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Abstract

Purpose: Inter-individual variability in clinical endpoints and occurrence of potentially severe adverse effects
represent an enormous challenge in drug development at all phases of (pre-)clinical research. To ensure patient
safety it is important to identify adverse events or critical subgroups within the population as early as possible.
Hence, a comprehensive understanding of the processes governing pharmacokinetics and pharmacodynamics is of
utmost importance. In this paper we combine Bayesian statistics with detailed mechanistic physiologically-based
pharmacokinetic (PBPK) models. On the example of pravastatin we demonstrate that this combination provides a
powerful tool to investigate inter-individual variability in groups of patients and to identify clinically relevant
homogenous subgroups in an unsupervised approach. Since PBPK models allow the identification of physiological,
drug-specific and genotype-specific knowledge separately, our approach supports knowledge-based extrapolation
to other drugs or populations.

Methods: PBPK models are based on generic distribution models and extensive collections of physiological
parameters and allow a mechanistic investigation of drug distribution and drug action. To systematically account
for parameter variability within patient populations, a Bayesian-PBPK approach is developed rigorously quantifying
the probability of a parameter given the amount of information contained in the measured data. Since these
parameter distributions are high-dimensional, a Markov chain Monte Carlo algorithm is used, where the
physiological and drug-specific parameters are considered in separate blocks.

Results: Considering pravastatin pharmacokinetics as an application example, Bayesian-PBPK is used to investigate
inter-individual variability in a cohort of 10 patients. Correlation analyses infer structural information about the PBPK
model. Moreover, homogeneous subpopulations are identified a posteriori by examining the parameter
distributions, which can even be assigned to a polymorphism in the hepatic organ anion transporter OATP1B1.

Conclusions: The presented Bayesian-PBPK approach systematically characterizes inter-individual variability within a
population by updating prior knowledge about physiological parameters with new experimental data. Moreover,
clinically relevant homogeneous subpopulations can be mechanistically identified. The large scale PBPK model
separates physiological and drug-specific knowledge which allows, in combination with Bayesian approaches,
the iterative assessment of specific populations by integrating information from several drugs.
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Background
Tailor-made therapeutic designs require a functional un-
derstanding of the processes governing the distribution
of substances within an organism. Anthropometric pa-
rameters like age or weight have great influence on the
level of drug exposure in the human body (Willmann
et al., 2007). Furthermore, the genetic predisposition of a
patient is very important, since different genotypes can
have significant effects on drug metabolization processes
(Eissing et al., 2012; Lippert et al., 2012). In the worst
case, side effects due to increased (off-)target tissue drug
concentrations become critical for patient safety (Lippert
at al., 2012). The early identification of subgroups show-
ing significantly increased adverse event rates is a diffi-
cult task since only limited information about a new
drug is available but is of utmost importance to prevent
costly drug withdrawals in later phases of the drug de-
velopment process (Kuepfer et al., 2012). Therefore, a
mechanistic understanding of pharmacokinetics (PK) is
essential in drug development to optimize the risk-
benefit profile of a drug. This involves in particular the
identification of high-risk subgroups in which an unfor-
tunate combination of predisposition and non-optimal
dosing schemes lead to potentially life-threatening side
effects. In clinical practice, such subgroups have to be
treated with individualized dosing schemes, which need
to be designed and surveyed with adequate diagnostics.
The amount and complexity of preclinical and clinical

data generated along the drug development process usu-
ally represents an immense challenge for the generation
of an in-depth mechanistic understanding. Here, in silico
approaches provide a rational and efficient way to aggre-
gate all data for the determination of drug PK and
pharmacodynamics (PD) in support of the drug develop-
ment process. Once established and validated, computa-
tional models allow a detailed analysis of the effect of
different dosing schemes or varying anthropometry or
physiology by simulating the behavior of a drug in the
body. In contrast to the rather descriptive consideration of
PK and PD in classical compartmental approaches
(Meibohm & Derendorf, 1997), physiologically-based phar-
macokinetic (PBPK) models are based on a large amount
of prior physiological and anthropometric information
which is integrated in the model structure (Nestorov, 2007;
Rowland et al., 2011; Schmitt & Willmann, 2004), Since
PBPK models explicitly distinguish between properties of
the compound and properties of the patients, respectively,
they allow separation of physiological and drug-induced ef-
fects. Generally, such models consist of several com-
partments, describing the organs, which are further on
subdivided in more detailed submodules such as intersti-
tial, intracellular or vascular space. Starting from models
with only few equations (Pang & Durk, 2010), they exist on
all levels of complexity, up to more than one hundred

ordinary differential equations (ODEs) and hundreds of
parameters (Eissing et al., 2011; Willmann et al., 2003a).
PBPK models have previously been used for mechanistic
analyses of drug PK (Meyer et al., 2012), pharmacogen-
omics (Eissing et al., 2012), multiscale modeling (Krauss
et al., 2012) or analysis of rare adverse events (Lippert
et al., 2012; Willmann et al., 2009). However, current use
of such models often provides only a single value time-
concentration curve, describing the behavior of a mean
patient, neglecting potentially relevant individual proper-
ties. This is even more severe as PBPK models allow the
creation of personalized models for individual patients by
explicitly representing the individual physiological parame-
ters. Thereby it is possible to mechanistically describe spe-
cial populations (Edginton & Willmann, 2008) or genetic
predisposition of patients in pharmacogenomics applica-
tions (Eissing et al., 2012; Swen et al., 2007). Nevertheless,
PBPK models frequently lack the rigorous quantification of
inter-individual variability in parameters which cannot be
derived from the patients’ anthropometry.
Up to now, population simulations try to assess inter-

individual variability in PK in groups of patients (Schüttler
& Ihmsen, 2000; Willmann et al., 2007). This is examined
by a priori variation of physiological parameters and cross
correlations to other model parameters. Such correlations
are estimated by means of scaling laws depending on the
anthropometry, since no literature information on inter-
individual variability of organ weights or blood flows is
available (Willmann et al., 2007). Therefore, since the
physiology of every individual is calculated before the simu-
lation, such population simulations cannot be processed if
for example special groups of patients are investigated
where little prior information about their anthropometry,
(patho-)physiology or genotype-phenotype correlation is
available.
An alternative approach to analyze the inter-individual

variability and to perform population simulations is Bayes-
ian modeling (Bolstadt, 2010). Bayesian statistics is based
on Bayes’ theorem, which provides a rational way to com-
bine prior information on parameters with the informa-
tion contained in data to infer the variability of parameters
and therefore also the PK variability a posteriori, even with
little prior information. The key idea of Bayesian statistics
is to define unknown parameters as random variables,
which is in contrast to the general approach in statistics,
where parameters are defined as fixed, but unknown con-
stants. In Bayes’ theorem, prior knowledge about the
parameters is updated with new experimental data in the
so-called posterior distribution (Bolstadt, 2010). Determin-
ing the posterior distribution explicitly is very difficult or
even impossible with nonlinear model kernels or when
many parameters are considered simultaneously. In such
cases, Markov-chain Monte-Carlo (MCMC) methods can
be used to estimate the posterior distribution.
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MCMC covers a large group of algorithms containing
for example usual (Geman & Geman, 1984; Hastings,
1970; Metropolis, 1953), adaptive (Atchadé & Rosenthal,
2005; Gilks et al., 1998; Haario et al., 2001; Roberts &
Rosenthal, 2009) and particle (Andrieu et al., 2010)
MCMC approaches to take samples from the posterior
distribution of a parameter vector. The core idea of
MCMC is to sample the unknown variables along a
Markov chain, which has the posterior distribution as its
stationary distribution. If several parameters are consid-
ered, such probability distributions are high dimensional.
Thorough analysis of this posterior distribution quanti-
fies inter-individual variability of a group of patients as
well as the co-variability of the parameters, allowing the
identification of homogenous subgroups. Bayesian ap-
proaches have already been used in conjunction with
PBPK modeling, especially in toxicological questions
(Bernillon & Bois, 2000; Bois et al., 2010), but also for
population PK (Gelman et al., 1996; Gueorguieva et al.,
2006; Yang et al., 2009). However, often the PBPK models
used have been comparatively small and have contained
lumped parameters carrying mixed information of differ-
ent physiological or drug specific parameters. By using a
large scale PBPK model, which separates drug specific
from population specific information, in combination with
Bayesian approaches, an iterative characterization of spe-
cial populations by optimally leveraging information from
different drugs can be achieved.

In this work, we present a new approach applying
MCMC to Bayesian-PBPK modeling for the assessment of
inter-individual variability in groups of patients (Figure 1).
Notably, we use a highly detailed and mechanistic PBPK
model, where every organ is divided into four sub-
compartments describing the intracellular space, the inter-
stitial space, the blood plasma and the blood cells
(Willmann et al., 2003a). Due to a segregated representa-
tion of the physiology of the patient and the underlying
distribution model which is related to the physico-
chemistry of the drug, physiological parameters, genotype-
specific (in the following also referred to as physiological
parameters) and drug-specific parameters, respectively,
can be considered separately. This model representation
together with Bayesian approaches allows direct inference
of physiological and drug-specific information, such as the
variability in organ volumes or the uncertainty in the lipo-
philicity of a drug. Therefore, the main sources of variabil-
ity within the PK of a drug may be quantified by analyzing
the posterior distribution. Moreover, we present a way
to analyze the posterior to identify clinically relevant
homogenous subgroups, such as patients with a specific
genotype linking to a PK (or PD) phenotype. Additionally,
the use of such a mechanistic model bears great extrapola-
tion capacity, by enabling an iterative use of the posterior
as the prior distribution of a new run. Since physiology
and drug are treated independently, posterior physio-
logical information of a run with a known drug can be

Figure 1 Schematic representation of the combined Bayesian-PBPK approach. A block-wise Metropolis-Hastings Markov chain Monte
Carlo algorithm was used to sample the posterior distribution of individual patients’ physiology on the one hand and global compound
parameters on the other hand. The underlying model kernel was provided by detailed mechanistic physiologically-based
pharmacokinetic models.
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used for the investigation of a new drug candidate in the
same group of patients such that physiological knowledge
is conserved. The same applies for using the same drug in
different populations. This allows for example the con-
struction of a large database, wherein prior information
about physiological as well as drug-specific parameters
may be updated with experimental data of lots of experi-
ments. Since only little literature information about specific
parameters is available, informative prior distributions can
be ‘learned’ after several MCMC runs with different experi-
mental data.
Taken together, besides the assessment of inter-

individual variability and co-variability of physiological
parameters, our presented approach additionally pro-
vides a very valuable tool for long-term characterization
of special populations as well as drug physicochemistry.

Methods
Physiologically-based pharmacokinetic modeling
PBPK models quantitatively consider the absorption, dis-
tribution, metabolization and excretion (ADME) of ex-
ogenous and endogenous substances at a very high level
of detail (Nestorov, 2007; Rowland et al., 2011; Schmitt &
Willmann, 2004; Willmann et al., 2003a). They mechanis-
tically describe all relevant processes based on a large
amount of prior physiological information. The models
consist of compartmental representations of all relevant
organs, tissues and the vascular system. The underlying
model structure which is based on generic distribution
models quantifies the mass transfer between the vascular
system and the organs (Poulin et al., 2001; Rodgers et al.,
2005; Rodgers & Rowland, 2006; Willmann et al., 2003b;
Willmann et al., 2004). Parameters in the PBPK model can
be divided into two types of parameters: (1) physiological
parameters such as organ volumes or blood flow rates
which are obtained from large collections of physiological
data integrated into the PBPK software database and (2)
substance-specific parameters describing the physico-
chemistry of a compound such as the molecular weight or
the lipophilicity. Moreover, the large amount of prior
physiological information constraints the number of inde-
pendent parameters in the PBPK model which need to be
identified (usually less than ten). The PBPK model of the
present work consists of more than one hundred ordinary
differential equations containing hundreds of parameters.
The clear separation of physiology and drug-specific pa-
rameters due to the mechanism-based approach and the
size of the model also allow the separated inference in
parameter-identification processes.
The pravastatin model considered in this work was

built with the software tools PK-Sim and MoBi. Aca-
demic licenses for both tools are available free of charge
and both PK-Sim and MoBi have been explained in detail
before (Eissing et al., 2011; Willmann et al., 2003a). The

anthropometric information of the patients regarding age,
weight and height further specifies the selection of physio-
logical parameters as provided in the software, which al-
lows a specific parameterization of the PBPK model.

Bayesian approach in combination with PBPK modeling
PBPK models can be parameterized for individuals with
defined anthropometries such as age, sex, weight or
height. Nevertheless, every model represents a mean value
model, assuming that a group of individuals with the same
anthropometry also has the same parameterization. How-
ever, even in-between defined groups of patients, parame-
ters such as organ volumes or blood flow rates, can show
substantial variation from individual to individual. Add-
itionally, the determination of substance-specific parame-
ters often contains uncertainties since such parameters are
determined ex vivo. Thus, substance-specific parameters
also vary, but in contrast to the individual parameters,
their value is the same for all patients. We call this type of
parameter global parameters, in contrast to the parame-
ters we call individual parameters, which need to be ran-
domized separately in every patient.
Both, variability and uncertainty in individual parame-

ters θI and uncertainty in global parameters θG influence
the PK of endogenous and exogenous compounds in an
organism. Uncertainty can be reduced for example by
increasing the number of experiments or by an opti-
mized experimental design. In contrast, inter-individual
variability is a characteristic property and cannot be re-
duced (Bernillon & Bois, 2000).
But how to determine such uncertainty and variability

in a group of patients? Classical parameter identification
relies on optimization-based approaches. They deter-
mine only the parameter vector with the highest prob-
ability to fit to the data, called maximum likelihood
estimator. In contrast, Bayesian approaches aim for the
identification of a probability distribution of the param-
eter vector. Furthermore, they also consider prior know-
ledge about the parameters, and ‘update’ this prior
knowledge by integration of new experimental data
based on Bayes’ theorem given by

p θjDð Þ ¼ p Djθð Þ:p θð Þ
p Dð Þ ð1Þ

The posterior distribution p(θ|D) combines prior
knowledge p(θ) about the parameter vector θ (θ∈ℝ P×1)
with the likelihood function p(D|θ). The likelihood func-
tion represents the closeness to the data D, where D=
{xi,k,ti,k} with i=1,. . .,Nk. xi,k represents the measurement
of individual k (k=1,. . .,K) at time point ti,k. The idea of
Bayesian approaches is to model any unknown param-
eter as random variable, since the true value of the
parameter is unknown. However, especially in high
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dimensional problems, the numerical determination of the
posterior is almost impossible. Therefore, several methods
have been developed which draw a sample from the pos-
terior distribution to estimate its probability density.
Markov chain Monte Carlo (MCMC) approaches are a
large group of sampling algorithms which can be divided
to a great extent into two groups: Metropolis-Hastings
(MH) algorithms (Hastings, 1970; Metropolis, 1953) and
the Gibbs sampler (Gelfand & Smith, 1990; Geman &
Geman, 1984). In contrast to classical Monte Carlo sam-
pling, MCMC samples from a special Markov chain which,
in our case, is constructed to have the posterior distribution
as its long-run stationary distribution (Andrieu et al., 2003).
For our combined Bayesian-PBPK approach, we con-

sidered a block-wise MH algorithm to sample from the
posterior distribution. In contrast to a single MH block
containing all parameters, dividing the parameter space
in blocks improves the convergence speed of the Markov
chain. Thus, one MH step was applied to every block of
parameters, conditional on knowing the other parameter
values which were not in this block. We considered K+1
main blocks, one for every individual and one containing
the global parameters. One MH step was performed as
follows:

i. Let θIk(n) be the parameter vector of the individual
parameters of individual k after n steps. Propose a
new parameter vector θIk’ by random sampling from
proposal density Q(θIk(n),∙ ).

ii. Generate u∈[0,1] uniformly distributed. Examine if

u ≤
p θI

0
k

��D; θG nð Þ
� �

:Q θIk nð Þ; θI 0
k

� �
p θIk nð Þ D; θG nð Þ�� �

:Q θI
0
k ; θ

I
k nð Þ� �� ð2Þ

iii. If true: θIk(n+1) = θIk’, else: θ
I
k(n+1)= θIk(n); => θk

(n+1)=[θIk(n+1), θ
G(n)].

In another MH block, only the global parameters θG

were sampled and the individual parameters θIk(n) were
fixed to the value of the last individual MH step:

i. Let θG(n) be the parameter vector of the global
parameters after n steps. Propose a new parameter
vector θG’ by random sampling from proposal
density Q(θG,∙ ).

ii. Generate u∈[0,1] uniformly distributed. Examine if

u ≤

Y
k

p θG
0 jD; θI nð Þ

� �� �
:Q θG nð Þ; θG0� �

Y
k
p θG nð Þ D; θI nð Þ�� �� �

:Q θG
0
; θG nð Þ� �� ð3Þ

iii. If true: θG(n+1)= θG’, else: θG(n+1)= θG(n); => θk
(n+1)=[θIk(n), θ

G(n+1)].

Notably, a truncated normal distribution centered
around the current value θ was chosen for the proposal
density Q(θ,∙ ), since sampling was constrained by physio-
logical constraints (θmin, θmax) of each parameter.
For every individual k, informative prior distributions

were defined as lognormal distributions for every of M
parameters for which enough literature information
about the population wide distribution was available
(Gelman et al. 1996). Otherwise, flat non-informative
prior distributions (for parameters P-M, remember that
θ∈ℝ P×1) were chosen:

p θkð Þ ¼
YM

m¼1
p θkmð Þ:

YP�M

n¼1
p θknð Þ:p σkð Þ ð4Þ

p θkmð Þ∝e
� logθm�μmð Þ2

Σ2m ð5Þ

p θknð Þ ¼
1

bn � an
if an ≤ θkn ≤ bn

0 else

(
ð6Þ

p σkð Þ∝ 1
σ2k

ð7Þ

The uncertainties σk represented the measurement
error of the experimental data D. Since their original
values were unknown they were also considered as
individual-specific random variables and have been
assigned a prior distribution. Notably, the prior distribu-
tions were assumed to be independent from each other,
since no information about co-variances was available at
the beginning. However, after several runs with the same
population as described in the introduction, prior distri-
butions may be updated with the information about the
co-variances between the parameters.
The likelihood function was defined with the help of a

least squares error model. Additionally it was assumed
that errors were distributed normal on a log-scale and
were independent.

log p Djθkð Þð Þ∝ � N: logσ2k

� 1
σ2k

:
XN

i
log xi;k

� � � log fk θk; ti;k
� �� �� �2 ð8Þ

f k(θk,ti,k) represents the time-resolved evaluation of the
PBPK model with the respective parameter vector θk.

Results: Inter-individual variability in pravastatin
pharmacokinetics
As an application example for the presented Bayesian-
PBPK approach we here considered the PK of the 3-
hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase
inhibitor pravastatin. This drug has been known for long
and its genotype mediated inter-individual variability is
well-characterized (Everett et al., 1991; Kivisto & Niemi,

ð2Þ
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2007; Serajuddin et al., 1991; Singhvi et al., 1990). There-
fore, this case study is well suited to demonstrate the ad-
vantages of our approach, in particular the assessment of
inter-individual variability as well as the identification of
homogenous subgroups even with small amounts of ex-
perimental data.
Pravastatin is a HMG-CoA reductase inhibitor which

lowers the cholesterol level within the body and thereby
prevents cardiovascular diseases. Compared to other
statins, it has a low lipophilicity (Serajuddin et al., 1991)
such that pravastatin uptake is mainly distributed by active
transporters (Kivisto & Niemi, 2007): On the one hand,
the organic anion transporting polypeptide (OATP1B1)
transports pravastatin into the intracellular space of the
liver and on the other hand the organic anion transporter
3 (OAT3) inserts pravastatin in the intracellular space of
the kidneys (Kivisto & Niemi, 2007). In the liver, prava-
statin is excreted by biliary excretion, leading to entero-
hepatic circulation, while tubular secretion is the main
pathway to excrete pravastatin from the kidneys (Hatanaka,
2000). Thereby, both routes of excretion are also per-
formed by an active transporter, the multidrug resistance-
associated protein 2 (MRP2) (Additional file 1: Figure S1).
MRP2 is also significantly expressed in the apical mem-
brane of enterocytes in the duodenum and jejunum. The
bioavailability of pravastatin is low due to an incomplete
absorption in the small-intestine (Kivisto & Niemi, 2007).
Notably, significant alterations in pravastatin PK are

associated to three different genotypes (SNP; c.521T→C,
p.Val174Ala) of SLCO1B1 encoding for OATP1B1
(Kivisto & Niemi, 2007; Niemi et al., 2006). This geno-
type determines the transporter activity (Lippert et al.,
2012); the CC genotype has decreased activity compared
to the normal TT genotype, which leads to higher prava-
statin concentrations in the body. In contrast, no such
effect is known for MRP2.
For our analyses we considered a previously established

and validated PBPK model of pravastatin (Lippert et al.,
2012) for an oral dose of 40 mg. In this model, active
transport processes have been established in the interstitial
(OATP1B1) and the intracellular space (MRP2) of the liver
as well as in the interstitial space of the kidneys (OAT3).
Additionally, MRP2 mediated transport was considered in
the gastrointestinal compartment of our model as well as
the intracellular space of the kidneys. Tissue specific en-
zyme activity was estimated by using gene expression data
as a proxy for protein abundance. Notably, this allows the
discrimination between organ-specific protein levels and
the global catalytic rate constant kcat (Meyer et al., 2012).
A luminal clearance reaction in the small intestine
accounted for the low bioavailability of pravastatin.
The experimental data was provided from previously

published studies (Niemi et al., 2006). Out of the dataset
of 32 patients, 10 patients have been chosen randomly

to lower computational costs (Figure 2). Nevertheless,
the three genotypes of OATP1B1 are distributed equally
in the chosen population. To describe the variability in
all relevant ADME processes, 8 individual parameters
together with 4 global parameters were chosen for the
Bayesian analysis (Table 1), which means the variation of
84 parameters in total. During the separation of the pa-
rameters into different blocks, it is very important to
know if parameters are correlated, since correlated param-
eters have to be sampled in one block (Smith et al., 1992).
Our block structure is driven by the clear separation be-
tween substance and individual physiology in the PBPK
model, therefore, we can assume that all parameters of dif-
ferent blocks are independent and uncorrelated (see also
the discussion)and we can assure that no lumped parame-
ters exist which depend on physiological and substance-
specific information.
With the established PBPK model, the combined

Bayesian-PBPK approach was processed and 300000 iter-
ation steps were calculated. The computation time was
3.6 s/iteration and was performed on a quad core i5 pro-
cessor running under Windows 7. Although the process
is independent from the initial guesses, parameter start
values have been estimated with the help of an identifi-
cation process with a single patient to reduce conver-
gence time (Additional file 2: Table S1).
During the first 150000 steps the parameter vectors

have not been sampled from the correct distribution.
For this so-called burn-in period the samples were
discarded. By subsampling 200 parameter vectors of
each patient from the remaining 150000 steps, an

Figure 2 Experimental data of ten patients which were
considered for the assessment of their inter-individual
variability. The patients have been chosen out of a dataset of 32
patients provided by Niemi et al. (Niemi et al., 2006) such that all
three possible genotypes of the hepatic uptake transporter OATP1B1
occurred equally.
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independent sample of the posterior distribution was
drawn. The resulting traces are exemplarily shown for one
patient (Figure 3). Notably, the four global parameters re-
main the same for every patient as described above, since
they only depend on the physicochemistry of the drug.
Next, the PK which described the inter-individual vari-

ability of the whole population and the mean PK of the
corresponding patients were simulated (Figure 4A). The
inter-individual variability was estimated by calculating
the 5–95% range of all patients. To demonstrate that the

depicted inter-individual variability did not already result
from large variability and uncertainty of the single pa-
tients, the 5% and 95% quantiles and mean values for three
exemplary patients were illustrated (Figure 4B). Addition-
ally, the patient-specific mean value curves show good
agreement to the experimental data (Figure 5). Notably,
beside the PK range which is kind of a ‘macroscopic’ result
of the posterior parameter distribution a lot of other infor-
mation can be obtained by directly analyzing the posterior.
The calculation of correlations between the 8 individual
parameters provided information about dependencies be-
tween the various parameters in the model. For example, a
strong correlation between Pint and kcat,M was observed
(Figure 6).
We next asked whether our approach can also be used

for the identification of specific subgroups within a popu-
lation. This is a challenging task in particular in early
phases of drug development, since only little prior know-
ledge may be available. Therefore, we asked if our
Bayesian-PBPK approach enabled the identification of
such homogenous groups of patients even if no additional
information was taken into account and considered the
transporter activities of MRP2 and OATP1B1 as a putative
source for subgroup stratification.
First, we performed a Shapiro-Wilk test for normal

distribution (Shapiro & Wilk, 1965) of the logarithmic
mean values of the 200 samples of every patient, since
protein expression has to be log-normally distributed

Table 1 Parameters to be varied in the coupled Bayesian-
PBPK approach

Parameter Unit Abbreviation Type

Intestinal permeability cm/min Pint Individual

Intestinal transit time min ITT Individual

Gastric emptying time min GET Individual

Luminal clearance factor μM/min CLlum Individual

kcat OATP1B1 (factor) - kcat,O Individual

kcat MRP2 (factor) - kcat,M Individual

Lag Time of enterohepatic
circulation

min EHClagtime Individual

Measurement error - sd Individual

Lipophilicity (logP) - lip Global

Unbound protein fraction % fu Global

Km OATP1B1 μM KmO Global

Km MRP2 μM KmM Global

Figure 3 Exemplary representation of a subsample of the posterior distribution. After a burn-in period of 150000 steps, a subsample of 200
parameter vectors was drawn for each patient. The figure shows the traces for all eight individual parameters exemplarily for one patient as well
as the four global parameters which were the same for all patients. The limits on the y-axis represent the physiological constraints (θmin, θmax).
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in homogenous groups of patients (Sigal et al., 2006;
Spencer et al., 2009). The results supported the hypothesis
of lognormal distribution for MRP2 (p>0.75) and gave a
strong indication of rejection of the hypothesis for
OATP1B1 (p<0.1). Visual inspection of the estimated ker-
nel densities (Bowman & Azzalini, 1997) of the logarith-
mic mean values (Figure 7) supported this, since two
groups of patients were monitored for OATP1B1 but the
density of MRP2 is clearly normally distributed. Thus,
with regard to OATP1B1 the patient mean values were

analyzed individually to examine which patient can be
assessed to which group (Figure 7). A clear separation into
two groups of four and six patients, respectively, was
found. It should be noted that this separation of the
OATP1B1 transporter activity was not an implicit prop-
erty of the model structure but emerged as a result during
the Bayesian-PBPK approach.
This grouping of patients was compared to the differ-

ent genotypes in OATP1B1, which is known to signifi-
cantly influence PK. This consideration led to a clear
separation of the two homozygous genotypes, which
demonstrated the capability of the approach to give
strong hints about the reasons for subgroup stratifica-
tion, even when only little experimental data of a small
population was available.

Discussion
In the present work, we introduced a combined Bayesian-
PBPK approach to quantify inter-individual variability in
groups of patients. In former work such approaches have
been mainly used in the context of toxicokinetics (Bois
et al., 2010; Jonsson & Johanson, 2002). For PK simulations
in virtual groups of patients, usually PBPK population
models have been considered (Willmann et al., 2007). One
drawback of combined Bayesian approaches so far has
been that many PBPK models were relatively small and not
fully physiology-based (Willmann et al., 2007). Due to
model reduction processes, parameters contain mixed in-
formation about the patients’ physiology and the substance.
This ambiguity in parameter information prevents ex-
trapolation to other drugs or groups of individuals. In con-
trast, the here used detailed mechanistic PBPK model is

Figure 4 Inter-individual variability of pravastatin pharmacokinetics. (A) Simulations were performed for each patient, simulating the
pravastatin PBPK model with each of the 200 parameter vectors which were subsampled out of the posterior distribution. Next, the 5–95%
quantile was calculated over all patients (with all 2000 samples) and plotted. Additionally, the mean value PK curve was monitored for every
patient together with the experimental data. (B) Simulations were performed for three exemplary patients by simulating the pravastatin model
with each of the 200 parameter vectors which were subsampled out of the posterior distribution. The 5% and 95% quantiles were calculated and
plotted out of the respective subsample for each patient, together with the mean value curve and the experimental data.

Figure 5 Correlation between predicted mean values and
experimental data. Mean concentration values at the same time
points as the experimental data were monitored for all patients.
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fully physiology-based and substance-specific parameters,
physiological parameters and genotype-specific parame-
ters are considered separately. The consideration of a
Bayesian approach in combination with such models en-
ables the inference of both physiological variations in a

population and intra-individual parameter uncertainty of
single patients and in contrast to the PBPK population
approaches even when little experimental data is available.
Generally, one challenge in the performance of the ap-

proach is the identification of the convergence of the
Markov chain. To prove that a finite sample of the pos-
terior is representative to the posterior distribution,
several tools have been developed. Most of them, how-
ever, are very difficult to use and have a relatively high
probability to fail (Cowles & Carlin, 1996). Moreover,
they were developed for less complex models and of
lower dimensionality. To decide after how many steps
the burn-in period ended, we visually inspected the
traces of the parameters in all patients. Nevertheless,
since this is a crucial point in MCMC, high quality con-
vergence analyses should be considered in future work.
The gold standard for the assessment of inter-

individual variability would be the identification of whole
patients’ physiology and the integration of as much ex-
perimental data as possible. In our model this would
lead to the identification of hundreds of parameters per
patient and thousands of parameters for a large popula-
tion. Due to computational restrictions we here chose
only a population of 10 patients and varied only several
parameters per patient, however, the parameters have
been chosen in a way such that all the important ADME
processes were represented. A possible concept for com-
putational reduction would be the parallelization of the
individual Metropolis-Hastings blocks, which would re-
duce the computation time by the number of patients if
enough computational power is available. Notably, the
presented concept is not constrained in its dimensional-
ity, therefore also the investigation of large populations
and hundreds of parameter is possible, which provides
great opportunities for the assessment of inter-individual
variability in clinical trials.
By using a block-wise MH algorithm, a standard MCMC

algorithm was chosen for this combined Bayesian-PBPK
approach. This enabled first analyses of the behavior of the
results as well as the simulation process itself under con-
sideration of large mechanistic PBPK models. The several
MH blocks allowed the separation between individual pa-
rameters and global parameters and reduced the conver-
gence time of the run since every block could converge
faster as if all parameters would have been varied in one
large block. In following investigations, different algorithms
such as adaptive approaches (Gilks et al., 1998; Haario
et al., 2005; Roberts & Rosenthal, 2009) could be tested to
identify the ones which for example further reduce conver-
gence time or improve the mixing of the Markov chains.
Furthermore, the use of Bayesian population approaches
could be an option to make better inferences about the
whole population, especially when only few patients are
considered (Bernillon & Bois, 2000; Bois et al., 2010).

Figure 6 Correlation matrix of all individual parameters.
Spearman correlation coefficients were calculated from the overall
subsample of 2000 parameter vectors for all parameter
combinations to identify structural connections. To improve the
visualization of the correlations the main diagonal was set to zero.

Figure 7 Identification and assignment of patient subgroups by
monitoring the logarithmic mean for each patient. A density
estimation of the logarithmic mean values supported the
identification of specific patient subgroups. The logarithmic mean
values of the transporter activities for MRP2 and OATP1B1 were
calculated from the subsample of the posterior and the kernel
densities were quantified. Since the density for OATP1B1 provided
the separation of the patient logarithmic mean values into two
groups, single values were also plotted with symbols. Additionally,
they were colored related to their specific genotype.
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Concerning the global parameters it has to be noted
that such parameters have to be chosen very carefully,
since they have by definition a large effect on all
obtained individuals. In our application example, the un-
bound protein fraction was defined as a global param-
eter. Since it is also determined by the composition of
the blood serum it can as such also be defined as indi-
vidual parameter. However, the unbound fraction also
depends on the lipophilicity of the drug, which is varied
in our approach. Therefore, both parameters had to be
sampled in the same MH block to consider the covari-
ance between these parameters (Bernillon & Bois, 2000;
Smith et al., 1992).
Advantages of using the highly-detailed mechanistic

PBPK model were demonstrated by analyzing the example
of pravastatin. Relationships between the physiological pa-
rameters were provided directly from the posterior and
could be easily identified, for example a strong correlation
was found between the enzyme activity of the MRP2
transporter and the interstitial permeability in all patients.
This results from a contrary transport of pravastatin in the
gastrointestinal tract, because MRP2 transports prava-
statin back into the intestinal lumen. Therefore, by the
analysis of the posterior, structural information about the
model can be inferred.
Furthermore, beside the derivation of structural informa-

tion about the PBPK model the identification of clinically
relevant subgroups within the population is possible. By in-
vestigating the logarithmic mean values of the single pa-
tients with a Shapiro-Wilk test the assumption of more
than one homogenous group was confirmed for OATP1B1.
Additionally, the two groups of patients were assigned to
different homozygous genotypes. This demonstrates the
ability of our approach to make physiological inferences
with very little prior information and only few individ-
uals. The heterozygous genotype could not be assigned
to an own group. However, Niemi et al. also showed that
a significant separation of the heterozygous genotype is
not possible (Niemi et al., 2006). Notably, the separation
of different subgroups itself may also be possible with
smaller models. However, the use of a mechanistic PBPK
model can point out the relation between subgroup and
genotype which makes our Bayesian-PBPK approach a
suitable alternative to rather phenomenological methods
(Link et al., 2008).

Conclusions
Altogether, our presented Bayesian-PBPK approach pro-
vides many opportunities for the assessment of inter-
individual variability in groups of patients. The advantages
of MCMC compared to classical population PK lie in its
usability even when only little prior information or experi-
mental data is available. Especially for early phases of clin-
ical development the identification of subgroups as well as

special physiological properties can increase both patient
safety and the level of information about the benefit-risk
profile of a new drug candidate. The full physiological
PBPK models allow the inference of physiological, drug-
specific and genotype-specific knowledge separately, which
therefore bears large extrapolation capacity to both, other
drug candidates and populations. This will be greatly sup-
ported by the creation of a large database, where posterior
knowledge about physiological parameter distributions can
be collected iteratively. This would allow the consideration
of posterior distributions of former Bayesian-PBPK runs as
prior information in new runs, providing a framework for
improving a mechanistic understanding of drug action,
inter-individual variability and genotype-phenotype corre-
lations with the help of growing amounts of different drugs
or different populations.

Additional files

Additional file 1: Figure S1. Schematic representation of the
enterohepatic circulation and the key transporting enzymes in pravastatin
pharmacokinetics. It has to be noted, that this is only a simplified
consideration for a better representation of the processes. However, the
enterohepatic cycle and the transporting enzymes are integrated into the
mechanistic whole-body physiologically-based pharmacokinetic model.

Additional file 2: Table S1. Parameter start values used for the
initialization of the combined Bayesian-PBPK approach.
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