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MICU1 regulation of mitochondrial Ca2þ uptake
dictates survival and tissue regeneration
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Mitochondrial Ca2þ uptake through the recently discovered Mitochondrial Calcium

Uniporter (MCU) is controlled by its gatekeeper Mitochondrial Calcium Uptake 1 (MICU1).

However, the physiological and pathological role of MICU1 remains unclear. Here we show

that MICU1 is vital for adaptation to postnatal life and for tissue repair after injury. MICU1

knockout is perinatally lethal in mice without causing gross anatomical defects. We used liver

regeneration after partial hepatectomy as a physiological stress response model. Upon

MICU1 loss, early priming is unaffected, but the pro-inflammatory phase does not resolve and

liver regeneration fails, with impaired cell cycle entry and extensive necrosis. Ca2þ overload-

induced mitochondrial permeability transition pore (PTP) opening is accelerated in

MICU1-deficient hepatocytes. PTP inhibition prevents necrosis and rescues regeneration.

Thus, our study identifies an unanticipated dependence of liver regeneration on MICU1

and highlights the importance of regulating MCU under stress conditions when the risk of

Ca2þ overload is elevated.
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M
itochondrial Ca2þ uptake relays cytoplasmic Ca2þ

signals to the mitochondrial matrix to control vital
functions like ATP production but can also overload

mitochondria with Ca2þ to promote cell death1,2. Thus,
mitochondrial Ca2þ uptake needs to be tightly regulated.
Ca2þ uptake through the outer membrane occurs through the
voltage-dependent anion selective channel (VDACs) and across
the inner membrane is mediated by a long sought channel, the
uniporter3,4. Recently, essential components of the uniporter have
been identified, including the pore-forming subunit,
Mitochondrial Calcium Uniporter (MCU)5–7 and its Ca2þ -
sensing regulators, MICU1 (refs 8–11) and MICU2 (refs 12–14).
More precisely, MICU1 has been demonstrated to be a
gatekeeper, which is required to close MCU at low cytoplasmic
[Ca2þ ] ([Ca2þ ]c) and facilitates its activation at high [Ca2þ ]c

(ref. 8). Interestingly, a loss-of-function mutation of MICU1 has
been recently linked to human disease through alterations in
mitochondrial Ca2þ handling15. Although mitochondrial Ca2þ

uptake regulation by MICU1 has been well studied in cell culture
models8,9,12,13, its physiological and pathological role remains
unclear.

Previously, MCU was ablated in whole-body knockout mice,
which died at around e11.5–13.5 days on a C57BL/6 background
and were viable when maintained on a mixed background16.
In the latter model, and also in cardiac-specific conditional
MCU knockout mice17,18, basal organ functions were maintained
and impairments were observed only in the physiological
adaptation of skeletal muscle to exercise16. Furthermore, the
conditional MCU-deficient heart displayed increased resistance
to ischaemia-reperfusion injury17,18. Although, the currently
available results do not provide a coherent picture on the
physiological relevance of MCU, at least some laboratory mouse
strains seem to be able to cope with the loss of mitochondrial
Ca2þ uptake and show functional impairment only when
adaptation is needed to meet an abrupt increase in tissue
energy needs. Also, MCU-mediated Ca2þ uptake appears to play
a pathophysiological role in ischaemia-reperfusion-induced
tissue injury. Thus, it is of interest to determine the in vivo
role of MICU1, which in cultured cells can both suppress and
enhance MCU-mediated Ca2þ uptake dependent on [Ca2þ ]c.
In this regard, the liver is an organ of particular interest
because [Ca2þ ]c signals are central to stimulation of metabolism
as well as for stress responses, and both decoding of [Ca2þ ]c

oscillations by mitochondria and protection of mitochondria
from calcium overload depend on MICU1 in isolated
hepatocytes8,19.

In this study, we find that whole-body knockout of MICU1 is
lethal in the first hours after birth. Indeed, embryos antepartum
are at the expected Mendelian ratio but MICU1� /� pups display
failure of basic vital functions after birth. To further evaluate the
role of MICU1 in vivo in a physiological stress response model,
liver regeneration following partial hepatectomy (PHx) was
studied in mice with a liver-specific MICU1 deletion. Here we
show that MICU1 is required for liver regeneration as MICU1
loss leads to an enhanced and sustained pro-inflammatory
response post PHx with a failure of hepatocytes to enter the
cell cycle and large-scale hepatic necrosis. We demonstrate that
Ca2þ overload-induced mitochondrial permeability transition
pore (PTP) opening is sensitized in MICU1-deficient hepatocytes
and that PTP inhibition is sufficient to rescue liver regeneration.
Therefore, our data in MICU1-deficient mice reveal that the
tight Ca2þ -dependent control of mitochondrial Ca2þ uptake is
essential for survival under acute stress conditions and to allow a
well-integrated tissue repair response, thus highlighting the
critical role of MICU1 in physiological and pathological
conditions.

Results
MICU1 requirement for transition to ex utero life. MICU1
silencing causes dysregulation of mitochondrial Ca2þ uptake in
cultured cells8–10, and loss-of-function mutations in humans have
been linked to neuromuscular disease15. The emerging link
between MICU1 and human disease emphasizes the need to
study MICU1 function in vivo20. We generated heterozygote
MICU1þ /� mice utilizing the Cre-loxP system of gene targeting
(Fig. 1a). MICU1þ /� male and female mice were healthy and
fertile. However, crossing these mice did not produce viable
MICU1� /� pups. Their progeny followed a Mendelian
distribution until e18.5, with normal cardiac function by fetal
echocardiography (ejection fraction (EF): 79.8±0.7% versus
79.3±1.2%, fractional shortening (FS): 44.5±0.9% versus
45.8±1.1%, MICU1þ /þ versus MICU1� /� , n¼ 4, P¼ not
significant), but MICU1� /� mice died within hours of birth
(Table 1). The few MICU1� /� animals found displayed no gross
morphological defects at birth, although several failed a lung float
test. Blinded histopathological analysis of the placenta and major
organs of e18.5 animals did not reveal structural changes that
could have accounted for perinatal lethality (Fig. 1b). To avoid
fatalities resulting from labour stress, e18.5 mice were delivered
by C-section; all the animals that sustained normal breathing and
vocalized intermittently had at least one copy of MICU1.
Examination of brainstem nuclei in toluidine blue-stained
sections suggested a trend towards decreased numbers of
neurons in the nucleus ambiguus (a focus of expiratory control)
and the nucleus facialis (Fig. 1c). These observations point to a
functional cause of death in MICU1� /� mice, presumably
through defective regulation of basic functions postnatally,
suggesting a vital role for MICU1 regulation of the MCU
during this phase.

We evaluated the impact of MICU1 ablation on mitochondrial
Ca2þ uptake in primary embryonic fibroblasts generated
from MICU1þ /þ and MICU1� /� embryos. MICU1 ablation
was confirmed at mRNA and protein levels, without significant
changes in uniporter pore-forming protein MCU or its co-
regulator MICU2 (Fig. 1d and Supplementary Fig. 1a).
Measurements of the ruthenium red-sensitive clearance of
Ca2þ added to the cytoplasmic buffer in permeabilized mouse
embryonic fibroblasts (MEFs) showed that at low cytoplasmic
calcium concentration ([Ca2þ ]c), MICU1� /� MEFs took up
more Ca2þ than MICU1þ /þ MEFs but displayed a smaller
Ca2þ clearance at high [Ca2þ ]c, at well-maintained inner
membrane potential (Fig. 1e and Supplementary Fig. 1b). The
dose–response plot (Fig. 1f) showed a lower [Ca2þ ]c threshold
and higher Ca2þ uptake at low [Ca2þ ]c. The double logarithmic
plots of initial Ca2þ uptake rates against [Ca2þ ]c also showed a
lower slope (Fig. 1g), demonstrating decreased cooperativity in
activation of mitochondrial Ca2þ uptake in MICU1� /� MEFs.

Acute knockdown (KD) of MICU1 in mouse hepatocytes.
MICU1 silencing in mouse liver alters hormone-stimulated oxi-
dative metabolism and facilitates mitochondrial Ca2þ overload
as assessed in isolated hepatocytes8. To better understand the
physiological role of MICU1, we accomplished a sustained
deletion of MICU1 specifically in MICU1loxP/loxP mouse liver
through tail-vein injection of AAV8-Cre under a hepatocyte-
specific promoter (thyroxine-binding globulin, TBG), leading to
hepatocyte-specific MICU1 KD. Three weeks post injection,
MICU1 KD was confirmed at both mRNA (98%) and protein
level (94%) in isolated hepatocytes and whole liver tissue
(Supplementary Figs 2a and 3a). Hepatocyte specificity of
MICU1 downregulation was confirmed by no changes in
MICU1 mRNA and/or protein level in other organs as well as
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in the blood (Supplementary Fig. 3b). MCU expression was
unchanged, and MICU2 showed a small decrease only in whole
liver (Supplementary Figs 2a and 3a). Permeabilized KD
hepatocytes showed a lower threshold and decreased
cooperativity of Ca2þ -dependent activation of mitochondrial
Ca2þ uptake compared with control (Ctrl) cells (AAV8-TBG-
Null; Supplementary Fig. 2b–e). Thus, MICU1 KD hepatocytes
had a similar mitochondrial Ca2þ uptake phenotype as
MICU1� /� MEFs and MICU1-silenced HeLa cells8,9,12,13,
confirming the AAV8-Cre-treated MICU1loxP/loxP mouse as a
robust in vivo model of acute hepatocyte-specific MICU1
downregulation. Despite alterations in mitochondrial Ca2þ

uptake in hepatocytes from liver-specific MICU1 KD mice, no
gross functional, morphological and/or histological differences
were apparent between Ctrl and KD livers (Fig. 2a, LL,
Supplementary Fig. 3c and Supplementary Table 1). Gene

expression profiling failed to show major differences between
KD and Ctrl livers (accession number GSE69801, and
Supplementary Fig. 4a,b, LL). Thus, patho-physiological
consequences of MICU1 deletion may become apparent only
under conditions of acute or chronic stress.

MICU1 requirement for liver regeneration. We used 70%
PHx21 as a surgically induced liver-specific stress model22. Liver
regeneration after PHx is a unique tissue repair response that
induces a synchronized replication of differentiated hepatocytes
in the remnant liver, while maintaining liver-specific
functions23,24. PHx initiates regeneration through multiple
stress signals that induce growth factors and pro-inflammatory
cytokines that drive quiescent hepatocytes into the cell cycle to
replicate within 30–48 h after surgery, with liver mass recovery
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Figure 1 | Phenotype of MICU1� /� mouse and mitochondrial Ca2þ uptake in MICU1� /� MEFs. (a) Map of the MICU1 gene with exon 3 flanked by two

loxP sites and a Neomycin selection cassette flanked by flippase recognition target sites (FRTs) and subsequent recombinations for removal of the

Neomycin cassette and the exon 3, leading to the truncation of the MICU1 gene. (b) Representative images of haematoxylin and eosin (H&E) staining of

diaphragm, heart and lung from MICU1þ /þ and MICU1� /� animals at e18.5 show no morphological abnormalities (�40). (c) Quantification of the

neuron count in the nucleus ambiguus and the nucleus facialis in toluidine blue-stained sections of the hindbrain of MICU1þ /þ and MICU1� /� e18.5

animals. Individual points are averages from different animals. Horizontal lines show mean values. Counting of neurons in the nucleus tractus solitarius that

contains a subset of inspiratory neurons was not feasible because its borders were less defined. (d) Immunoblots of MICU1, MICU2, MCU and Hsp70 in

MICU1þ /þ and MICU1� /� MEFs lysates. Relative protein level is displayed in the bar graph; each protein was normalized to Hsp70, and expressed

relative to MICU1þ /þ MEFs (mean±s.e.m., n¼4, *Po0.05, Student’s t-test). (e) Representative [Ca2þ ]c time courses of the mitochondrial clearance of

a 3mM or 20mM CaCl2 bolus (3Ca or 20Ca) in permeabilized MICU1þ /þ and MICU1� /� MEFs in the presence of thapsigargin (2 mM) and CGP-37157

(20mM). (f) [Ca2þ ]c dose response of the initial mitochondrial uptake (30 s after CaCl2 addition) of different Ca2þ boluses recorded as in e. The CaCl2
doses added were (inmM) 3, 7, 10, 15 and 20 (n¼4 per group). A sigmoidal fit is displayed for each. (g) Double logarithmic plot of the initial rates of Ca2þ

uptake against the peak [Ca2þ ]c. Slope of each linear fit is indicated (mean±s.e.m., n¼4/group, Student’s t-test).
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Table 1 | MICU1� /� mice showing Mendelian distribution until e18.5 and death after birth.

Age Total # embryos # Litters # Animals observed (expected) # (%) Dead pups

þ /þ þ /� � /� Unclear* þ /þ þ /� � /�
e14.5 48 6 9 (12) 25 (24) 12 (12) 2 — — —
e18.5 76 9 23 (19) 32 (38) 18 (19) 3 — — —
P0 188 38 53 (47) 110 (94) 14 (47) 11 11 (15) 13 (11) 14 (100)

Numbers (#) of observed and expected (in brackets) animals after C-section at embryonic days e14.5 and e18.5, and at birth (P0) are indicated on the left side of the table. Postnatal lethality is shown on
the right side with numbers and percentage (in brackets) of dead pups observed at P0.
*Resorption or disappearance precluded any genotyping.
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Figure 2 | Liver regeneration after partial hepatectomy (PHx) in MICU1 KD and Ctrl liver. (a) Representative images of haematoxylin and eosin

(H&E)-stained liver tissue and quantification of necrotic area in Ctrl and KD mice before (LL, left lateral lobe) and 30 h after PHx (Phx 30 h; collected

from the same mouse for individual comparison). Magnified image displays a typical necrotic area in KD liver 30 h after PHx along with quantification.

Scale bars, 200mm (mean±s.e.m., n¼4 per group). (b) Serum levels of alanine aminotransferase (ALT), direct and total bilirubin and triglycerides in

Ctrl and KD mice 30 h post PHx, or after sham surgery (mean±s.e.m., n¼ 3–6 per group). (c) BrdU immunostaining and quantification 30 h post PHx in

Ctrl and KD mouse liver. Scale bars, 50mm (mean±s.e.m., n¼4 per group). (d) Immunoblotting of Cyclin D1 expression and quantification in Ctrl and KD

liver lysates before PHx (LL) and 30 h post Sham operated or PHx (mean±s.e.m., n¼4 per group). Values are mean±s.e.m., **Po0.005, ***Po0.0005

via Mann–Whitney test (a) and two-way analysis of variance followed by Tukey’s multiple comparison test for the rest.
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within 2–3 weeks (in rodents)24–26. Both cytosolic and
mitochondrial Ca2þ signals may contribute to the onset and
early progression of regeneration27–29. We hypothesized that
aberrant Ca2þ signalling in MICU1 KD mice could delay or
inhibit regeneration after PHx. In contrast to Ctrl mice, KD mice
subjected to PHx were lethargic and unresponsive by 30 h after
surgery and at the time when DNA synthesis began in Ctrl mice;
their obvious severe distress prevented us from extending the
study to later time points for ethical reasons. Histological
examination of remnant livers from KD mice showed extensive
necrotic foci, with non-necrotic areas of the tissue showing severe
microvesicular steatosis, characterized by minute and diffuse fat
droplets that do not distort or displace the nucleus (Fig. 2a and
Supplementary Fig. 5a). Extensive liver damage and impaired
function were evident by dramatically increased serum alanine
aminotransferase (ALT) and bilirubin (total and direct). Tissue
and serum triglycerides were significantly elevated at 30 h post
PHx in KD mice (Fig. 2b and Supplementary Fig. 5b). Hepatocyte
proliferation, measured by 5-bromodeoxyuridine (BrdU)
incorporation, was significant in Ctrl mice 30 h post PHx, but
was completely absent in remnant livers from KD mice (Fig. 2c).
This correlated with a total lack of Cyclin D1 expression, 30 h
post PHx, in KD liver lysates, compared with its robust
expression in Ctrl mice (Fig. 2d). Assessment of the type of cell
death suggested a predominant involvement of necrosis rather
than apoptosis, as no changes in Bax (Supplementary Fig. 5c)
and cytochrome c content (Supplementary Fig. 5e) in isolated
mitochondria were observed and no cleaved Caspase-3
(Supplementary Fig. 5c) was evident, whereas poly ADP ribose
polymerase (PARP) cleavage, a non-specific cell death marker,
was increased in KD liver tissue lysate 30 h post PHx
(Supplementary Fig. 5d). No differences in tissue histology,
serum liver damage markers, Cyclin D1 or other cell cycle
markers were detected at 30 h after sham surgery (Fig. 2b–d and
Supplementary Fig. 5e). Thus, the absence of MICU1 causes
complete failure of liver regeneration, with suppression of
hepatocyte proliferation and massive necrosis.

Sustained pro-inflammatory response post PHx in MICU1-KD.
To elucidate how MICU1 ablation interfered with hepatocyte
proliferation, we evaluated signalling events associated with the
early phase of regeneration. These events are characterized by
expression of immediate-early genes and activation of stress
response signals, followed by release of pro-inflammatory cyto-
kines (tumour-necrosis factor (TNF)-a, interleukin (IL)-6) that
drive growth factor production and help transition hepatocytes
into the cell cycle24,26. Remarkably, the early response after PHx
was largely unaffected in MICU1 KD mice. Cellular homolog of
FBJ murine osteosarcoma viral oncogene (cFOS) and cellular
homolog of the viral oncoprotein v-jun (cJUN) upregulation, and
JNK activation were not significantly different between Ctrl and
KD livers at 1 h (Supplementary Fig. 4c), although a transient
hyperactivation/phosphorylation of cAMP response element-
binding protein (CREB) in the KD liver was noted at 1 h
(Fig. 3a). Several recent studies have reported that phospho-
CREB activation downstream of IL-6 or other mediators
contributes to the pro-inflammatory environment in the early
regenerative response to PHx30,31. Expression changes of stress-
response and proliferation-related genes were not significantly
different in Ctrl and KD mice by 1 h post PHx (Supplementary
Fig. 4a). However, by 6 h post PHx, downregulation of Rho-b,
Myc and Ccl2, and upregulation of Pim1, at levels usually seen
after a massive hepatectomy (480%), and S100a8 were apparent
in KD livers relative to Ctrl (Fig. 3b and Supplementary Fig. 4b)
and levels of ALT and bilirubin showed early signs of liver

damage and functional impairment in KD mice (Fig. 3d). Indeed,
some necrotic foci were observed by histology in KD remnant
liver as early as 6 h post PHx but not in the Ctrl (Supplementary
Fig. 4d). Also, serum IL-6 was elevated in KD mice compared
with Ctrl by 6 h post PHx, together with increases in tissue TNF-a,
phospho-signal transducer and activator of transcription 3
(STAT3) and nuclear factor-kB activity (Fig. 3a,c), indicating a
more elevated pro-inflammatory response in KD mice. Thus, KD
mice failed to mount an effective transition to the replication-
competent state in response to pro-inflammatory signals after
injury, resulting in more sustained inflammation and unresolved
tissue damage. A role for mitochondrial regulation of Ca2þ

homeostasis in resolving the PHx-induced pro-inflammatory
state to promote cell cycle entry has not previously been
recognized. Can mitochondrial calcium overload account for
the defective regeneration in KD mice?

Rescue of regeneration in MICU1-KD liver by PTP inhibition.
If MICU1 deletion decreases the threshold for mitochondrial
Ca2þ uptake, we expect a higher susceptibility to mitochondrial
Ca2þ overload and increased sensitivity of mitochondrial
PTP opening upon [Ca2þ ]c increases8. Indeed, we found that
permeabilized KD hepatocytes were sensitized to PTP opening
(Fig. 4a). Less Ca2þ uptake was required to trigger PTP opening
in KD than in Ctrl hepatocytes (Fig. 4a, 8.41±1.43 in Ctrl versus
4.58±0.17 DmM in KD, n¼ 4 independent experiments, Po0.05)
and this was blocked by the PTP inhibitor NIM811 (Fig. 4a)32. To
test the role of PTP opening in the regeneration defect and liver
damage after PHx in MICU1 KD mice, we treated Ctrl and KD
mice with NIM811 (10 mg kg� 1) or vehicle and assessed its effect
30 h post PHx. Compared with vehicle-treated KD mice,
NIM811-treated KD mice were completely protected from liver
damage (Fig. 4b) and serum levels of ALT, bilirubin and
triglycerides were comparable to Ctrl mice at 30 h post PHx
(Fig. 4d). Preventing PTP opening in KD mice by NIM811 was
sufficient to rescue cell proliferation, evident as increased BrdU
incorporation and upregulation of Cyclin D1 expression (Fig. 4c,e).
Interestingly, hepatocyte proliferation was significantly higher in
NIM811-treated KD hepatocytes compared with either vehicle or
NIM811-treated Ctrl hepatocytes, suggesting accelerated cell
proliferation in KD livers when mitochondria are protected
from damage (Fig. 4e). Importantly, no differences in the
expression level of the NIM811 target cyclophilin D were
observed between Ctrl and KD mice (Supplementary Fig. 6a).

Although cyclophilin D is the preferred target of NIM811,
cyclophilin A, which plays a role in inflammatory processes
in vivo can also be affected. We therefore tested whether
inhibition of leukocyte migration could contribute to the effect
of NIM811, by immunostaining of neutrophils using Ly-6g
(Supplementary Fig. 6b). A significant increase in neutrophil
count was observed from the time of PHx to 30 h post surgery in
Ctrl livers reflecting the previously reported pro-inflammatory
component of the response to PHx in mice33, and an even larger
increase in the MICU1-deficient liver after PHx. In mice treated
with NIM811, changes in neutrophil numbers were similar in the
Ctrl and decreased in MICU1-deficient tissue. The lack of a
NIM811-dependent change in the Ctrl supports the conclusion
that NIM811 did not act by suppressing neutrophil migration; the
decrease in neutrophil count in the MICU1 KD is presumably
secondary to the decrease in hepatocyte death (Supplementary
Fig. 6b).

Discussion
In this study, we have determined the pathophysiological
consequences of MICU1 deletion in mouse. Differently from
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MCU loss16, MICU1 deletion validated by genetic, biochemical
and Ca2þ transport measurements did not interfere with
embryonic development on C57BL/6J background. However,
every MICU1 KO pup died after birth. Although most of the
organs showed normal morphology and histology, several signs,
including uninflated lungs, fewer neurons in the brainstem and
prolonged gasping indicated that respiratory activity/control
might be affected. This phenotype also shares some
commonality with the neuronal and muscular impairments
displayed by the patients harbouring MICU1 loss-of-function
mutations15.

The present work and some previous studies by us8,34 and
others9,15 indicate that loss of MICU1 can impair bioenergetics
and cell function both by enhancing mitochondrial Ca2þ uptake
at resting [Ca2þ ]c or during prolonged [Ca2þ ]c elevations, and
by decreasing mitochondrial Ca2þ uptake during [Ca2þ ]c spikes
and oscillations. Several lines of evidence link mitochondrial
Ca2þ overload to neuronal dysfunction35,36, and this study
shows that upon hepatocyte-specific MICU1 deletion, the liver
failure caused by tissue injury is mediated by mitochondrial
Ca2þ overload. For these reasons, we propose that the
impaired adaptation to extra-uterine life is likely due to altered
mitochondrial Ca2þ handling with an overload component.

The recent observations on the MCU-deficient mouse phenotype
and the present findings on the MICU1� /� mice converge to
support the notion that increased Ca2þ flux through the
uniporter fuels an important pathogenic pathway.

The dramatic failure of liver repair after PHx in the
MICU1-deficient mice demonstrates this pathogenic potential
of deregulated mitochondrial Ca2þ and points to an unexpected
sensitivity of the regenerating liver to calcium overload. Despite a
large number of gene ablation studies in the context of liver
regeneration it is unusual for these to result in massive liver
necrosis as reported here, as liver regeneration can often be
compensated by eliciting the differentiation and proliferation of
progenitor cells. Although previous studies had identified a role
for Ca2þ signalling in the early response to PHx27,28, the
underlying mechanism has remained poorly characterized. In the
present study, the initial priming response to PHx was largely
unaffected by the MICU1 defect in hepatocytes, but the onset of
the cell cycle appeared to be suppressed, coinciding with evidence
of a persistent pro-inflammatory state with the onset of patchy
necrosis at 6 h after surgery. We were unable to detect significant
changes in the Ca2þ content of mitochondria isolated from the
remnant liver, presumably due to a lack of Ca2þ retention during
the isolation procedure. However, the complete protection against
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PHx-induced liver failure in MICU1 KD mice afforded by
NIM811 treatment clearly points to PTP opening because of
mitochondrial calcium overload as the cause of tissue injury.

It is interesting to note the observation of enhanced hepatocyte
proliferation at 30 h after PHx in NIM811-treated MICU1 KD
mice. Possible reasons for this effect remain to be established and
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our data do not allow us to assess whether it is due to enhanced
mitochondrial functions under conditions of calcium overload or
to changes in cytosolic or nuclear Ca2þ signalling processes that
drive regeneration. Loss of MICU1 could lead to a suppressed
[Ca2þ ]c response when mitochondria are protected from calcium
overload, with potentially decreased activation of calcineurin,
resulting in an enhanced or more sustained increase in protein
phosphorylation in the early phase of regeneration. We cannot
exclude the possibility that NIM811 may act on other targets that
affect cell proliferation. However, NIM811 has been shown not to
exert inhibitory effects on calcineurin32.

In summary, we show that MICU1 helps maintain mitochon-
drial Ca2þ homeostasis in liver and other tissues. Following
PHx-induced surgical stress, MICU1 is required for protection
against mitochondrial calcium overload in order to allow liver
regeneration to proceed. In the absence of MICU1, Ca2þ -
dependent activation of the PTP occurs and the ensuing cell death
would augment the pro-inflammatory phase and impair this
transition (see schematic in Fig. 5). Specifically, how elevation of
cytosolic Ca2þ promotes the transition of primed hepatocytes to
the proliferative state and whether mitochondrial Ca2þ uptake
itself is required for this transition or serves a bystander role is
open to debate. MCU deletion in mice either was embryonic
lethal or showed a mild muscle phenotype dependent on the
genetic background16,37. Thus, the physiological relevance of
mitochondrial Ca2þ uptake needs to be further tested. Our study
of the MICU1-deficient mice reveals that the tight Ca2þ -
dependent regulation of mitochondrial Ca2þ uptake is essential
for survival under acute stress conditions and to allow a well-
integrated tissue repair response. Thus, alterations in MICU1
activity can play a critical role in pathological conditions where
mitochondrial control of cellular Ca2þ homeostasis is required.

Methods
Generation of the MICU1KO/KO mice. All animals were used in accordance with
mandated standards of humane care and were approved by the Thomas Jefferson
University Institutional Animal Care and Use Committee. To obtain MICU1
knockout mice, the Cre-loxP system was used to target exon 3 of the MICU1
gene for removal. MICU1WT/loxPFLPþ /0 mice (on C57BL/6J background) were
generated by Ingenious Targeting Laboratory, then delivered to the Thomas
Jefferson University for subsequent breeding. MICU1WT/loxPFLPþ /0 were bred
with wild-type C57BL/6J mice to remove the FLP transgene. A successive
generation of breeding was undergone to generate MICU1loxP/loxP mice, which
were then bred with germline-expressing Cre-eIIa mice (Jackson Laboratories;
C57BL/6J background). These offspring were bred with homozygous floxed mice to
remove the Cre transgene, and establish whole-body heterozygous knockout mice
MICU1KO/loxP(referred to as MICU1þ /� ). Heterozygote male and female mice
were bred to attempt to generate whole-body knockouts (MICU1� /� ) as well as
control homozygous floxed littermates (MICU1þ /þ ). Genotype of mice was
determined using the following primer pairs: 1—50-GGTGGAGTCAAAGGGAG
GAACAG-30 , 50-GCCCCATCTATGATAATGTTAAGC-30 (loxP: 519 bp, wt:
341 bp); 2—50-ATGAGCATGAAGTGATGACCCGAC-30 , 50-GCCCCATCTAT
GATAATGTTAAGC-30 (loxP: 1.5 kb, ko: 500 bp). Only male mice were used for
experiments.

Histological analysis of the embryos. Necropsy was performed on post-natal
mice found within breeding cages: lung float test, weight and size measurements,
visual examination of major organs, as well as examination of palate formation
were performed. E18.5 mice delivered by C-section were stimulated to breath
and closely monitored for signs of sustained breathing as well as vocalization.
Mice displaying vitality were then successfully fostered with host mothers.

For histological analyses, MICU1þ /þ (n¼ 5) and MICU1� /� (n¼ 6) e18.5
fetuses were decapitated after C-section, fixed with their placenta by immersion in
Bouin’s solution for 48 h and then transferred to 70% ethanol. All specimens were
processed routinely into paraffin and sectioned at 5 mm at the Comparative
Pathology and Mouse Phenotyping Shared Resource (Ohio State University).
Sections were stained with haematoxylin and eosin. Tissue trimming and
sectioning depended on the nature of the specimen. The head was trimmed into
five coronal (transverse) levels: rostral nose, caudal nose (through eyes), forebrain
(targeting the hippocampus and diencephalon), midbrain and hindbrain. The
abdomen was bisected in the longitudinal plane just to the left of the mid-line, and
three-step sections were taken from each half at 300mm intervals (yielding three

sections per animal). Placenta was cut in half, and both halves were processed.
A coded (‘blinded’) histopathological paradigm was done to examine B40–45
major organs and tissues for abnormalities. Lesions were scored using a tiered,
semi-quantitative scale: within normal limits, or minimal, mild, moderate or
marked changes. After hindbrain sections were evaluated initially, 4-mm-thick step
sections were acquired every 40 mm until 30-step sections had been harvested. The
sectioning protocol was designed to evaluate major brainstem nuclei associated
with control of respiration and facial movements, which have been linked to early
neonatal death38. The positions of all three nuclei were approximated using
landmarks defined in a well-recognized neuroanatomic atlas39. The locations of the
main inspiratory centre (that is, nucleus of the solitary tract) and expiratory centre
(that is, nucleus ambiguus) were defined as present or not based on regional
cytoarchitecture and the tinctorial characteristics of the neurons. The boundaries of
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the solitary tract nucleus could not be defined with certainty, so no counts
were gathered from this structure. The large neurons in the nucleus ambiguus
(considering the compact, subcompact and loose parts collectively) as well as the
facial nucleus could be identified and were counted in some animals. However, the
initial facing of the blocks partially or completely effaced these latter two nuclei in
some animals, thereby preventing collection of reliable cell counts from them.

Generation of the liver-specific MICU1 knockdown mice. To generate liver-
specific MICU1 knockdown (KD) mice, MICU1loxP/loxP male mice between 10 and
12 weeks were injected via the tail vein with an AAV8-Cre under the control of a
hepatocyte-specific promoter (TBG; 1.3� 1011 plaque-forming units per mouse;
Penn Vector Core). AAV8-TBG-Null-injected littermates were used as controls.
Animals were used for experiments 3–5 weeks post injection.

Cell culture. MEFs were isolated from e14.5 embryos by trypsin digestion and
then immortalized. MEFs were cultured in DMEM (ATCC 30-2002) supplemented
with penicillin, streptomycin at 37 �C/5% O2. Primary hepatocytes were isolated by
in situ retrograde perfusion with collagenase (Sigma) as previously described8.
Only preparations with 490% viability were used for subsequent experiments.

Mitochondrial Ca2þ uptake and membrane potential. Fluorometric
measurements of mitochondrial [Ca2þ ]m, cytosolic [Ca2þ ]c and DCm were
performed as previously described8. Briefly, saponin-permeabilized hepatocytes
(2 millions) or MEFs (2.4 mg) were resuspended in 1.5 ml of intracellular medium
containing 120 mM KCl, 10 mM NaCl, 1 mM KH2PO4, 20 mM Tris-HEPES at pH
7.2, and supplemented with proteases inhibitors (leupetin, antipain, pepstatin,
1 mg ml� 1 each), 2 mM MgATP, 2mM thapsigargin (Enzo) and maintained in a
stirred thermostated cuvette at 35 �C. Assays were performed in the presence of
20mM CGP-37157 (Enzo) and 1 mM succinate using a multiwavelength-excitation
dual-wavelength-emission fluorimeter (DeltaRAM, PTI). The extramitochondrial
Ca2þ concentration [Ca2þ ]c was assessed using the ratiometric Ca2þ probe
Fura2-FA (1.5 mM, Teflabs) or Fura-loAff (formerly Fura-FF; 1 mM, Teflabs). Dcm
was measured with 1.5 mM TMRM (Invitrogen). Fura and TMRM fluorescence
were recorded simultaneously using 340–380 nm excitation and 500 nm emission,
and 545 nm excitation and 580 nm emission, respectively. Complete depolarization
(maximum de-quench of TMRM fluorescence) was elicited using of the
protonophore FCCP (2 mM). Calibration of the Fura signal was carried out at the
end of each measurement, adding 1 mM CaCl2, followed by 10 mM EGTA/Tris,
pH 8.5.

Animal surgery. The liver-specific MICU1 KD male mice between 13 and 16
weeks old (3 weeks post AAV8 injection) underwent 70% PHx based on the
surgical methods outlined by Mitchell and Willenbring40. Briefly, the animals were
anaesthetized with isoflurane, a midline incision was made followed by a segmental
ligation and excision of the left-lateral and medial lobes of the liver. The sham
surgery involved the gentle manipulation of the liver lobes without the removal of
liver tissue. The left-lateral lobe was immediately (within 10 s) freeze clamped using
liquid nitrogen cooled aluminum clamps, as described41, to prevent post-mortem
changes in metabolites and protein phosphorylation. The medial lobe was fixed in
10% neutral buffered formalin (NBF). The abdominal cavity was rinsed with warm
lactated Ringer’s solution, the abdominal muscle layer sutured and the skin was
closed with wound clips. Following surgery, the animals were given subcutaneous
lactated Ringer’s solution (1 ml per animal) and buprenorphine (0.1 mg kg� 1) and
placed in a fresh cage under a heat lamp with ad libitum access to hydrogel
(Contact ClearH2O) and food. For the PTP inhibition studies, mice were
administered NIM811 (10 mg kg� 1) 30 min before PHx surgery. 50 mg of NIM811
(Norvartis) was dissolved in 1 ml of dimethylsulphoxide/Cremophor EL (3:7)
mixture. The stock was 50-fold diluted in 0.9% saline before administering it to
the animals.

Animals were given intraperitoneal injections of BrdU solution (Sigma;
150 mg kg� 1) in 0.9% sterile saline 2 h prior to sacrifice. At specified times after
PHx, animals were anaesthetized with isoflurane, blood was collected from the vena
cava, then the remnant right-superior lobe and the right-inferior lobe were
removed and, respectively, freeze clamped or fixed in 10% NBF. Collected blood
was incubated at room temperature for 30 min, centrifuged and serum was
collected and then flash frozen for further analysis.

Histological and immunofluorescence analysis. 10% NBF fixed samples were
paraffin-embedded, sectioned and stained for hematoxylin and eosin by the
Kimmel Cancer Center pathology core facility (Thomas Jefferson University) and
evaluated by Dr. Rubin, an expert hepatopathologist. BrdU immunostaining was
performed using Anti-BrdU antibody (AbD Serotec, 1:100), which was detected
using Anti-Mouse Alexa Fluor-488 secondary antibody (Life technologies).
For neutrophil identification, sections were immunostained using Anti-Ly6G
(BD Pharmingen, 551459, 1:400), which was detected with Anti-Mouse-HRP
(ThermoFisher Scientific), counterstained with haematoxylin, rehydrated and
mounted. Quantification of BrdU incorporation was performed using ‘CellProfiler

cell image analysis software’ and neutrophil count and necrotic foci were quantified
using ‘ImageJ software’. For quantification, 15 � 20 fields were scored per animal.

Biochemical analysis. For western blotting, freeze-clamped tissue was homo-
genized in lysis buffer containing 25 mM HEPES (pH 7.4), 150 mM NaCl, 2.5 mM
EGTA, 10% glycerol, 0.5% deoxycholic acid (DOC), 1% IGEPAL, 0.1% SDS, 1%
Triton X-100, 2 mM sodium floride, 2 mM imidazole, 1.15 mM sodium molybdate,
2 mM activated sodium orthovanadate, 4 mM sodium tartrate dihydrate, 1 mM
sodium pyrophosphate, 1 mM b-glycerophosphate and cOmplete protease inhi-
bitor cocktail (Roche Diagnostics, Basel, Switzerland). Cell lysates were prepared in
RIPA buffer supplemented with proteases inhibitors (leupetin, antipain, pepstatin,
phenylmethyl sulphonyl fluoride, Sigma). Proteins were analysed by western
blotting after separation by SDS–PAGE on 10% TGX gels (Bio-Rad) or 4–12%
Bis-Tris NuPAGE gradient gels (Life Technologies). The following antibodies were
used for primary overnight incubation: MICU2 (Abcam (Ab)—ab101465, 1:500),
Cyclophilin D (Ab—ab110324, 1:1,000), MICU1 (Sigma (Sg)—HPA037480, 1:400),
Cytochrome c (BD Pharmingen—556432, 1:500), MCU (Sg—HPA037480, 1:500);
CyclinD1 (Thermo Scientific (TS)—MA1-39546, 1:50), Hsp70 (TS—MA1-91159,
1:1,000); Bax (Cell Signaling Technology (CST)—14796, 1:1,000), cFOS
(CST—4384, 1:1,000), cJUN (CST—9165, 1:1,000), p cJUN (Ser73) (CST—3270,
1:1,000), Caspase—3 (CST—9662, 1:1,000), CREB (CST—9197, 1:1,000), pCREB
(CST—9198, 1:1,000), JNK54 (CST—9252, 1:1,000), p JNK54 (Thr185/Tyr185)
(CST—9251, 1:1,000), PARP (CST—9532, 1:1,000), STAT3 (CST—4904, 1:1,000),
p STAT3, (CST—9145, 1:1,000), GRB2 (Santa Cruz Biotechnology—255, 1:1,000),
GAPDH (Millipore—MAB374, 1:1,000). Membranes were scanned on the Odyssey
scanner (Licor) or Kodak Image Station 440CF. Western blot densitometries were
performed using ImageJ (NIH) or Image Studio lite software and normalized to
levels of GRB2, GAPDH or Hsp70. Uncropped scans of the most important
western blots are shown in Supplementary Fig. 7.

ELISA kits were used to measure serum levels of IL-6 (eBiosciences) and TNF-a
(eBiosciences) according to the manufacturer’s instructions. Tissue triglyceride was
extracted with ethanolic KOH as described42. Triglycerides (serum and tissue) were
measured using Stanbio Triglyceride Liquicolor reagent (Stanbio) as per the
manufacturer’s instructions. Nuclear factor-kB DNA-binding activity in 100mg of
total tissue lysate was measured using the transcription factor assay from Cayman
Chemical. Serum direct bilirubin and total bilirubin were measured using the
bilirubin assay kit (Sigma).

RNA isolation and quantitative PCR (qPCR). Total RNA was isolated from
frozen liver samples (B15 mg) using Animal Tissue RNA Purification Kit (Norgen
Biotek) and from isolated hepatocytes or MEFs using TRIzol reagent (Ambion).
RNA concentration was measured by ND-1000 (NanoDrop). cDNA was
synthesized using SuperScript III (Invitrogen) and used for qPCR reactions using
SYBR Green (Invitrogen) on an ABI Prism 7000 sequence detection system
(Life Technologies). Data were analysed using the comparative DDCt method. Ct of
the gene of interest was normalized to that of b-actin. Primers used are: Mice
MICU1 (F-50-AACAGCAAGAAGCCTGACAC-30 , R-50-CTCATTGGGCGTTAT
GGAG-30), Mice MICU2 (F-50-GGAGCGTAAAACACTGGTC-30 , R-50-GTAAG
CAAGAAAAGATACTCGG-30), Mice MCU (F-50-TACTCACCAGATGGCG
TTC-30 , R-50-GTCCTCTAACCTCTCCAC-30), b-actin (F-50-CAACACCCCAGC
CATG-30 , R-50-GTCACGCACGATTTCCC-30).

High-throughput qPCR. High-throughput gene expression analysis was per-
formed following standard BioMark (Fluidigm) qPCR protocol #8. cDNA was
synthesized from total RNA (1.2 mg) using EasyScript Plus cDNA Synthesis Kit
(Applied Biological Materials) and stored at � 20 �C. Primers were designed using
Universal Probe Library Assay Design Center (Roche Applied Science, https://
www.roche-applied-science.com/sis/rtpcr/upl/index.jsp). The primers and probes
for those assays that passed the quality control test and were used in this study are
listed in Supplementary Table 1. cDNA (100 ng, calculated from initial RNA)
samples were pre-amplified for 12 cycles using TaqMan PreAmp Master Mix
(Applied Biosystems). qPCR reactions were performed using BioMark Dynamic
Arrays (Fluidigm) with 40 cycles of amplification (15 s at 95 �C, 5 s at 70 �C, and
60 s at 60 �C). Ct values were calculated by the Real-Time PCR Analysis Software
(Fluidigm) and software-designated failed reactions were discarded from analysis.
Relative gene expression was determined by the DDCt method. Modified geNorm
algorithm in R was used to identify the set of most stable reference genes, Idh3B
and Mrpl16 were selected for normalization.

Microarray gene expression analysis. Global gene expression analysis was
performed using the Affymetrix Mouse Gene 2.0 ST arrays following the standard
manufacturer’s protocol. The raw expression data were log-transformed and nor-
malized across all the samples using the Robust Multiarray Averaging algorithm.
Normalized data are deposited in GEO database (accession number GSE69801).

Statistical analysis. Data are expressed as mean±s.e.m. Experiments were
performed at least three times, in duplicates or more. Statistical analysis was
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performed using the Student’s t-test or Mann–Whitney test for comparison
between two groups and ANOVA-2 for others. (*Po0.05, **Po0.005,
***Po0.0005.)
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