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A genome-scale map of DNA methylation turnover
identifies site-specific dependencies of DNMT
and TET activity
Paul Adrian Ginno 1,8, Dimos Gaidatzis1,2,8, Angelika Feldmann1,5,8, Leslie Hoerner1, Dilek Imanci1,6,

Lukas Burger 1,2, Frederic Zilbermann1, Antoine H. F. M. Peters1,3, Frank Edenhofer4, Sébastien A. Smallwood1,

Arnaud R. Krebs1,7 & Dirk Schübeler 1,3✉

DNA methylation is considered a stable epigenetic mark, yet methylation patterns can vary

during differentiation and in diseases such as cancer. Local levels of DNA methylation result

from opposing enzymatic activities, the rates of which remain largely unknown. Here we

developed a theoretical and experimental framework enabling us to infer methylation and

demethylation rates at 860,404 CpGs in mouse embryonic stem cells. We find that enzy-

matic rates can vary as much as two orders of magnitude between CpGs with identical

steady-state DNA methylation. Unexpectedly, de novo and maintenance methylation activity

is reduced at transcription factor binding sites, while methylation turnover is elevated in

transcribed gene bodies. Furthermore, we show that TET activity contributes substantially

more than passive demethylation to establishing low methylation levels at distal enhancers.

Taken together, our work unveils a genome-scale map of methylation kinetics, revealing

highly variable and context-specific activity for the DNA methylation machinery.
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DNA methylation is a well-studied epigenetic mark in
mammals, where it plays critical roles in the context of
genomic imprinting, chromatin architecture, and gene

regulation1–4. While methylation maps in mouse and human cells
have provided valuable information regarding the genomic dis-
tribution of this mark5,6, they do not reveal the actual dynamics
of this DNA modification. This creates a gap in our under-
standing of not only how methylation patterns are actually
achieved, but on their stability, a property required for them to
impart long-term epigenetic effects. Indeed, actual activity can
only be measured upon acute disruption of one pathway, coupled
with time-resolved measurements at high resolution and the
appropriate analytical framework.

The methylation machinery can be divided into the de novo
methylation enzymes DNMT3a and DNMT3b7,8 and the main-
tenance methyltransferase DNMT19,10. All members of the Dnmt
family are essential for mammalian development8,11. Conversely,
DNA methylation can be lost either by incomplete maintenance
following replication, referred to as passive demethylation12, or
actively via the ten–eleven translocation (TET) family of dioxy-
genase enzymes13–17. The TET family consists of three proteins in
mice, TET1/2/3, with TET2 likely responsible for the majority of
hydroxymethylation in embryonic stem cells (ESCs)18. Active
demethylation by the TET family is thought to occur through
successive oxidation of the methyl group on CpG dinucleo-
tides19–21, culminating in excision through the
base excision repair pathway13. While absence of distinct
members of the TET family is permissible for pluripotency and
embryogenesis22,23, reduction in TET activity has been shown to
impact differentiation24–26. Importantly, loss of all TET enzymes
is incompatible with embryogenesis27, indicating a critical role for
these proteins in differentiation and lineage specification.

While the division of labor between de novo and maintenance
methylation predominantly describes DNMT3 and DNMT1
activities, respectively, evidence exists suggesting this distinction
is not absolute. For example, loss of DNMT3a and DNMT3b
leads to progressive loss of DNA methylation over many cell
passages28. Recent work has also demonstrated that DNMT1 can
display de novo activity in oocytes upon UHRF1 mislocalization
and loss of Stella29. Regardless, the association of DNMT1 with
the replication fork30, the loss of 90% methylation in its
absence31, the autoinhibitory function of its CXXC domain32, and
much higher preference for hemimethylated substrates33,34 all
clearly suggest its predominant function in somatic cells is
maintenance.

Previous work has sought to determine methylation activities
empirically at CpG sites in vitro35 and in cultured cells34,36, as
well as theoretically37–39. These studies have revealed several
properties of the enzymes responsible for depositing these marks,
from presence of non-CpG methylation34,35 to the inference of
methylation and maintenance rates for individual CpGs37, as well
as DNMT1 processivity38. More recently, these models have been
extended and adapted with the aim of describing population
methylation dynamics40–42. While informative in their own right,
their genomic scope is limited or they do not quantitatively infer
the rates of all three processes at the individual CpG level,
including de novo and maintenance methylation, as well as active
demethylation.

Here, we combine acute and stable genetic ablations of
methylating and demethylating enzymes with high-coverage
quantitative measurements of dynamic DNA methylation over
time. Dynamical modeling of the resulting datasets enables us to
infer actual rates of methylation and demethylation for individual
CpGs at the scale of the genome. Our work not only profiles
kinetics of methylation, but also reveals that methylation and
demethylation rates are highly context specific, implicating

disparate chromatin processes in shaping methylome dynamics
in ESCs.

Results
A dynamical model and cellular system to infer turnover rates.
DNA methylation is a dynamic process, resulting in the average
methylation patterns observed in various cell types. Building on
previous conceptual work41,43, these methylation averages result
from opposing activities of enzymes that apply and remove DNA
methylation (Fig. 1a). Here, we set out to quantify these two
activities at the CpG level, namely the rate of methylation (kme)
and the rate of demethylation (kde). We define kme as the rate,
whereby an unmethylated cytosine (C) is converted to a methy-
lated cytosine (5mC), while kde is the rate at which 5mC is
converted to C. Eventually steady state is reached where the
number of conversion events in both directions per unit time is
equal. These equilibrium methylation levels will henceforth be
referred to merely as ‘steady state’ (Fig. 1b). For example, if 50%
methylation is measured at steady state, this means that kme and
kde are equal. Viewing DNA methylation through this lens pro-
vides an explanation for population methylation levels. For
example, a 75% methylated cytosine is subject to higher kme than
kde, while a 25% methylated cytosine is exactly the opposite
(Fig. 1b). However, different rate values can give rise to the same
average methylation level, as long as the ratio of the two rates
remains unchanged (as shown for 50% methylated cytosines in
Fig. 1b). This implies that such methylation dynamics would be
masked by simply measuring average methylation levels.

Enzymatically, we attribute kme to the combined activity of the
de novo methyltransferases DNMT3a and DNMT3b. In contrast,
kde encompasses both active and passive demethylation, governed
by the TET1/2/3 proteins and imperfect maintenance by
DNMT1, respectively. In presentation of the modeling here, we
use kme and kde to outline the processes, while below we will refer
to the activities by more general nomenclature, namely as “de
novo methylation rate”, “passive demethylation rate”, and “active
demethylation rate”. It is important to stress here that “passive
demethylation” in this context is synonymous with DNMT1
infidelity. Moreover, we use the term turnover to reflect different
absolute rate combinations given an identical steady state. Using
the examples of 50% methylated CpGs in Fig. 1b, the CpG on the
left would have higher turnover than the CpG on the right. This
property can only be revealed by acute pathway disruption
coupled with time-resolved measurements (Fig. 1c).

To discriminate between active and passive demethylation
processes, we genetically removed all three TET enzymes, leaving
DNMT1 fidelity as the sole factor influencing kde (Fig. 1a). Using
an existing CRISPR design44, we mutated all six Tet alleles in
mouse ESCs, causing frameshifts of the proteins to create
catalytically dead enzymes (Supplementary Fig. 1a). This Tet
Triple Knockout (TTKO) ESC line proliferates normally as
previously shown27 and while it retains 5mC signal, hydro-
xymethylation is lost as observed by slot blotting with a sensitive
5hmC antibody (Supplementary Fig. 1b).

The knockout of all Tet genes was performed in a particular
genetic background that enables inducible removal of de novo
methylation. More specifically, we adapted an existing conditional
knockout system by breeding mice where catalytic exons for both
alleles of Dnmt3a and Dnmt3b are functional, but flanked by loxP
sites45,46 (Supplementary Fig. 1c, d). From these mice, we
generated a stem cell line homozygous for both alleles to allow
genetic deletion by the Cre recombinase (Fig. 1d). While we
initially attempted to excise the fragments via inducible Cre
activity, this was hindered by premature deletion events due to
leaky recombinase activity (data not shown). To circumvent this
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limitation, we opted for protein transduction, directly adding Cre
protein to cells in culture. This system takes advantage of an
engineered Cre recombinase that enters the nucleus via a
lipophilic tag at the N-terminus47. This proved highly efficient,
as nearly 90% of alleles for both enzymes were removed
(Supplementary Fig. 1e). While the genotypic proportions of
intact alleles will differ between cells, both DNMT3a and
DNMT3b signal were undetectable by western blot post Cre
transduction (Supplementary Fig. 1f), suggesting most of these
functional enzymes were removed. Transcript and most impor-
tantly protein levels of DNMT1 and UHRF1 remained compar-
able upon loss of Tet1/2/3 and Dnmt3a/b, arguing that the
maintenance machinery is intact in these genetic backgrounds
(Supplemental Fig. 1g, h).

Using the TTKO line, we measured DNA methylation 0, 4, 8,
10, 13, 17, and 29 days post Dnmt3a/3b deletion and focused
initially on selected genomic sites with amplicon bisulfite

sequencing (Fig. 1e, f, see “Methods”). For this, we assayed 88
genomic regions with disparate steady-state methylation levels,
representing TF binding sites, as well as fully methylated regions
and promoters (Supplementary Table 1, see GEO submission).
Across the time course, methylation levels declined reflecting the
absence of de novo methylation activity. Loss of methylation was
reproducible (Fig. 1e) and the deep coverage enabled us to
analyze 405 CpGs in detail (Supplementary Table 3, see GEO
submission and methods for filtering). These data indeed reveal
that methylation decays over the time course of the experiment,
demonstrating that rate assignments should be possible in this
system.

In order to infer de novo methylation and passive demethyla-
tion rates from the data, we devised a dynamical model for DNA
methylation that mimics the loss of DNMT3 over time (see
“Methods” for detailed description). Starting from a framework
used previously to describe DNA methylation dynamics43, we
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Fig. 1 A dynamical model and cellular system to infer methylation and demethylation rates. a Graphic representation of methylation and demethylation
rates. The orange and green arrows represent kde and kme, respectively. The enzymes responsible for influencing rates are noted. The ratio of rates
determines overall methylation levels (Equation (1) below). b Example steady-state methylation levels resulting from different kme (green) and kde (orange)
combinations. Higher methylation levels are established when kme is larger than kde, while low methylation levels represent the opposite. CpGs with the
same steady state can have different rates as shown here for 50%. c Theoretical trace of methylation loss over time post Cre transduction for two CpGs
with similar steady states. d Cellular system for genetic ablation of kme. Dnmt3a and Dnmt3b with loxP sites flanking catalytic exons. Cre protein
transduction allows for efficient genetic deletion of all four alleles. e Heatmap of methylation levels for 405 CpGs as measured by amplicon bisulfite
sequencing. The left half represents methylation levels for triplicate experiments measured 0, 4, 8, 10, 13, 17, and 29 days post Cre transduction. The right
half represents triplicates for mock-treated samples. f CpGs were binned based on starting methylation in 10% increments, and the mean decay over
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exponential dampening factor ke for affecting kme over time (Eqs. (2)–(4)). See text and “Methods” for details.
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modified the rate equation to simulate exponential loss of
DNMT3 over the course of the experiment. We achieved this by
including an exponential dampening factor for kme with the
reasoning that the kme gradually decreases after genetic deletion
(Fig. 1g). This is an essential consideration, because Dnmt3 alleles
are not deleted instantaneously and protein/RNA are lost as a
function of time. This effect can be observed by inspection of the
raw data. Instead of following an exponential decay, an
attenuation in methylation loss can be seen at the beginning of
the time-course experiment (Fig. 1f). The rate of DNMT3 loss is
governed by one single parameter ke that we set to reflect various
aspects of the cellular system. Given that average protein half-life
has a median of 46 h48 and doubling time is 16 h in mESCs49,
dilution via cell division is likely the largest contributing factor to
DNMT3 loss. If the RNA and Dnmt3 alleles would disappear
instantaneously, the DNMT3 loss over time would occur at a
maximum rate of log(2)/(16/24)= 1.03, in units of days. Because
neither RNA nor genetic loss of Dnmt3 is an instantaneous
process, we set ke to half of the theoretical maximum rate. Taken
together, we designed a theoretical and experimental system to
infer methylation and demethylation rates in the genome that is
reproducible and can account for methylation patterns observed
in ESCs.

Rate inference reveals the identifiable landscape. Any measure
of decay kinetics is limited by detection accuracy and temporal
resolution. For example, it is intrinsically more difficult to capture
extremely fast kinetics or a decay that starts at very low signal
intensity (i.e., low methylation levels). We thus devised a rate
inference method that allowed us to both fit rates optimally and
determine the confidence at which they can be determined. To
this end, we coupled the dynamical model for DNA methylation
to a statistical error model (Supplementary Fig. 2a). We then used
Bayesian statistics to calculate maximum likelihood estimates, as
well as credible intervals for the rates (see “Methods”).

One advantage of this rate inference strategy is that it can
provide a complete picture of the assay’s detection limits. For any
given combination of kme and kde, we can determine our ability to
infer either kme or kde. Applying this to all possible rate
combinations resulted in the identifiable landscape (Fig. 2a).
Overall, kme is more difficult to infer than kde because the latter is
closer to what we are actually measuring. The resulting identifiable
landscape revealed a central area of high-confidence parameter
estimation (Fig. 2b, case 1), and three areas where rate inference is
more difficult (Fig. 2b, cases 2–4). As expected, extreme
combinations are hard to retrieve. The most difficult is case 2,
representing unmethylated CpGs (high kde and low kme). These
CpGs are unmethylated throughout the time course and thus
provide no information. Additionally, 50% methylated cytosines
with very low rates would be difficult to infer (Fig. 2b, case 3), as
very little decay is observed throughout the time-course coupled
with the higher variability in measuring 50% methylated cytosines.
Perhaps least intuitively, in the case of highly methylated
cytosines, only kme was difficult to infer (Fig. 2b, case 4). While
decay (kde) is easily quantifiable at high methylation levels, hitting
the methylation ceiling close to 100% prohibits the exact inference
of kme.

Many of the cytosines covered in our amplicon dataset revealed
rate combinations that we could infer with high confidence
(Fig. 2c, blue points). Indeed, many of the problematic inference
zones were not represented. For example, CpGs with a steady-
state methylation level of 50% but very low turnover (bottom left
corner of Fig. 2c, i.e., very low rates) were rare. It is important to
note that while these rate combinations are inferred with lower
confidence, they still would be detectable within these regions, as

can be seen for CpGs with very low steady-state methylation
levels (Fig. 2c, bottom right red and black points). Taken as a
whole, our inference method is capable of accurately discriminat-
ing regimes where rates can be inferred, and the majority of the
cytosines we profiled reside in high-confidence regions.

Rate inference at the genomic scale. At first glance, determining
methylation and demethylation rates at the genomic scale appears
straightforward, as it requires bisulfite sequencing of all samples
for the time-course experiment. However, the deep coverage
required for proper rate assignments (minimum of 50× coverage
for 24 samples) makes this cost prohibitive unless genome
complexity is substantially reduced. To accomplish this, we used
the SureSelect system that employs RNA baits homologous to
297,000 genomic regions (Fig. 3a, see “Methods”), predesigned to
enrich for regulatory regions and disease relevant loci. This
enrichment was apparent when inspecting raw reads (Fig. 3a) and
we confirmed the observation at the global level, with nearly 90%
of all mapped reads localizing within 200 bp of bait regions
(Fig. 3b). In total, this resulted in a mean of 234 million reads
mapped per library, sufficient coverage for high-confidence rate
inference at 860,406 CpGs, representing 151k unique genomic
locations (~51% of SureSelect baits) and ~4% of CpGs in the
mouse genome (Supplementary Table 4, see GEO submission).

Methylation levels decayed steadily over time after Dnmt3
deletion (Supplementary Fig. 3a). Variance in methylation
measurements could be predominantly explained by random
sampling of reads from a binomial distribution, whereby variance
in methylation levels for cytosines scaled with coverage as
expected from random sampling50 (Supplementary Fig. 3b).
Patterns of methylation across CpGs measured at the given
sampling time points were highly reproducible across replicates
with clustering driven predominantly by the time point analyzed
(Fig. 3c). Additionally, for CpGs quantified using both amplicon
sequencing and SureSelect (259 of 405), methylation levels were
well correlated (R= 0.98, Supplementary Fig. 3c). Demethylation
rates for ~40% of the cytosines could be assigned with high
confidence (860k of 2.1 × 106), revealing that passive demethyla-
tion rates vary widely. On average demethylation rates show an
interquartile range of 1.7 fold, but CpG demethylation rates can
vary up to 158 fold, exposing that CpGs sharing the same steady-
state methylation levels can have highly different kinetics of
methylation loss (Fig. 3d, right). Importantly, while a significant
proportion of the probe design represents active regulatory
elements, ~40% of regions we assay with SureSelect lack DHS
signal in ESCs (Supplementary Fig. 3d). Thus, CpGs are
represented in active regulatory regions, as well as inaccessible
intergenic domains. In summary, we reproducibly inferred rates
of methylation and demethylation for nearly 1 million CpGs in
mouse ESCs. By observing different kinetics for shared steady
states, our data uncover the dynamic aspect of the methylome
normally masked in steady-state measurements.

Rate combinations reveal context-specific activity. Having
extended our rate inference to the genomic level, we first inter-
rogated the relationship between rates of de novo methylation
and passive demethylation (Fig. 4a). The relationship between
these rates is complex, suggesting that genomic context can have
different implications for de novo and maintenance methylation.
As a reference, steady-state methylation levels are depicted in
Fig. 4a by 45° lines, as the ratio between rates is constant along
each line.

Upon closer inspection of the rate relationship, two particular
patterns emerge. First, CpGs with a steady-state methylation
above 70% vary greatly in turnover (Fig. 4a, upper arm, points in
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the upper left above the 70% methylation line). This suggests a
positive relationship between de novo methylation rate and
passive demethylation at highly methylated CpGs (see below).
Second, CpGs with average methylation below 50% have elevated
passive demethylation coupled with variable de novo methylation
rates (Fig. 4a, lower arm, points to the lower right of the 50%
methylation line). This suggests that low methylation levels
observed in genomic methylation maps are a result of both an
increase in passive demethylation, as well as a reduction in de
novo methylation. Importantly, these relationships remain when
accounting for inference confidence levels (Supplementary
Fig. 4a). Additionally, regions with higher turnover tended to
reside in earlier replicating regions of the genome (Supplementary
Fig. 4b) in agreement with their euchromatic context51.

Next, we asked if these local differences in enzymatic activities
could reflect other features of the epigenome. Using a published
classifier52,53 of chromatin states in mouse ESCs53,54, we assigned
each CpG to a particular genomic context defined by TF
occupancy and combinations of histone modifications (Fig. 4b).
This revealed that particular genomic environments overlapped
with specific rate regimes. For example, CpGs outside of genes
and regulatory regions (H3K9me3+) show high steady-state
methylation, yet surprisingly variable rate combinations. While
also highly methylated, CpGs residing in active gene bodies
(H3K36me3+) show higher turnover. In contrast, highly
methylated intergenic CpGs tend to have reduced passive
demethylation and de novo methylation rates, revealing higher
DNMT1 fidelity at these regions coupled with reduced DNMT3
activity.

CpGs within active regulatory elements and at insulator
regions (CTCF+), in contrast, have reduced overall methylation
levels as shown previously5, but reveal an intriguing relationship
in regards to total activity. Passive demethylation is elevated
indicating reduced maintenance by DNMT1 at active regulatory
elements, including strong enhancers (NANOG+, OCT4+,
H3K27Ac+, H3K9Ac+, and H3K4me1/3+). At the same time,
de novo methylation activity varies widely in these regions,
potentially indicating that transacting factors present at specific
regulatory regions may affect DNMT3 activity differently (see
below). While many promoter CpGs (H3K4me3+, H3K27Ac+,
and H3K9Ac+) are also present in this regime, their rates cannot
be determined with high confidence as their steady-state
methylation levels are too low to allow for robust kinetic analysis
(Supplementary Fig. 4a). In summary, our results reveal that
methylated cytosines have both highly variable methylation
kinetics and a surprising abundance of sites with high rates of
passive demethylation that is normally masked by de novo
methylation activity.

Site specificity of active demethylation by the TET enzymes.
Having quantified passive demethylation at the genome scale, we
sought to determine the contribution of TET-dependent, “active”
demethylation at these CpGs. More specifically, we sought to
interrogate how TET proteins affect demethylation rates at the
CpGs we measured previously. Our model framework would
predict that we can determine the change in demethylation rates
by comparing steady-state methylation levels between ESCs with
and without TET proteins (Supplementary Fig. 4c). We therefore
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measured methylation levels at these CpGs in the presence of
TET1/2/3 and observed an almost unidirectional increase in
methylation levels when TET proteins are absent (Fig. 4c). This
observation is indeed in agreement with the defined role of TETs
as demethylases, and our model assignment of these proteins as
demethylases. In this context, we refer to the contribution of
TETs to the demethylation rate as TET activity. More specifically,
this number represents the fold change in kde when TETs are
present (in log2 space). To validate rate predictions in an inde-
pendent manner, we performed amplicon bisulfite time-course
experiments following Dnmt3 deletion in the parental cell line
with TET activity (Supplementary Table 2). As expected, kde
values determined by the time course showed very high correla-
tion (R= 0.88) to those predicted using only changes in steady-
state methylation (see Supplementary Fig. 4c–h and “Methods”),
representing a strong validation of our modeling strategy.

The presence of TET activity drastically affected demethylation
rates throughout the genome, increasing them at least threefold
for half of all CpGs analyzed (~476,895 CpGs, Fig. 4c inset). This
effect is most apparent at enhancer elements, followed by
polycomb marked regions and gene bodies (Fig. 4d). Taken
together, this revealed that TET proteins have a considerable
influence on the demethylation rate. This contribution in ESCs

tends to be greater than DNMT1 infidelity and is highest at active
distal regulatory elements.

Next, we asked whether active and passive demethylation scale
in a similar fashion. While TET activity is highest in regions with
elevated passive demethylation (Supplementary Fig. 4i), the
relationship is complex, as rates of passive and active demethyla-
tion vary widely between individual CpGs (Supplementary Fig. 4j).
While TET activity reaches its maximum in active regulatory
elements and bivalent domains, regions with the highest levels of
passive demethylation reveal little TET activity. Several of these
CpGs indeed overlap closely with TF binding sites as can be seen
for CTCF (Fig. 4b, Supplementary Fig. 4i, j), suggesting that
continuous presence of TFs inhibits both TET and DNMT1
activity directly at the site of binding. In contrast, heterochro-
matic intergenic regions generally have both low active and
passive demethylation. We conclude that CpGs reside in different
rate regimes as a function of genomic context, and TET activity
has an overall effect of increasing demethylation rates throughout
the genome, but particularly at enhancers.

Transcription correlates with methylation turnover. CpGs with
particularly high steady-state methylation levels (≥70%) displayed
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a remarkable linear relationship between de novo methylation
and passive demethylation rates (Fig. 5a, red points). We rea-
soned that CpGs with high steady-state methylation but different
rates of turnover might be residing in regions of different tran-
scriptional activity (Fig. 4b). To address this, we grouped genes
based on their transcriptional output and tallied steady-state
methylation, de novo methylation rate, and active/passive
demethylation rate as a function of relative position in the gene
(Fig. 5b, Supplementary Fig. 5a). This revealed that total
methylation turnover increases with transcriptional activity and
in turn argues that the high overall methylation observed at genes
is in constant flux as a function of transcription. This is also
evident for individual rates as methylation by DNMT3 increases
with transcriptional output (Fig. 5b). Recruitment of de novo
activity in genes likely involves H3 methylation at lysine 36. The
presence of this modification increases with transcriptional rate
and it is recognized by DNMT3b55, which has been suggested to
be functionally required for genic methylation56.

The requirement for continuous de novo methylation may
arise due to higher demethylation rates at transcribed genes. In
addition to de novo methylation rate, both active and passive
demethylation increase in gene bodies with transcriptional

output, although to a lesser degree. Importantly, however,
measured turnover rates are largely independent of whether
CpGs reside in introns or exons (Supplementary Fig. 5b).
Furthermore, this signal is unlikely to result from increased
accessibility in transcribed gene bodies, as we do not observe a
higher prevalence of DNAseI hypersensitive sites in highly
transcribed gene bodies (Supplementary Fig. 5c). However, we
do observe increased histone turnover as revealed by H3.3 ChIP
signal57 (Supplementary Fig. 5c). This links transcription coupled
deposition of replication-independent histones58 with reduced
DNMT1 fidelity. In summary, transcription coincides with high
turnover of DNA methylation at genic regions.

Heterochromatin and euchromatin show opposing turnover
rates. CpGs with high steady-state methylation but variable
turnover also exist outside of genic regions, allowing us to explore
their relationship with other chromatin marks. This revealed that
CpGs with high methylation but low turnover were progressively
enriched for the heterochromatic marks H3K9me2 and
H3K9me3 (Fig. 5c, Supplementary Fig. 5d, e). This positive cor-
relation between DNMT1 fidelity and presence of H3K9
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methylation marks is in line with the known interaction of
methylated H3K9 with UHRF159, an accessory factor required for
maintenance methylation60,61.

Interestingly, a subset of highly methylated cytosines display
both high turnover and low H3K36me3. As these CpGs overlap
with regions of local enrichment for H3K4me1 and H3K27ac
(Fig. 5c), we reasoned that these particular CpGs might be
positioned proximal to active regulatory regions despite being
hypermethylated. Indeed this is the case (Fig. 5d), as CpGs that
border regulatory regions are under a regime of elevated
methylation turnover. It has been shown previously that CpGs
residing in the proximity of CpG island shores can exhibit variable
methylation levels62,63. Our data now argue that these CpGs are
under a regime of higher turnover even in a cell state, where they
are highly methylated. We conclude that hypermethylated CpGs
can undergo high methylation turnover, when proximal to
regulatory regions or positioned within highly active genes.

Transcription factor-specific effects on methylation kinetics.
Transcription factor binding coincides with reduced DNA
methylation levels observed at regulatory regions, such as
enhancers and CpG islands5. To ask how methylation turnover

relates to TF presence, we used DNAseI accessibility as a surro-
gate for TF binding. This revealed that de novo methylation
globally decreases with increased accessibility, while both active
and passive demethylation increase (Fig. 6a). This shift in rates
readily explains the established low methylation levels at cis-
acting sequences and supports a model where TF binding to
regulatory regions reduces DNMT1 and DNMT3 activity, while
increasing that of TETs.

To determine if this effect is transcription factor specific, we
used publicly available genome-wide binding data for 15 TFs in
mouse ESCs and visualized methylation turnover as a function of
proximity to bound distal motifs (see “Methods” for ChIP data
processing). For several factors, including CTCF, ZC3H11A, and
REST, the general reduction in maintenance and de novo
methylation was readily apparent surrounding bound sites
(Fig. 6b). However, while de novo and maintenance methylation
are generally reduced in the vicinity of binding for all factors,
discrete patterns were much less apparent for the other 12 TFs.
This heterogeneity is likely caused by co-occupancy, particularly
in the case of pluripotency factors64. In contrast, the unique
chromatin structure of both CTCF65,66 and REST66 bound sites
may enhance rate signatures at bound regions (see below). Of
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note, TCFCP2I1 and ESRRB both show subtle patterns of an
opposite effect, namely increased de novo and maintenance
methylation rates at their motifs (Supplementary Fig. 6b, c).
Importantly, this effect is present at sites of binding that are not
hypersensitive to DNAseI digestion, suggesting that it is less likely
a result of adjacent bound factors. In the case of ESRRB, increased
de novo methylation at bound sites seems compatible with the
observation that it can bind to methylated enhancers67,68.

Active demethylation on the other hand followed a more
general consensus, namely highest levels of TET activity adjacent
to bound sites (Fig. 6b, right). This was evident for all 15
transcription factors analyzed, with OCT4, SOX2, and NANOG
revealing up to a 16-fold increase in demethylation rate as a
function of TET activity. As the 15 TFs profiled represent
members from distinct families, this might indicate that TET
proteins are less likely to be specifically targeted through direct
interaction, but rather through preferable binding to open
chromatin. Indeed TET activity generally increases with increas-
ing accessibility, as suggested by its contribution to the
demethylation rate adjacent to bound motifs at distal sites (Fig. 6a
right, Fig. 6c). We then reasoned that if these patterns result from
TF presence, signal strength should increase as a function of
binding. For several factors, including CTCF, ZH3H11A, OCT4,
and NANOG, the patterning of rates became more striking with
increased ChIP signal (Supplementary Fig. 6a). De novo
methylation rates tend to decrease, passive demethylation
increases, while active demethylation increases (OCT4 and
NANOG) or becomes specifically localized adjacent to the TF
in question or in linkers between nucleosomes.

We conclude that regulatory regions show a reduction in de
novo and maintenance methylation, and increase in active
demethylation as the most prominent pattern. While this is a
function of TF binding, some factors reveal different trends
suggesting TF-specific influence on these rates.

Nucleosome occupancy contributes to local turnover. Having
interrogated rates as a function of TF binding, we next asked how
methylation turnover changes at highly positioned nucleosomes.
In the case of the insulator protein CTCF, bound sites show
reduced DNMT1 fidelity and DNMT3 activity compatible with a
model of steric hindrance, where TF binding impedes both de
novo and maintenance methylation activities (Fig. 6c). Impor-
tantly, the region of enhanced passive demethylation included not
only the binding site itself, but extended ~250 bp on both sides of
the binding site. We reasoned this may be due to highly posi-
tioned nucleosomes adjacent to the bound factor. Indeed, using a
high-coverage MNase data set that we generated previously69,
highly phased nucleosomes around CTCF sites closely overlap
with the region of increased passive demethylation and decreased
de novo methylation (Fig. 6c, Supplementary Fig. 6d). Indeed,
this pattern includes nucleosomes bordering the binding site and
extends until the linker between the first and second nucleosome
is reached. These observations suggest that both CTCF binding
and bordering nucleosomes reduce DNMT activity. Active
demethylation, in contrast, is very low at the motif itself but
increases directly adjacent to it and subsequently decreases over
the bordering nucleosomes in a fashion similar to DNMT3. Also
apparent is that both active demethylation and de novo methy-
lation increase in linkers between nucleosomes and immediately
adjacent to CTCF. Taken together, our findings suggest that both
factor binding and positioned nucleosomes inhibit DNMT1 and
DNMT3, while accessibility is a strong determinant for active
demethylation (Fig. 6d). These activities, in turn, likely account
for the complex and cell type-specific patterns of reduced
methylation levels observed at regulatory regions.

Discussion
Here, we established a theoretical and experimental framework to
quantify local methylation and demethylation activity at single-
CpG resolution throughout the genome of mouse ESCs. Studying
methylation as a continuous process reveals that methylation
levels do not predict methylation turnover, which can differ over
two orders of magnitude. This finding was made possible by
generating inducible deletions of both de novo methyltransferases
in a cellular background, where we removed all three TET
enzymes. Quantification of the methylation kinetics in this Penta-
knockout over time at high coverage enabled us to infer actual
rates of activity at individual CpGs. It revealed that de novo
methylation, as well as passive and active demethylation activities
are affected by local variations in chromatin, transcriptional
activity, and TF binding, leading to complex rate patterns that
readily explain steady-state methylation levels.

Our study builds on and extends previous conceptual and
empirical attempts34,37,38 at quantifying methylation activity in
different genomic contexts. However, our approach distinguishes
itself in several aspects. First, fitting rate combinations using the
dynamical model coupled to an error model as a framework to
infer activity is, to our knowledge, the first of its kind. One major
advantage of this modeling approach is that it allows us to resolve
which rate combinations can be inferred in this system. While the
inability to fit rates for CpGs at exceedingly low methylation
levels is obvious, fitting rates for very highly methylated cytosines
can also be problematic. Intermediately methylated CpGs with
low rates are likewise difficult to infer, due in large part to the
variance in methylation measurements for CpGs approaching
50% steady state. Second, we have determined rates with high
confidence at just under 1 million CpGs across the genome
enabling high resolution and comprehensive analysis of methy-
lation kinetics.

The rate patterns for de novo methylation we observe are fully
compatible with the described inhibition of DNMT3 by histone
H3 methylated at lysine 470,71. This could at least in part explain
reduced activity of DNMT3 at active promoters and enhancers.
Additionally, the increase in de novo methylation rates in highly
transcribed gene bodies supports previous findings regarding
DNMT3 affinity to H3K36 methylation55,72, a mark that occurs at
transcribed genes and scales with transcription through associa-
tion with elongating RNA polymerase73,74. This de novo activity
is required to keep these sequences methylated as it coincides
with reduced DNMT1 maintenance and increased TET activity,
leading to elevated turnover that scales with transcription rate.
Our observation that H3.3 signal scales in a similar manner link
histone turnover with reduced DNMT1 fidelity and increased
TET activity. Nevertheless, targeted gene body methylation is
both ancient, spanning 900 million years of metazoan
evolution75,76, and poorly understood. Several hypothesis have
been put forth77,78, including gene silencing in plants79, sup-
pression of spurious transcription start sites56, or a mere bypro-
duct of transposon silencing76. While the function of gene body
methylation remains mysterious, our observation of increased
turnover of methylation in these regions coupled with con-
servation further argues for a functional role.

Methylation kinetics of highly methylated intergenic CpGs
represent another intriguing case. At the global scale, CpGs in this
context seem to underlie two regimes. First, CpGs distal from active
regulatory elements reside in neighborhoods of increasing
H3K9me2/3 and high fidelity of DNMT1. This is in agreement with
the observation that the cofactor Uhrf1 recognizes this mark80–83,
and is involved in maintenance activity of DNMT160,61. The sec-
ond regime represents CpGs increasingly closer to active regulatory
elements, which show high turnover driven by both active and
passive demethylation. It is tempting to speculate that these
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methylation dynamics create binding opportunities for methylation
sensitive transcription factors84–86.

Time-course measurements in the presence and absence of
TET proteins allowed us to distinguish between active and passive
demethylation. One surprising result is the reduced fidelity of
DNMT1 around distal regulatory regions (see below). Global

demethylation had been initially observed in long-term cultures
of DNMT3 knockout stem cell lines28. While this loss was
attributed to DNMT1 infidelity, it is important to note that TETs
were present in these cells, but had not been discovered at the
time this study was published. Indeed, we show that TET proteins
have a significant effect on demethylation rates at hundreds of
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DHS signal. The mouse genome was split into 500 bp bins, and reads tallied for all bins that were completely mappable. Bins were then selected as having
a minimum distance of 10 kb from an annotated promoter, and split based on number of DHS reads overlapping these bins. DHS signal increases with
increasing bin number, where it is apparent that while kme (left) decreases with increasing accessibility, both kde (middle) and TET activity (right) increase.
Boxplot elements are as defined in Fig. 4d. b Rates and TET activity as a function of distance to bound TF motifs. ENCODE ChIP data for 15 TFs was
quantified by counting reads surrounding motifs for each TF in a 201 bp window centered on the motif. Each row of the heatmap represents mean rates as a
function of distance to the center of the motif for the respective factor. Sites represented here were selected as the top 900 enriched motif occurrences for
each factor (see “Methods” for enrichment determination). c Nucleosome positioning, rate of de novo methylation, passive demethylation, and TET activity
around bound CTCF sites, color as in b. MNase read counts were shifted by 75 bp to reflect position of the nucleosome dyad. d Model representing the
effect of chromatin processes on methylation and demethylation rates. Presence of bound transcription factors can inhibit both processes, while
transcription through gene bodies results in increased de novo methylation and passive demethylation. TET proteins in contrast tend to illicit the strongest
effect on demethylation rates at accessible regions proximal to bound transcription factors.
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thousands of CpGs scattered across the genome, and that TET
activity has a stronger effect on the demethylation rate than
DNMT1 infidelity. It is important to note that we cannot dis-
tinguish whether the effect of TET activity on demethylation rate
is due to bona fide active demethylation (base excision), or
incomplete maintenance of oxidized methyl groups87.

Complete loss of TET activity caused an almost unimodal
increase in steady-state methylation, which is partially at odds
with previous findings in TET mutants where hyper- and hypo-
methylated regions were more evenly represented18,88. While this
discrepancy could in part be due to our enrichment of active
regulatory elements, approximately half of the bait regions in our
study do not overlap with DHS signal. Our observation of a
nearly exclusive hypermethylation phenotype is in support of a
role for this protein in increasing the demethylation rate, as we
have assigned in our model. While the effect of reduced methy-
lation by TET enzymes on gene regulation is not completely
understood, TET function has been implicated in activation of
differentiation specific genes18. Our observation that TET activity
is generally enhanced at bound TF sites raises the intriguing
possibility that the permissive chromatin environment afforded
by TF binding can help to create regions of local hypomethyla-
tion89–92. In turn, this local hypomethylation could create an
opportunity for the binding of additional TFs. Moreover, the
scaling of multiply oxidized bases with local chromatin accessi-
bility has been previously documented93, and thus we speculate
that TET activity is less likely caused by specific recruitment but
rather accessibility caused by factor binding. While we cannot
rule out the possibility of recruitment as has been documented for
selected factors94–97, our data are more in support of the simple
scenario where TET proteins have higher activity at accessible
regions. Our data further argue that TF binding inhibits both
DNMT3 and DNMT1 activity, producing unmethylated cytosines
that can be recognized by the CXXC domains of TET proteins.
Local recruitment of TET proteins could then serve to increase
TET activity on neighboring methylated cytosines. In the case of
TET1 and TET3, this interaction can be facilitated directly by
their CXXC domains98–100, and in the case of TET2 possibly
through its interaction with IDAX101. The preference for TET
activity at accessible sites is further supported by our observation
of increased activity in linker regions of positioned nucleosomes,
with decreasing activity over the nucleosome itself.

Indeed, using ChIP-Seq data from 15 transcription factors, we
find that maximum TET activity is localized in the immediate
vicinity of transcription factor bound sites, where higher acces-
sibility is expected. This seems to be partially independent of
steady-state methylation levels, as high turnover is also prevalent
at CpGs with high steady-state methylation levels nearby and
flanking DHS sites. We interpret this to be the net result of
increased DNMT1 infidelity, de novo methylation rate, and TET
activity. The net result is a CpG site with higher methylation
levels and elevated turnover, and these CpGs tend to occupy the
borders of regulatory elements.

CpGs located at active regulatory regions reveal highly
variable kinetics. One of the most striking is the elevated main-
tenance error coupled with the more variable rate of de novo
activity. Both these observations fit a model whereby steric hin-
drance results in reduced methylation (Fig. 6d). Indeed, it has b-
een shown that active regulatory elements reveal slower
kinetics of remethylation after passage of the replication fork102.
These results are compatible with a model, where many DNA
binding factors rebind their consensus motifs quickly after
replication and in turn interfere with the maintenance methyla-
tion reaction.

Similarly, factor occupancy in other phases of the cell cycle could
inhibit de novo methylation activity. Reduction in de novo activity

and maintenance fidelity increase with local accessibility, and taken
together contribute to low steady-state methylation levels observed
at regulatory regions. This scenario creates ample molecular
opportunities for TFs to create a region of reduced methylation as
we have shown previously for REST5, which could enable binding
of DNA methylation sensitive TFs, such as Nrf1 103. Surprisingly,
although several of the 15 tested TFs seem to cause reduced
methylation, there are notable exceptions. For example, ESRRB
and TCFCP2l1 sites show a slightly different pattern of rates at
distal bound sites with low DHS signal, namely an increase in both
de novo and maintenance activity. Both factors are specific to ESCs
and may serve as early binding proteins in the hierarchy of plur-
ipotency factor enhancer binding67.

Taken together our combination of theoretical and experi-
mental work reveals a significant layer of information previously
unresolved by methylome profiling. It exposes this part of the
epigenome as a highly dynamic entity within particular genomic
contexts.

Methods
Cell line generation. ESC lines conditionally deficient for Dnmt3a and Dnmt3b
were derived by outgrowth of blastocyst embryos obtained by crossing mice doubly
homozygous for floxed alleles of Dnmt3a and Dnmt3b46. The mouse strain was
maintained on a C57BL6/J background. Mice were genotyped by PCR and ESCs
derived from a homozygous clone. The Dnmt3a/3b flox/flox line was passaged on
feeder cells. TET TKO cells were generated from this line using a previously
described protocol44. In short, guides directed at the catalytic exons of the TET
enzymes were cloned into the pX330 vector and all three were cotransfected into
the Dnmt3a/3b flox/flox cell line. DNA was extracted from individually picked
clones and PCR product amplified overlapping the CRISPR cut site. The PCR
fragment from clones was then treated with a restriction enzyme whose recognition
sequence is close to the cut site, thus undigested fragments would represent
mutated alleles. Alleles were sequenced from one clone displaying likely mutations
in all six alleles (Supplementary Fig. 1).

Slot blot. Slot blotting of putative TTKO clones was carried out following an
established protocol104, using an antibody against 5hmC (#39769, Active Motif)
and 5mC (BI-MECY-1000, Eurogentec). Genomic DNA was denatured with 4 N
NaOH and the solution was neutralized by addition of an equal volume of 2.5 M
ice-cold NH4Ac. The single-stranded DNA was spotted on a TE-soaked nylon
membrane and then baked at 80 °C for 30 min and UV cross-linked.

Cre transduction. ESCs were cultured on feeders105 and passaged at least once on
feeders prior to trypsinization for Cre protein transduction. For transduction106,
ESCs were trypsinized, resuspended in PBS and quantified. Approximately 2.5 ×
105 cells were transferred into fresh falcon tubes, spun down, and resuspended in
500 μl of filtered serum-free medium containing either 1 μM Cre protein or an
equivalent volume of Cre dialysis buffer (2 M NaCl, 50 mM HEPES pH7.4, 1 mM
DTT, 1 mM EDTA, and 5% Glycerol). The cells were then plated in 24-well plates
precoated with feeders (2–48 h in advance) and prewashed twice with PBS. After
16 h, cells were washed twice with PBS and coated with FCS-based ES medium105.
ESCs were transferred to gelatin-coated feeder-free six-well plates 24 h and to 10
cm plates 72 h after transduction. Pellets were collected from trypsinized cells at
indicated time points and culturing was continued until 29 days post transduction
in a feeder-free environment. All ESCs used for Cre transduction experiments were
cultured for at least ten passages prior to Cre transduction.

DNA extraction. Genomic DNA was extracted by resuspending cells in 1% SDS
with 50 µg proteinase K and incubation at 55° for 5 h. The cell lysate was then
mixed at a 1:1 ratio with a mix of phenol:chloroform, spun at max speed for 5 min,
and the upper aqueous layer was retained. A second phenol:chloroform extraction
was performed, and subsequently chloroform was added at a 1:1 ratio, mixed, and
spun for 5 min at RT at 12,000 × g. The upper phase was retained and DNA
precipitated by adjusting the aqueous phase to 300 mM NaOAc and >70% ethanol
followed by centrifugation at 12,000 × g at 4 °C. The DNA pellet was washed with
70% ethanol, dried, and resuspended in 10 mM Tris pH 8.0. DNA was treated with
50 µg/ml RNase and precipitated using 300 mM NaOAc and >70% ethanol
as above.

TaqMan genotyping. Primers and probes were designed complementary to
sequences between the loxP sites for Dnmt3a and Dnmt3b (see Supplementary
Fig. 1 for sequences). For the reaction, 30 ng of genomic DNA, 900 nM of primers,
and 0.25 nM of probe were mixed with 1× TaqMan Universal PCR master mix in a
total volume of 25 µl. Cycling conditions were an original incubation of 2 min at
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50° followed by 10 min at 95°, and then 40 cycles of 15 s at 95° and extension for
1 min at 60°. Primers and a probe were designed for Gapdh to use for normal-
ization, and relative allele frequency was calculated using a previously described
method107. For comparative purposes, DNA from Dnmt3a/Dnmt3b knockout cells
was mixed with wild-type ESC DNA at ratios of 100:0, 30:0, and 0:100, respectively.

Western blot. Whole cell lysate was extracted by resuspending ~1 × 106 cells in
100 µl RIPA buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium
deoxycholate, and 0.1% SDS) followed by incubation for 30 min at 4 °C. Samples
were then sonicated for six cycles of 30 s on, 30 min off on the Diagenode Bior-
uptor and subsequently spun for 20 min at 10,000 × g while cooled to 4 °C. The
supernatant was retained, diluted 50× and quantified using the Micro BCA Protein
Assay Kit from Pierce. Approximately 20 µg of protein was separated using a
Thermo Fisher NuPage 3–8% tris-acetate gel and transferred onto an activated
PVDF membrane. The membrane was blocked for 1 h at room temperature in 5%
milk resuspended in TBST (10 mM Tris, 1.5 M NaCl, and 1% Tween-20). Anti-
bodies for DNMT3A (Novus 64B1446, 1:1000), DNMT3B (Imgenex IMG-184A,
1:1000), DNMT1 (AbCam ab188453), UHRF1 (MBL D289-3), or LAMIN B1
(AbCam ab16048, 1:10,000) were diluted in 5% milk in TBST and incubated on the
membrane overnight at 4 °C with rotation. Membranes were washed four times for
4 min in TBST, and incubated with HRP-conjugated secondary antibodies (GE
RPN4201V for DNMT3A and DNMT3B, GE NA934V for LAMIN B1 and
DNMT1, Sigma AP136P for UHRF1, 1:10,000 dilution for all) for 1 h at RT.
Membranes were washed four times for 4 min in TBST, incubated for 2 min with
Advansta WesternBright Sirius chemiluminescent substrate and acquired on the
GE Amersham Imager 680. All signals in Supplementary Fig. 1f are from the same
membrane. The membrane was stripped after each individual blot by incubating
the membrane for 15 min in Thermo Scientific Restore Western Stripping Buffer
(#21059), washed three times for 4 min in TBST followed by blocking and incu-
bation of primary antibodies as described above.

Amplicon bisulfite sequencing. Approximately 2 µg of extracted genomic DNA
from days 0, 4, 8, 10, 13, 17, and 29 were first mixed with 3.2 pg of both unme-
thylated Lambda bacteriophage and in vitro methylated T7 bacteriophage DNA.
Addition of the bacteriophage DNA was used to control for bisulfite conversion
efficiency. Samples were then bisulfite converted using the EpiTect kit from Qiagen
per the manufacturer’s instructions. Primers designed to amplify UMRs, LMR, and
FMR regions (88 in total, Supplementary Table 1, see GEO submission) were
distributed in 96-well plates and amplification was carried out using Amplitaq gold
and the following thermocycler settings (all temperatures are in Celsius and all
incubation times are 30 s unless specified): 1 cycle of 95° for 9 min, 20 cycles of
touchdown with 95° melt, 55°–51° annealing, and extension at 72°, followed by 36
cycles of 95° melt, 51° annealing, and 72° extension.

The amplicon reactions were then mixed, run out on an agarose gel, and DNA
extracted. Libraries were then constructed using the NEBNext ChIP-seq Library
Prep kit (#E6240) as per the manufacturer’s instructions, indexed, pooled, and
sequenced using the Illumina MiSeq platform in 250 bp paired-end mode. The last
100 base pairs were trimmed due to reduced sequencing quality, and aligned to the
mm9 build using Rbowtie in the QuasR package and the following parameters:
genome= “BSgenome.Mmusculus.UCSC.mm9”, paired= “fr”, and bisulfite
= “undir”.

SureSelect sequencing. SureSelect enrichment and subsequent sequencing of
bisulfite DNA was carried out as per the manufacturer’s instructions. Briefly,
genomic DNA isolated from the time points above was sonicated down to 150–200
base pairs in size using a Covaris S220, followed by library construction. The
libraries were then hybridized to probes (Mouse Methyl-Seq XT, 931052), bound to
streptavidin beads, washed, and bisulfite converted using the EZ DNA methylation
Gold kit from Zymo (D5005). Bisulfite-converted DNA libraries were then
amplified and indexed, pooled and sequenced in 51 bp paired-end mode using the
Illumina HiSeq platform. Sequenced reads were aligned to the mm9 build using
Rbowtie in the QuasR environment with the following parameters: genome
= “BSgenome.Mmusculus.UCSC.mm9”, bisulfite= “dir”, aligner= “Rbowtie”, and
paired= ‘fr’. Methylation levels were determined using the qMeth function from
the QuasR package.

Amplicon and SureSelect bisulfite data processing. Methylation levels for CpGs
in amplicons was determined using the AmpliconViews function from the R
package AmpliconBiSeq108 with the parameters ‘conv= 80’ and exp.var= ‘90’. A
minimum of 100× coverage was required for all methylation calls. If coverage did
not reach this threshold for any time point, the respective methylation level was set
to NA. We further removed all CpGs with NA at day 0 or with more than one NA
during the time course across all replicates. In addition, we filtered out one
amplicon (chr7:149767665-149767784) containing nine CpGs due to high varia-
bility in methylation calls. From a total of 588 CpGs initially quantified, this
filtering procedure resulted in 405 CpGs. For SureSelect, a minimum of 50×
coverage in all time points and replicates was used to filter CpGs for further
analysis.

A dynamical model for DNA methylation. To enable inference of methylation
and demethylation rates from the time-course data, we conceived a dynamical
model for DNA methylation. This model is framed in the context of a simple
chemical reaction with two rates: unmethylated cytosines are converted to
methylated cytosines at a de novo methylation rate (kme), while methylated cyto-
sines are converted to unmethylated cytosines at a demethylation rate (kde). This
system can be described by two differential equations (DGLs) and further sim-
plified into a single DGL (Fig. 1a). To simulate the loss of DNMT3 over time, we
modified the DGL to gradually reduce the kme over the course of the experiment
through an exponential dampening factor exp(−kE). We set kE to a value of 0.5
considering various aspects of the experimental system. More specifically, we first
assumed that the loss of methylation maintenance is considerably greater than de
novo methylation. On a conceptual level, methylation levels will decrease 50%
every cell cycle if maintenance is completely disrupted. Given a doubling time of
16 h, this would correspond to a rate of log(2)/(16/24)= 1.04. Because both loss of
RNA and protein is not instantaneous, we set the value of kE to 0.5.

As complete loss of maintenance is probably the most extreme case, the rates
under investigation in this study are expected to be substantially <1.04.
Nevertheless, to include more extreme cases we still considered rates of up to two
and discretized kde and kme at steps of 10%, covering a dynamic range of three
orders of magnitude across 80 steps. This resulted in a total of 6400 parameter
combinations for kde and kme. We next used a brute force approach to solve the
DGL numerically for all possible parameter combinations using the R package
deSolve109. Initial conditions were set such that the methylation levels at time= 0
were equivalent to the respective steady-state levels given the rates of methylation
and demethylation (Meq= kme /(kde+ kme)).

Having generated the 6400 methylation traces, we added two types of errors to
take into account further aspects of the system not covered by the DGL. For
example, our genotyping data for DNMT3 loss showed that the genetic excision
was not complete, retaining on average 8% of functional DNMT3 alleles. We
simulated incomplete excision by mixing 8% of the methylation levels observed at
day 0 with 92% of the simulated time course. Finally, we also considered bisulfite
conversion and sequencing errors by assuming 99.75% efficiency and injected those
effects into the simulated methylation traces using the formula y= (1− 0.0025−
0.0025) × x+ 0.0025. In summary, for all 6400 parameter combinations, this
procedure produced 6400 methylation traces that we compared to real time-course
data in order to infer rates of methylation and demethylation.

Inference of amplicon methylation/demethylation rates. To infer methylation/
demethylation rates as well as confidence values for those rates, we coupled the
dynamical DNA methylation model (which mimics the loss of DNMT3a/b over
time) to a statistical error model. We chose to use a reparameterized beta-binomial
error model that was successfully applied to bisulfite data in the past110. In contrast
to the binomial distribution B(n,p) that is governed by the two parameters n
(number of trails) and p (success probability), the beta-binomial distribution BB(n,
p,γ) has one additional parameter γ to account for over-dispersion. Over-
dispersion is critical in the case of the amplicon data due to an average of 4000×
coverage per CpG. Given this depth of coverage, the theoretical error predicted by
the binomial distribution would be much smaller than the actual error observed
between replicate experiments. We determined biological variation by calculating
the standard deviations of methylation levels observed in replicate experiments (at
day 0) as a function of read coverage. Additionally, we stratified the data by mean
methylation level because noise in bisulfite data is also a function of the mean. This
showed that the beta-binomial distribution performed well in capturing the error
observed in the amplicon bisulfite data (Supplementary Fig. 2c). To determine the
optimal value for γ, we performed a parameter sweep, calculating the sum of
squared errors to the actual data and selecting the minimum (γ= 0.0055; Sup-
plementary Fig. 2b). Coupling this error model to the dynamical model for DNA
methylation allowed us to use a statistical framework to obtain uncertainties for the
inferred parameters. For a given combination of the two parameters kde and kme,
we calculated the probability of the data given the parameters p(data|parameters)
using the respective simulated trace to set the parameter p in the beta-binomial
distribution and the read coverage to set the parameter n. To obtain a single
probability for a given CpG across the time course we multiplied all probabilities
obtained at 0, 4, 8, 10, 13, 17, and 29 days. Each biological replicate was fit
separately in this manner. Having performed this calculation for all possible
parameter combinations, we then used Bayes’ theorem to calculate the probability
of the parameters given the data p(parameters|data) assuming a uniform prior. We
did so by renormalizing the probabilities obtained from the calculation of p(data|
parameters) to a total of 1. As optimal parameters for kde and kme, we used the
maximum likelihood solution that we extracted from p(parameters|data). To
determine credible intervals for kde and kme, we first calculated the respective
marginal probability density functions p(kde|data) and p(kme|data) and then
determined the range that covered 95% of the area under the curve. Replicates were
combined by calculating the median for all rates as well as the standard errors for
the credible intervals (ci= sqrt(ci12+ ci22+ ci32)/3). We additionally used our
inference procedure to identify CpGs for which rates could not be determined. This
occurred when the probability density functions p(kde|data) or p(km|data) showed
substantial above zero densities at the borders of our parameter space, indicating
that the optimal parameters lied outside of our parameter space. We thus
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considered CpGs identifiable only if they showed <0.08 probability at any border
for all the replicates.

Comparison of wild-type and TTKO rates. To determine if de novo methylation
and passive demethylation rates are affected by TET activity, we conducted time-
course experiments and amplicon bisulfite sequencing using the parental line
with TET1/2/3 activity. This assay was otherwise identical to that performed in
the TTKO line using amplicon bisulfite sequencing. While inspecting the
methylation traces over the time course, we noticed a subtle difference between
wild-type and TTKO lines in the mock treatment. While methylation mea-
surements in the TTKO mock time course remained stable, there was a slight
increase in methylation between days 4 and 8 measured in the wild-type mock
treatment (Supplementary Fig. 4d). This effect was also present in Cre-treated
samples, suggesting a secondary effect of the transduction protocol independent
of Cre activity.

To systematically account for this, we normalized the Cre-treated time-course
measurements to the corresponding mock-treated samples. This was done through
creating a baseline for each CpG in the Cre-treated samples. These baselines were
established by first binning CpGs at day 0 in increments of 10% (ten bins total) and
calculating the average methylation level at each time point within the bin. The
binning allows for more a more robust baseline estimation because we are
averaging many CpGs around a similar steady state. We then divided each point in
the baseline by the measurement at day 0 for the respective bin. These correction
factors were used on the corresponding Cre-treated samples by multiplying every
value in the time course by the respective baseline adjusted value. Applying this
correction resulted in traces closely resembling the dynamics seen in the TTKO
amplicon time course (compare Supplementary Fig. 4d and Fig. 1f). After
normalizing the Cre-treated samples, we inferred the kde for the wild-type time
course kdeWT in an identical manner to that described for the TTKO amplicon time
course.

If TET activity does not effect de novo methylation and passive demethylation
rates, we should be able to predict the demethylation rate in wild type using only
steady-state measurements in both cell lines. Our model explicitly describes the
relationship between demethylation rate and steady-state levels, and this
relationship is mathematically derived in Supplementary Fig. 4c. Using this
equation, we estimated the demethylation rate in wild type, namely kdeWT^, for 405
CpGs using only steady-state methylation levels in the two genetic backgrounds.
We then compared kdeWT^ to rates inferred using the whole time course kdeWT, as
described above (Supplementary Fig. 4e). For the 155 CpGs, whereby we could
estimate and infer demethylation rate robustly, our estimates accurately
recapitulate methylation dynamics in the wild-type setting and these predictions
are significantly more accurate than comparing kdeWT and kdeTTKO directly
(Supplementary Fig. 2f).

To rule out the possibility that our estimations are a result of the mock
normalization procedure described above, we inferred rates in the wild-type time
course in the absence of normalization. Importantly, our rate predictions were
unaffected by this normalization procedure, highlighting the robustness of our
model and rate inference strategy (Supplementary Fig. 2e–h).

Inference of SureSelect methylation/demethylation rates. Methylation and
demethylation rates were inferred the same way as for the amplicon bisulfite data
using a binomial distribution for the error model instead of a beta-binomial. Due to
the lower coverage of the SureSelect data, the beta-binomial was not necessary. A
simple binomial error model performed well in capturing the variability observed
between replicate experiments (Supplementary Fig. 3b).

Calculation of the identifiable landscape. To determine the identifiable para-
meter space, we performed parameter inference on the 6400 simulated methylation
traces for which kde and kme are known. Using our inference procedure described
above, we then asked to what degree all parameters can be recovered. In the beta-
binomial error model, we set n to the median coverage observed in the amplicon
data (n= 3997). By calculating credible intervals for all parameter combinations,
we were able to visualize the identifiable landscape. Because our experiments
consisted of three biological replicates, we calculated standard errors of the credible
intervals with n= 3 before plotting the heatmap. We identified parameter com-
binations that could not be determined as stated above considering a maximum of
0.05 probability at the border of the probability density functions for p(kde|data)
and p(kme|data).

ChIP-seq data processing. The following published ChIP datasets were used in
this study (GEO accessions): ADNP (GSM2582357), CTCF (ref. 5; GSM747535);
KLF4, SOX2, NANOG, and OCT4 (ref. 111; GSM2417188, GSM2417144,
GSM2417143, GSM2417187, and GSM2417142); NRF1 (ref. 103; GSM1891642);
p53 (ref. 112; GSM647224); PRDM14 (ref. 113; GSM623989), REST (ref. 114;
GSM671095); TCFCP2I1, ESRRB, and ZFX (ref. 64; GSM288350, GSM288355, and
GSM288352); and MAFK and ZC3H11A (ref. 115; GSM1003809, GSM1003810).

Datasets were downloaded from GEO using the SRAdb R package116 and
aligned to the mm10 assembly of the mouse genome using Bowtie117 within the
QuasR118 package. Bowtie was run using QuasR default parameters, returning only

unique alignments. For each sample, the average fragment length was inferred
directly from the data. This was done by determining the most frequent distance
between the 5′ end of plus and minus strand reads on chromosome 1 with a
distance interval spanning (read length +20) up to 500 bp. The lower limit of this
interval was set significantly larger than the read length due to a second peak in the
distance histogram at the exact read length in some samples, likely caused by a
mapping artifact. The distance between pairs of reads with identical 5′ positions
were counted only once to reduce potential amplification biases. All read counting
in given genomic regions was done using the QuasR function qCount, whereby
reads were shifted by half the estimated average fragment length determined above.
For all replicates across TF datasets, peaks were identified using MACS2119 under
default parameters and with corresponding control samples as a background.
Resulting peaks were then filtered requiring at least 80% mappability. Here, we
define mappability as the fraction of all possible 25mers in a given region that are
uniquely mappable using the alignment parameters above. Because the percentage
of mappable bases in the genome changes in a minor way when increasing the read
length under the given alignment parameters (74.9% for 25mers, 80% for 36mers,
and 83.3% for 50mers, while 51 is the longest read length in the dataset), we do not
believe that this choice of read length to define mappability has a significant effect
on the presented results. The library-size normalized counts were determined as:

nsIP=min(NIP, Ncontrol) × (nIP/NIP) and nscontrol=min(NIP, Ncontrol) × (ncontrol/
Ncontrol)

Where nIP and ncontrol are the raw counts per peak, and NIP and Ncontrol are the
total number of reads mapping to the genome in the IP and control sample,
respectively. Thus counts were in each case scaled down to the smaller library size.
For each dataset, enrichment over input in peaks was defined as log2(nsIP+ 8)−
log2(nscontrol+ 8), using a pseudo-count of 8 to decrease noise levels in case of low
read counts. Only peaks with a log2 enrichment of at least 1 were retained for
further analysis. The 500 top-enriched peaks (or all peaks if there were fewer than
500 peaks) were used for de novo motif finding using HOMER120. HOMER was
run using the function findMotifsGenome.pl using six different motif lengths (6,
10, 14, 18, and 22) and 200nt long sequences centered on each peak as input. For
each dataset, the top-enriched motif was retained. The start or end positions of
weight matrices were trimmed in cases where at least four consecutive positions
had very low information content. The resulting weight matrices were compared
to entries for the corresponding factors in either the HOMER database, the Jaspar
database121 the Encode factor book (for the datasets from Mouse ENCODE, www.
factorbook.org) or the original publications to confirm similarity to the previously
inferred weight matrices for each corresponding factor. In cases where replicate
ChIP experiments produced matrices in the opposite orientation, matrices were
reverse complemented so they all had the same orientation. Each inferred weight
matrix was then used to scan the genome using the matchPWM function from
Biostrings R package122. Matching sequences were determined by requiring a log2
(odds) score of at least 10 (in log2 scale) over a uniform background. In cases
where two (or multiple) matches overlapped (ignoring their strands), only the
match with the highest log(odds) score was retained. This is frequently the case for
palindromic or nearly palindromic weight matrices, which often generate a match
to both strands. Finally, for each dataset, log2 enrichments at the predicted sites
were calculated by counting reads in a 201 bp window centered at the midpoint of
each motif. In cases of multiple replicates for a given TF, we selected the replicate
with the largest number of enriched motif-centered regions (which corresponds to
the GEO accession above), after ensuring that all replicates showed similar
patterns.

Replication timing data. Data for replication timing in murine ESCs was down-
loaded in processed form from the ENCODE consortium115. The specific acces-
sions used in this work are ENCFF001JUP and ENCFF001JUQ.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw and processed sequencing data has been deposited in the Gene Expression Omnibus
(GEO) database under the accession number GSE129470. All publicly available data sets
used are referenced in the relevant methods section. All other relevant data supporting
the key findings of this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable request. The source
data underlying Fig. 3b and Supplementary Fig. 1e–h are provided as a Source data file. A
reporting summary for this article is available as a Supplementary Information file.

Code availability
Data analysis and graphical representation was performed using custom R scripts and
publicly available packages as denoted in the text. All scripts are available upon request.
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