as a function of time. Rapid adsorption occurs
in the first 30 min, and the adsorption capacity reaches 92.63 mg/g. The –COOH groups in the
CoFe2O4@SiO2-EDTA provides rich active sites, thus leading to the complexation and rapid interaction
of Hg(II) in the first 30 min [46]. Then adsorption begins to increase slowly and approaches maximum
at 360 min with a capacity of 103.13 mg/g, owing to the presence of a large number of –COOH groups.
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Figure 12. Kinetics of qt vs. t (a), pseudo-first-order (b), pseudo-second-order (c), and intra-particle
diffusion models (d).
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To explore the adsorption behavior of CoFe2O4@SiO2-EDTA in detail, three types of kinetic models
were used to fit the experimental data, including a pseudo-first-order kinetic model (Equation (1)),
pseudo-second-order kinetic model (Equation (2)) and intra-particle diffusion model (Equation (3)):

ln = (qe − qt) = ln qe − k1t (1)

t
qt

=
1

qe2k2
+

t
qe

(2)

qt = kdt0.5 + C (3)

where qe (mg/g) is the equilibrium adsorption capacity; qt (mg/g) is the adsorption capacity at time t
(min); k1 and k2 are the adsorption rate constants; kd is the intraparticle diffusion rate constant and C
(mg/g) is the boundary layer thickness.

Based on the fitting results of the above three kinetic models and Table 2, from the linear fitting in
Figure 12b,c, the regression coefficient of the pseudo-first-order model (R2 = 0.925) is less than that
of the pseudo-second-order model (R2 = 0.999). From the pseudo-first-order fitting diagram, it can
be observed that the distributions of points are scattered and the fitting is poor. Kinetic adsorption
is not accounted for in the pseudo-first-order model. However, in the pseudo-second-order model,
the fitting is extremely high [47]. Moreover, the fitting value of qe,cal (103.62 mg/g) is closer to the
experimental value of qe,exp (103.13 mg/g). Thus, it can be concluded that the adsorption of Hg(II) in
an aqueous solution with CoFe2O4@SiO2-EDTA can be explained by the pseudo-second-order kinetic
model, and the adsorption process is subjected to chemisorption [45]. This behavior refers to the
complexation between the adsorbent and mercury ions and forms a chemical bond during the process
of adsorption [48].

Table 2. Adsorption kinetic parameters.

Pseudo-First-Order Pseudo-Second-Order

qe,exp qe,cal k1 R2 qe,cal k2 R2

103.13 29.80 0.013 0.925 103.62 0.009 0.999

Intra-Particle Diffusion

kd1 C1 R2 kd2 C2 R2

11.507 35.89 0.963 0.807 88.77 0.962

Figure 12d shows a fitting plot of the intra-particle diffusion model. The adsorption process is
divided into two stages. The first-stage is large pore diffusion, corresponding to fast adsorption and
high kd1 values. Finally, the second stage is equilibrium adsorption, corresponding to low adsorption
rates and kd2 values. However, in the linear fitting, the straight line does not pass through the origin,
indicating that intra-particle diffusion is not the only factor affecting the adsorption rate of mercury.

3.4. Adsorption Isotherms

Figure 13a shows the adsorption of mercury ions in an aqueous solution with the adsorbent
CoFe2O4@SiO2-EDTA at different temperatures. According to the above data, the material has an
optimal adsorption effect at 298 K and pH of 7. As the temperature increases, the adsorption curve
gradually decreases, indicating that the material is more suitable for using under room temperature
conditions. Note that the adsorption isotherm is important for optimizing the using of the adsorbent,
as it can be used to evaluate the adsorption capacity of the adsorbent and describe how the adsorbent
interacts with the adsorbates.
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The Langmuir isotherm model (Equation (4)), Freundlich isotherm model (Equation (5)), Temkin
isotherm model (Equation (6)) and Dubinin–Radushkevich isotherm model (Equations (7)–(9)) can be
obtained using the following equations:

Ce

qe
=

Ce

Qm
+

1
QmKL

(4)

ln qe = ln KF =
1
n

ln Ce (5)
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qe =
RT
bT

ln KTCe (6)

ln qe = ln qm − βε
2 (7)

ε = RT ln(1 +
1

Ce
) (8)

E =
1√
2β

(9)

where Qm (mg/g) is the saturated adsorption capacity; Ce (mg/L) is the equilibrium concentration; KL
(L/mg) is the Langmuir adsorption equilibrium constant; KF and KT are all constants. R is the gas
constant (8.314 J/mol/K); T (K) is the temperature, ε is the Polanyi potential energy and β is a constant
related to average adsorption energy E (kJ/mol). The separation constant RL can be used to describe
the adsorption characteristics of the Langmuir adsorption isotherm model using Equation (10).

RL =
1

1 + KLC0
(10)

where RL is a separation constant, which is dimensionless, and C0 (mg/L) is the initial concentration.
The fitting maps for the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isothermal

models are shown in Figure 13b–e, and the corresponding data are shown in Table 3. According to
the fitting data, the three R2 of the Langmuir model are higher than those of the Freundlich model
under different temperatures, indicating that the adsorption process is a single molecule adsorption
process [34]. Therefore, the adsorbent exhibits a chemisorption behavior [49]. This conclusion is
consistent with the kinetic model. From Table 3, it can be observed that the maximum adsorption
capacities of the materials fitted by the Langmuir isothermal model are 143.85, 138.12 and 111.23 mg/g,
respectively, when the temperature is 298, 308 and 318 K. Therefore, as the temperature increases,
the adsorption capacity gradually decreases.

Table 3. Adsorption isotherm model parameters.

T (K)
Langmuir Model Freundlich Model

Qm (mg/g) KL (L/mg) R2 RL 1/n KF R2

298 142.85 0.2811 0.999 0.066 0.258 54.04 0.957
308 138.12 0.2491 0.996 0.074 0.256 51.39 0.968
318 111.23 0.2454 0.998 0.075 0.258 41.01 0.903

T (K)
Temkin Model Dubinin–Radushkevich Model

bT KT R2 Qmax (mg/g) E (KJ/mol) R2

298 98.95 5.65 0.986 122.48 20.55 0.911
308 106.83 5.37 0.989 116.56 20.47 0.892
318 133.38 4.71 0.943 97.06 16.53 0.963

Moreover, the value of RL is between 0 and 1, which indicates that the divalent mercury ions are
easily adsorbed by the material. In the Freundlich isotherm model, the 1/n values are also between 0
and 1, indicating that the adsorption process is proceeding in a favourable direction. The relatively
high R2 values and the KT values in the Temkin isotherm model at three temperatures indicate a strong
interaction between CoFe2O4@SiO2-EDTA and mercury ions; while the increasing bT values with the
rising temperature indicate that the adsorption capacity is gradually decreasing. The result confirms
that the high temperature does not favour the reaction.

In the Dubinin–Radushkevich model, when the value of the mean free energy E < 8 kJ/mol,
the reaction belongs to physical adsorption; however, when the values of E is between 8 and 16 kJ/mol,
ion exchange takes place [50], and the chemisorption mechanism is functioning when the values of E is
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exceeds 16 kJ/mol. As the average free energy E of the three adsorbents is over 16 kJ/mol, chemisorption
is involved in the adsorption process, which is consistent with the abovementioned conclusions.

As shown in Table 4, CoFe2O4@SiO2-EDTA had a smaller specific surface area and a higher
adsorption capacity, which is better than most adsorbents.

Table 4. Comparison of adsorption capacities for Hg(II) onto different absorbents.

Adsorbents BET (m2/g) pH Fitting Models Qm (mg/g) Ref.

M-ATP 116.56 4 Langmuir 90.0 [51]
Cys-d-FeOOH 34 7 Langmuir 35.0 [52]

MPTS-CNTs/Fe3O4 97 6 Langmuir 65.5 [53]
Bi2O4/ZnO – 7 Langmuir 60.0 [54]
M. pyrifera – 5 Langmuir 80.0 [55]

o-benzenedithiol-modified cellulose – 6 Langmuir 86.0 [56]
CoFe2O4@SiO2-EDTA 20.09 7 Langmuir 103.3 This work

3.5. Thermodynamics

The nature and mechanism of the adsorption process can be analyzed by thermodynamics.
The standard Gibbs free energy (∆G0, kJ/mol), enthalpy change (∆H0, kJ/mol) and entropy change
(∆S0, kJ/mol/K) are represented by Equations (11) and (12).

∆G0 = −RT ln Kd (11)

ln Kd =
∆S0

R
−

∆H0

RT
(12)

where Kd is equilibrium constant.
From thermodynamic fitting of Figure 14 and the thermodynamic fitting parameters of Table 5,

the ∆H0 values are negative at three different mercury ion concentrations, indicating that the process
of adsorbing Hg2+ by CoFe2O4@SiO2-EDTA is exothermic. All of the ∆S0 are negative, indicating that
the order of the solid–liquid interface increases during the process of adsorption [36], ∆G0 are also
negative, indicating a spontaneous adsorption. As temperature increases, ∆G0 gradually decreases,
indicating that high temperature is not conducive to the progress of the adsorption process. Based
on the fitting results and data, the adsorption of mercury ions by the CoFe2O4@SiO2-EDTA is a
spontaneous exothermic reaction.Nanomaterials 2019, 9, x FOR PEER REVIEW 17 of 23 
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Table 5. Adsorption kinetic parameters.

C0 (mg/L) ∆H0 (KJ/mol) ∆S0 (J/mol/K)
∆G0 (KJ/mol)

298 K 308 K 318 K

20 −13.83 −26.61 −5.814 −5.691 −5.270
30 −15.89 −37.42 −4.678 −4.495 −3.921
40 −19.98 −33.75 −3.826 −3.787 −3.138

3.6. Reusability

To examine the potential ability of CoFe2O4@SiO2-EDTA in practical applications, the regeneration
of the adsorbent was evaluated by repeatedly treating CoFe2O4@SiO2-EDTA-Hg with 0.1 mol/L HCl
as a regenerant [45]. The mixture is stirred for 4 h under acidic conditions. Figure 15 shows that
the adsorption capacity of the material decreases after each regeneration cycle. After three cycles,
>90% of the adsorbed Hg(II) still remains; the adsorption capacity decreases by ~14.5% after five
cycles, which was a favourable result. Thus, the regeneration studies show that the adsorbent of
CoFe2O4@SiO2-EDTA has a good potential application in actual water treatment [34].
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3.7. Mechanism Speculation

To study the adsorption mechanism of CoFe2O4@SiO2-EDTA towards Hg(II) and analysis was
carried out by using XPS technology. It can be seen from Figure 16a, a new peak of Hg appears after
adsorption. The peaks of Hg 4f 5/2 at 104.2 eV and of Hg 4f 7/2 at 100.2 eV (Figure 16b) are attributed to
the adsorbed HgCl2 [57]. It clearly shows that Hg is successfully adsorbed by CoFe2O4@SiO2-EDTA.
In Figure 16c, the O–C=O and C–N/C–C are transferred to 285.5 and 287.8 eV, respectively, compared
to the spectrum before adsorption [44]. The reason is the formation of coordination bonds between the
carboxylic acid and Hg(II) on the surface of the material. Therefore, XPS spectra indirectly confirmed
that a stable complex was formed by chelation between CoFe2O4@SiO2-EDTA and mercury ions during
the process of adsorption.

Compared the morphology of the different types of Hg(II) in aqueous solution and the binding
sites that can be utilized, it can be observed that the adsorption effect is not very different. When
the solution contains Cl−, the form of Hg(II) in the solution, such as HgCl2, HgCl+ and Hg(OH)2,
changes with pH value [16]. Under strongly acidic conditions, the surface of the adsorbent is negatively
charged, and the EDTA functional group on the surface of the adsorbent is protonated, which limits
carboxyl binding to Hg2+.

However, the surface of the adsorbent is positively charged with the increase of pH, and the
presence of EDTA exhibits a strong chelating ability to metal ions. Mercury ions in the solution
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gradually form hydroxy mercury (HgOH and Hg(OH)2) [58] and interaction with the adsorbent occurs,
there is no static repulsion, and the adsorption effect quickly reaches the maximum value.

Nanomaterials 2019, 9, x FOR PEER REVIEW 18 of 23 

 

Compared the morphology of the different types of Hg(II) in aqueous solution and the binding 

sites that can be utilized, it can be observed that the adsorption effect is not very different. When the 

solution contains Cl−, the form of Hg(II) in the solution, such as HgCl2, HgCl+ and Hg(OH)2, changes 

with pH value [16]. Under strongly acidic conditions, the surface of the adsorbent is negatively 

charged, and the EDTA functional group on the surface of the adsorbent is protonated, which limits 

carboxyl binding to Hg2+. 

However, the surface of the adsorbent is positively charged with the increase of pH, and the 

presence of EDTA exhibits a strong chelating ability to metal ions. Mercury ions in the solution 

gradually form hydroxy mercury (HgOH and Hg(OH)2) [58] and interaction with the adsorbent 

occurs, there is no static repulsion, and the adsorption effect quickly reaches the maximum value. 

1000 800 600 400 200 0

CoFe2O4@SiO2-EDTA-Hg 

Binding energy (eV)

(a) CoFe2O4@SiO2-EDTA 

S
i 

2
p

C
 1

s

N
 1

s
H

g
 4

d
5

/2

H
g

 4
f

H
g

 4
d

7
/2

O
 1

s

 

110 105 100 95

104.2 (Hg 4f5/2)

102.4 (Si 2p)

100.2 (Hg 4f7/2)

(b) Hg 4f

Binding energy (eV)  

292 290 288 286 284 282

After

Before

287.8

285.5

287.5

285.2(c) C 1s

Binding energy (eV)  

Figure 16. XPS spectra of survey scan of (a) and high-resolution scan of Hg 4f (b) and C 1s (c). 

The adsorption mechanism of mercury by CoFe2O4@SiO2-EDTA is shown in Figure 17. A 

complex with cyclic structure is formed from the central COO− ions and the N-based ligand under 

the chelation. During the process of adsorption, there are two situations in Figure 17. By EDTA-

functionalized, the adsorbent forms a symmetric ligand or contain a free carboxyl group. Under these 

conditions, a stable complex is often formed by H2O and another bond, but H2O is usually replaced 

by an imine group on CoFe2O4@SiO2-EDTA to form a more stable six-position complex [34,37]. 

Understanding the complex mechanisms in the adsorption process requires collecting data to 

determine rates, steps and related parameters. Here, the removal of Hg(II) by CoFe2O4@SiO2-EDTA 

is evaluated considering different adsorption kinetics and adsorption isotherm models. The 

adsorption process of metal ions can be divided into two steps [58]. 

The first process involves the adsorption of Hg ions to the active sites on the surface of the 

material through functional groups, during which physical or chemical adsorption occurs. The 

experimental data show excellent adaptation in the pseudo-second-order kinetic and the Langmuir 

Figure 16. XPS spectra of survey scan of (a) and high-resolution scan of Hg 4f (b) and C 1s (c).

The adsorption mechanism of mercury by CoFe2O4@SiO2-EDTA is shown in Figure 17. A complex
with cyclic structure is formed from the central COO− ions and the N-based ligand under the chelation.
During the process of adsorption, there are two situations in Figure 17. By EDTA-functionalized,
the adsorbent forms a symmetric ligand or contain a free carboxyl group. Under these conditions,
a stable complex is often formed by H2O and another bond, but H2O is usually replaced by an imine
group on CoFe2O4@SiO2-EDTA to form a more stable six-position complex [34,37]. Understanding the
complex mechanisms in the adsorption process requires collecting data to determine rates, steps and
related parameters. Here, the removal of Hg(II) by CoFe2O4@SiO2-EDTA is evaluated considering
different adsorption kinetics and adsorption isotherm models. The adsorption process of metal ions
can be divided into two steps [58].

The first process involves the adsorption of Hg ions to the active sites on the surface of the material
through functional groups, during which physical or chemical adsorption occurs. The experimental data
show excellent adaptation in the pseudo-second-order kinetic and the Langmuir isotherm models [59].
The homogeneous active site on the adsorbent CoFe2O4@SiO2-EDTA is a single molecule adsorption
process for mercury ions. Therefore, chemical adsorption is the driving force in the rate-control step of
the adsorption process. Moreover, the value of the mean free energy E in the Dubinin–Radushkevich
isothermal model confirms this. Furthermore, this illustrates the complexation between the metal ions
and the active sites on the adsorbent during the process of adsorption. A stable complex is formed
by chelation between a carboxylic acid and Hg2+. To further understand the adsorption mechanism,
the FT-IR spectra after adsorption show that the tensile vibration at 1646 cm−1 is lost. The result
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indicates that the carbonyl group of EDTA interacts with Hg(II). It can be seen from Figure 18, with
the disappearance of the vibrational peak of carboxylic acid at 1403 cm−1 after adsorption, the peaks
at 1353 and 1384 cm−1 are attributed to the adsorption of the Hg carboxylic acid [38]. This group
forms a new chemical bond with Hg, resulting in a shift in the peak. The change of the peak value in
the FT-IR spectrum also indirectly confirms that the adsorption process of mercury ions in aqueous
solution by CoFe2O4@SiO2-EDTA is chemical adsorption. Finally, Figures 15 and 16 show that the
CoFe2O4@SiO2-EDTA material before and after adsorption does not significantly change, thereby
indicating that the material has good hydrothermal stability.
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4. Conclusions

In this study, a core-shell structure of CoFe2O4@SiO2 is successfully functionalized with EDTA by a
safe, mild and easy hydrothermal method. The as-prepared material has a saturation magnetic strength
of 7.65 emu/g. Moreover, the material has a maximum adsorption capacity of 103.3 mg/g for metal
Hg(II) at pH 7, and rapid separation of the adsorbent from the solution by magnetism. The adsorption
process has excellent correlation with pseudo-second-order kinetics and the Langmuir isotherm model;
moreover, it is a single-layer adsorption and a spontaneous exothermic reaction. A stable complex is
formed between the EDTA functional group and the Hg(II) ion by chelation, and the chemical reaction is



Nanomaterials 2019, 9, 1532 20 of 23

the key to the rate control step of the adsorption process. To summarize, EDTA-Functionalized Magnetic
CoFe2O4@SiO2 Nanomaterial has good hydrothermal stability, recyclability and fully biodegradable
properties, indicating that it is a potential adsorbent for removing heavy metals from water in
practical applications.
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