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The Development of Symbolic and Non-
Symbolic Number Line Estimations: Three 
Developmental Accounts Contrasted Within 
Cross-Sectional and Longitudinal Data
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Three theoretical accounts have been put forward for the development of 
children’s response patterns on number line estimation tasks: the log-to-linear 
representational shift, the two-linear-to-linear transformation and the proportion 
judgment account. These three accounts have not been contrasted, however, within 
one study, using one single criterion to determine which model provides the best 
fit. The present study contrasted these three accounts by examining first, second 
and sixth graders with a symbolic and non-symbolic number line estimation task 
(Experiment 1). In addition, first and second graders were tested again one year 
later (Experiment 2). In case of symbolic estimations, the proportion judgment 
account described the data best. Most young children’s non-symbolic estimation 
patterns were best described by a logarithmic model (within the log-to-lin account), 
whereas those of most older children were best described by the simple power 
model (within the proportion judgment account).

Keywords: cognitive development; numerical cognition; number line estimation; 
log-to-linear account; twolin-to-lin transformation; proportion judgment account

Introduction
In the past decade, mental representations 
of numbers and their development have 
been investigated intensively (e.g. Defever, 

Sasanguie, Vandewaetere & Reynvoet, 2012; 
Kucian & Kaufman, 2009; Reynvoet, De 
Smedt & Van den Bussche, 2009; Siegler & 
Opfer, 2003). It is commonly assumed that 
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numbers are mentally represented akin to a 
‘mental number line’, on which each num-
ber is represented as a Gaussian distribution 
around the corresponding mental magnitude 
(Dehaene, 1997). Moreover, these represen-
tations are assumed to obey Weber-Fechner’s 
law (Fechner, 1860), referring to larger 
overlapping Gaussian distributions with 
increasing magnitude. These mental repre-
sentations allow people to determine magni-
tudes in an approximate way and therefore 
have been referred to as the ‘Approximate 
Number System’ (ANS; Barth, Beckmann & 
Spelke, 2008; Halberda & Feigenson, 2008). 
Also symbolic skills that are typically taught 
in school are hypothesized to be fostered 
by this pre-existing non-symbolic number 
system (Mundy & Gilmore, 2009; but see 
Noël & Rousselle, 2011; Sasanguie, Defever, 
Maertens & Reynvoet, 2013 for an alternative 
view). A widely used task to investigate how 
people represent numbers, is the number 
line estimation task (e.g. Berteletti, Lucangeli, 
Piazza, Dehaene & Zorzi, 2010; Dehaene, 
Izard, Spelke & Pica, 2008; Sasanguie, De 
Smedt, Defever & Reynvoet, 2012; Siegler & 
Opfer, 2003). In this task, participants are 
typically asked to place a given number on 
an empty number line which is bounded by 
a starting value, usually zero or one, at the 
beginning of the line, and another value, 
such as 100 or 1000, at the end of the line. 
These numbers can be either symbolic (e.g. 
Arabic digits) or non-symbolic (e.g. dot 
patterns).

Siegler and Opfer (2003) suggested that 
the underlying numerical magnitude repre-
sentations can be derived from number line 
estimation tasks by regressing the actual 
magnitudes (x) on the estimated magnitudes 
(y). Doing so, researchers have shown that, 
with increasing age, children’s estimations 
on a symbolic number line (e.g. Booth & 
Siegler, 2006; 2008) and on a non-symbolic 
number line (e.g. Sasanguie et al., 2012; 
Sasanguie, Göbel, Moll, Smets & Reynvoet, 
2013) evolve from a logarithmic (i.e. with 
smaller magnitudes being overestimated and 
larger magnitudes being underestimated, see 

Figure 1A), to a more precise, linear pattern 
(see Figure 1B). Moreover, it has been shown 
that this so-called logarithmic-to-linear (log-
to-lin) shift is dependent on the range of the 
number line and participants’ age: between 
kindergarten and second grade, children 
make the log-to-lin shift on a 0–100 num-
ber line, between second and fourth grade 
this occurs for the 0–1000 number line 
and between third and sixth grade, children 
shift towards a linear representation on a 
0–100 000 number line (Siegler, Thompson 
& Opfer, 2009). Therefore, it is assumed that 
an increase in linearity – and thus more 
accurate estimations – are dependent on 
children’s familiarity with a certain number 
range (Siegler & Opfer, 2003).  

In contrast with these studies that provided 
evidence for a log-to-linear representational 
shift, other researchers have put forward 
an alternative model for the development 
of number representations (e.g. Ebersbach, 
Luwel, Frick, Onghena & Verschaffel, 2008; 
Moeller, Pixner, Kaufmann & Nuerk, 2009): 
a representational shift from a two-linear or 
two-phase segmented model (see Figure 1C) to 
a simple linear model (twolin-to-lin account, 
see Figure 1B). The two-linear model con-
sists of two separate linear models with a 
steep slope for small magnitudes and a shal-
low slope for larger magnitudes. Considering 
the breakpoint between the two linear seg-
ments, there is, however, no consensus: 
Whereas Ebersbach et al. (2008) suggest that 
the breakpoint is variable and characterizes 
the end of the number range children are 
familiar with, Moeller et al. (2009) believe 
that the breakpoint is fixed and represents 
the switch between one- and two-digit num-
bers. Either way, the segmented linear model 
has been found to describe the number line 
estimation performance of children better 
than the logarithmic or the linear model, 
as evidenced by a larger mean coefficient of 
determination adjusted for the amount of 
parameters (i.e. adjusted R2; Ebersbach et al., 
2008; Moeller et al., 2009).

More recently, a third developmental 
account has been proposed: the proportion 
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judgment account (Barth & Paladino, 2011). 
Here, it is assumed that participants solve 
the number line task by estimating the tar-
get value as a proportion of the total length 
of the number line. Initially, participants 
estimate magnitudes only by relying on the 
begin point or using a wrong value as the 
endpoint of the number line. This results in 
a simple power model1 that can explain the 
relationship between the actual and the esti-
mated magnitudes (see Figure 1D). Later on, 
participants start to estimate magnitudes 
based on the total proportion of the number 
line, using both the begin- and endpoint. A 
one-cycle power model is needed to explain 
the data: a combination of two power mod-
els meeting in the midpoint of the num-
ber line (see Figure 1E). Estimations will 
consequently be more accurate around the 
midpoint (e.g. 50 in a 0–100 line), whereas 
magnitudes below the midpoint will be 
overestimated and magnitudes above will 
be underestimated. Finally, participants will, 
next to the begin- and endpoint, also use an 
intermediate, internal reference point at the 
middle of the number line. In this case, the 
data can be modelled by a two-cycle power 
model (see Figure 1F). This model is a com-
bination of four power functions that meet 
in the quartiles of the scale of the number 
line. Two cycles of accurate estimations at 
the quartiles (e.g. 25 and 75 in a 0–100 line) 
of the number line, and an overestimation 
for numbers below 25 and between 50 and 
75, in combination with an underestima-
tion for numbers between 25 and 50 and 
above 75 is expected. In sum, the three-step 
transformation from a simple power model, 
over a one-cycle power model to a two-cycle 
power model is considered to be the result of 
a gradual decrease of the bias of estimations 
(parameter b) and an increase of the number 
of reference points used over development. 

Despite the ongoing debate (e.g. Ashcraft & 
Moore, 2012; Barth & Paladino, 2011; Barth, 
Slusser, Cohen & Paladino, 2011; Ebersbach 
et al., 2008; Moeller et al., 2009; Opfer, 
Siegler & Young, 2011; Slusser, Santiago & 
Barth, 2013; White & Szücs, 2012; Xu, Chen, 

Pan & Li, 2013; Young & Opfer, 2011), it 
remains to date unclear which of these three 
developmental accounts reflects best how 
children’s number line estimation patterns 
evolve through development. Slusser et al. 
(2013), for example, compared the fit of the 
three proportion judgment models with the 
fit of the logarithmic and the linear model. 
They examined 5- through 10-year old chil-
dren with symbolic number line estimation 
tasks within familiar (e.g. 0–20 and 0–100) 
and unfamiliar number ranges (e.g. 0–1000 
and 0–10000), dependent on the age of 
the children. Both the median best fitting 
model and the best fitting model per indi-
vidual were calculated, based on the ‘Akaike 
Information Criterion corrected for small 
samples’ (AICc; Burnham & Anderson, 2004). 
Results revealed for both group and individ-
ual analyses that the proportion judgment 
account provided the best explanation of the 
observed estimation patterns. 

In contrast, Ashcraft and Moore (2012) 
examined elementary school children and 
adults using a symbolic (0–100 and 0–1000) 
Position-to-Number (P-N) task (i.e. a variant 
of the number line estimation task in which 
participants have to estimate the number 
that corresponds with a given position on a 
number line) to determine the best fitting 
model by registering the highest coefficient 
of determination (R2) per individual of the 
exponential2, linear, one-cycle and two-cycle 
power model fitted on that individuals’ esti-
mation pattern. They observed estimation 
patterns largely consistent with the log-to-lin 
shift account. 

Another attempt to contrast the log-to-
lin account with the proportion judgment 
account came from White and Szücs (2012). 
Here, children from grade 1–3 were presented 
with a symbolic 0–20 number line task and 
data were analysed both on a group and an 
individual level. Results also favoured the 
log-to-lin representational development, but 
at the same time pointed to the use of clever 
strategies that might underpin the develop-
ment from a logarithmic to a linear magnitude 
representation. However, in this study, data 



Sasanguie et al: The Development of Number Line Estimations 385

of the cyclic power models (i.e. one-cycle and 
two-cycle power model) were pooled together 
when comparing them to the log and lin mod-
els and, as in Ashcraft and Moore (2012), the 
coefficient of determination (R2) was not cor-
rected for the number of parameters in the 
models. 

Finally, recently Xu, Chen, Pan and Li 
(2013) investigated the development of 
mental number representations in Chinese 
preschoolers. They compared not only the 
fit of the models from the log-to-lin account 
with those from the proportion judgment 
account, but also investigated the two-lin-
ear-to-linear transformation account in 5–6 
year old children, using symbolic number 
lines (Arabic digits from 0–100 and 0–1000). 
Results showed that the estimates of these 

Chinese 5–6 year olds fitted the two-linear 
and the linear models better than the loga-
rithmic, one-cycle and two-cycle power 
models. The simple power model from the 
proportion judgment account was however 
not included in the analyses. Moreover, the 
adjusted R2 was used again instead of the 
more reliable AICc measure.

In sum, previous studies that attempted 
to shed light on which model fits children’s 
numerical estimation patterns best, have 
provided inconsistent results. The latter 
might be due to differences in age groups, 
type of task (i.e. N-P or P-N) and number 
line scales being investigated. Furthermore, 
different criteria have been used to deter-
mine which model provides the best fit 
with the data, such as R², adjusted R², and 

Figure 1: Predicted estimation data for the three developmental accounts of number line 
estimation: the log-to-lin account (A-B), the twolin-to-linear account (C-B) and the pro-
portion judgment account, consisting of a transformation of a power model (D), over a 
one-cycle power model (E), to a two-cycle power model (F). Each model is presented with 
a combination of three parameters.
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AICc. Finally, none of these studies has 
contrasted all models from each of the 
three developmental accounts. In order to 
provide a more complete picture of which 
developmental account characterizes best 
the development of children’s number line 
estimation patterns, we contrasted in the 
current study the three aforementioned 
developmental accounts (i.e. log-to-lin, 
two-lin-to-lin, and proportion judgment), 
using one scale (0–100), one type of task 
(N-P task) and the same single criterion 
(AICc). All statistical models involved in 
these three accounts (i.e. logarithmic, 
two-linear, linear, simple power, one-cycle 
and two-cycle power model) were inves-
tigated. Second, data were gathered not 
only for symbolic (Arabic digits) but also 
for non-symbolic (dot patterns) stimuli to 
test the extent to which the developmental 
trajectory for non-symbolic number line 
estimation mirrors the one of symbolic 
estimation described in the literature. 
Indeed, evidence on non-symbolic num-
ber lines is very limited: A log-to-lin shift 
has already been observed in adults (e.g. 
Anobile, Cicchini & Burr, 2012) and in chil-
dren (e.g. Sasanguie et al., 2012; Sasanguie, 
Göbel et al., 2013), but the two other devel-
opmental accounts have not been investi-
gated yet with non-symbolic stimuli. Third, 
to test the consistency in the observed 
developmental patterns, we investigated 
these developmental trajectories not only 
cross-sectionally (Experiment 1), but also 
longitudinally (Experiment 2). To the best 
of our knowledge, this is the first study 
that compares all three accounts with both 
symbolic and non-symbolic stimuli in a 
cross-sectional as well as a longitudinal 
design. 

Experiment 1: Cross-sectional study
Method
Participants
One-hundred and ten typically develop-
ing children from an elementary school in 
Flanders (Belgium) participated in this study: 
33 first graders (Mage = 6.65 years, SD = .28, 
13 males), 37 second graders (Mage = 7.60 

years, SD = .27, 16 males) and 40 sixth grad-
ers (Mage = 11.62 years, SD = .36, 15 males). 
All children participated in the symbolic and 
the non-symbolic number line task. First and 
second graders were considered as crucial for 
this study, because of their well-documented 
logarithmic-to-linear shift at that age (Booth 
& Siegler, 2006; Sasanguie et al., 2012; Siegler 
& Booth, 2004) and their twolinear-to-linear 
shift in the 0–100 range (e.g. Xu et al., 2013). 
Sixth graders were included to shed light on 
the estimation patterns of older children, to 
obtain a more complete picture of children’s 
developmental trajectory.

Materials and procedure
The number line estimation tasks were pre-
sented to the children on white A4 sheets. 
The general outline of the stimulus material 
was consistent with the setup of Siegler and 
Opfer (2003). Number lines ranged from 0 to 
100, both in the symbolic and the non-sym-
bolic condition. Symbolic stimuli were Arabic 
digits (Arial font, size 16). Non-symbolic stim-
uli were white-filled circles (radius: 3.5cm) 
containing a set of black dots, which were 

generated with the MatLab script of Dehaene, 
Izard and Piazza (2005), controlling for item 
size and total occupied area. The end points 
of the number lines were labelled on the left 
by 0 and on the right by 100 in the symbolic 
condition and by an empty circle on the left 
and a circle with 100 dots on the right in the 
non-symbolic condition. Each line was 25cm 
long and was centred on the paper with the 
numerical magnitude that had to be posi-
tioned on the number line being presented 
6 cm above the number line. The numerical 
magnitudes that had to be positioned on the 
number line were 2, 3, 4, 6, 18, 25, 48, 67, 
71, 86 (corresponding to sets A and B for the 
same interval used in Siegler & Opfer, 2003). 
The presentation order of the magnitude was 
randomized and each line was presented on 
a separate sheet. Children were instructed to 
mark on the line were they thought that the 
magnitude had to be positioned. To ensure 
that children were aware of the interval size, 
the experimenter showed the first item of 
the task while saying: “This line goes from 0 
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(dots) to 100 (dots). If here is 0 and here is 
100, where would you position this number 
(magnitude)?”. After that, the children were 
able to go through all sheets at their own 
pace. 

Data-analysis and results
Because using mean or median estimation 
data of an age group can obscure individual 
differences in the estimation patterns and tra-
jectories, the fit of the models was based on 
individual estimation patterns instead of on 
aggregated data. For each model within each 
of the three developmental transformation 
accounts, we calculated the AICc measure 
(for a similar method, see Barth & Paladino, 
2011; Burnham, Anderson & Huyvaert, 2011; 
Huber, Moeller & Nuerk, 2013; Slusser et al., 
2013). In contrast to other measures (e.g. R2), 
AICc takes into account both goodness of fit 
and model complexity, where model com-
plexity is defined in terms of the number of 
parameters (Burnham & Anderson, 2002). 
The AICc is calculated according to the fol-
lowing formula:

()2 1
2ln 2

1

K KRSS
AICc K

n n K

+æ ö÷ç=- + +÷ç ÷÷çè ø - -

where the RSS is the residual sum of squares, 
n is the number of data samples, and K is 
the number of predictors of the model. As 
recommended by Burnham and Anderson 
(2002; see also Slusser et al., 2013), mod-
els were ranked on the basis of ΔAICc. This 
measure refers to the differences in AICc 
between the “best” model (i.e. the model 
with the lowest AICc) and the AICc of the 
other models involved in the comparison. 
For example, if one wants to determine 
whether the logarithmic model with an AICc 
of 55 or the linear model with an AICc of 
43 describes the data of a particular child 
best, one has to calculate the difference in 
AICc with the best model. In the present 
case, the linear model would be the best and 
the logarithmic model would have a ΔAICc 
of 12 (= 55 – 43). Burnham and Anderson 

(2002) provide a rule of thumb which states 
that models having a ΔAICc within 0–2 of 
the best model have substantial support and 
should be taken into consideration when 
making inferences, models with a ΔAICc 
within 4–7 have considerably less support 
and models with a ΔAICc >10 have essen-
tially no support. Application of this rule of 
thumb to the above example would indi-
cate that the linear model would describe 
the data much better than the logarithmic 
model which has essentially no support 
(ΔAICc = 12).  

Following Slusser et al. (2013), partici-
pants were excluded from the analyses if 
they did not meet one of the following cri-
teria: First, each participant had to exhibit 
a significantly positive correlation between 
the estimated and actual magnitudes. 
Second, participants who estimated 90% of 
the stimuli within less than 10% of the num-
ber line were excluded. Third, to ensure that 
the overall best fitting model could be reli-
ably determined by means of the AICc, we 
also excluded participants whose residual 
sum of squares of a particular model devi-
ated more than three standard deviations 
from the mean residual sum of squares of 
that model. 

We first discuss the results of the sym-
bolic task and afterwards those of the non-
symbolic task. For both tasks, error rates of 
the different age groups are compared. Next, 
to determine the percentage of participants 
per grade that were best fitted by a particu-
lar model, the frequencies of the best fitting 
models within each developmental account 
are discussed for the different age groups. 
Finally, we report the results of the analysis 
of which developmental account provides 
the best fit. 

Symbolic number line task
Based on the above-mentioned criteria, three 
first graders and one second grader were 
removed from the data set. Accordingly, the 
final sample for the analyses on the symbolic 
number line data consisted of 30 first, 36 
second, and 40 sixth graders.
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Error rates
Participants’ error rates were measured in 
terms of the mean percent absolute error 
(PAE), using the formula of Siegler and Booth 
(2004):

 
  

Estimate Estimated Quantity
Scale of Estimates

-

In order to examine whether the perfor-
mance on this task differed between grades, 
a one-way ANOVA was conducted on the 
PAEs. A significant main effect of grade was 
observed, F(2, 103) = 50.66, p < .001, ηp

2 = 
.50, indicating an increase in accuracy with 
grade (see Table 1). Tukey post-hoc tests 
revealed significant differences between all 
grades, all ps ≤ .005. 

Frequency analysis on the best fitting models 
within each developmental account
In line with the three above-mentioned 
developmental accounts, three different 
model comparisons were carried out for 
each participant: (1) a comparison of a loga-
rithmic with a linear model for the log-to-lin 
shift account, (2) a comparison of a two-
linear with a simple linear model for the 
two-lin-to-lin transformation account and 
(3) a comparison of a simple power model 
with a n-cycle power model for the propor-
tion judgment account3. Table 2 shows, for 
each grade and developmental account, the 
percentage of participants whose estima-
tion pattern was best described by a par-
ticular model, accompanied by the mean 

ΔAICc. We performed a Chi-square analysis 
to examine whether there were significant 
changes between the different grades with 
respect to the number of children whose 
estimation pattern was best described by a 
particular model. For the log-to-lin account, 
the expected developmental model trans-
formation from log-to-lin was confirmed by 
a significant association between the best 
model and grade, χ²(2) = 34.02, p < .0001: 
The estimation pattern of most first graders 
(i.e. 63%) was best described by the logarith-
mic model. However, with increasing grade, 
there was an increase in the percentage of 
children having an estimation pattern being 
best described by the linear model. Table 2 
shows that the mean ΔAICcs accompanying 
the linear model (i.e. the difference in AICc 
between the logarithmic model and this 
“best”, linear model) increased with grade 
from 11.82 to 27.29, demonstrating increas-
ingly less support for the logarithmic model 
in each of the model comparisons. Also the 
developmental twolin-to-lin model transfor-
mation was confirmed by a significant asso-
ciation between the best model and grade, 
χ²(2) = 6.06, p < .05. The percentage of par-
ticipants whose estimation pattern was best 
described by the linear model increased with 
increasing grade. Mean ΔAICcs for the linear 
model in this account also increased with 
grade from 4.71 to 6.67, revealing increas-
ingly less support for the two-linear model. 
For the proportion judgment account, the 
association of the best model and grade 
failed to reach significance, χ²(4) = 2.06, p = 
.36. However, as can be derived from Table 2, 

Grade Mean PAE

Symbolic number line  
estimation task

Non-symbolic number line  
estimation task

1st grade 11.48 (4.93) 19.46 (5.48)

2nd grade 7.83 (3.83) 13.52 (4.82)

6th grade 3.08 (1.04) 8.36 (3.13)

Table 1: Mean percentages of absolute error (PAE) (and the corresponding standard 
deviations) on the symbolic and the non-symbolic number line estimation tasks, per grade.
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the percentage of participants whose esti-
mation pattern was best fitted by a n-cycle 
power model tended to increase from first 
to sixth grade. Mean ΔAICcs for the n-cycle 
power model increased slightly from 3.20 to 
4.32, indicating a slight decrease in support 
for the simple power model.

Developmental account best reflecting the 
development of estimation patterns
The previous analysis determined for each 
child the model describing the data best (i.e. 
the “best” model) within each of the three 
developmental accounts. In the present anal-
ysis, we compared, for each child, the best 
model in each developmental account with 
the best model from the other two accounts 
on the basis of ΔAICc to determine which of 
the three accounts would describe children’s 
data best (see Table 3). As can be derived 
from the mean values, the estimation pattern 
of the majority of the children in each grade 
(i.e. 53%, 75% and 75% in first, second and 

sixth grade respectively) was best described 
by the proportion judgment account (see 
all mean ΔAICcs, reflecting strength of evi-
dence in favour of this account > 3.30). A 
Chi-square analysis revealed a significant 
association between grade and account 
type, χ²(4) = 10.84, p = .03. The percentage of 
children for whom the proportion judgment 
account was the best account increased 
slightly with grade, while there was an oppo-
site pattern of results with respect to the log-
lin account. The mean ΔAICcs for this log-lin 
account were somewhat larger than for the 
proportion judgment account, except in 
sixth grade. The two-lin-to-lin account was 
the least preferred account in all grades and 
did not change strongly amongst grades. 

Non-symbolic number line task
The same three exclusion criteria as in 
the symbolic number line condition were 
applied, resulting in the exclusion of one 
first grader, three second graders, and one 

Grade

1 2 6

Model % children Mean ΔAICc % children Mean ΔAICc % children Mean ΔAICc

Log-Lin Account

Log 63 7.74 (4.15) 31 7.20 (4.15) 0 –

Lin 37 11.82 (7.49) 69 13.94 (7.49) 100 27.29 (7.58)

2Lin-Lin Account

2Lin 37 5.77 (4.06) 19 6.68 (4.86) 13 4.42 (3.65)

Lin 63 4.71 (2.21) 81 6.02 (2.74) 87 6.67 (2.02)

Proportion Judgement Account

Pow 47 5.23 (6.52) 36 4.13 (5.17) 30 4.64 (5.38)

n 
-Cycle

53 3.20 (2.45) 64 4.20 (3.65) 70 4.32 (3.10)

Table 2: Percentage of children whose symbolic number line estimation pattern is best 
described by a specific model and the corresponding mean ΔAICc (SD in parentheses), for 
each developmental account and per grade.

Note. ΔAICc is the difference in Aikaike’s Information Criterium corrected for small samples 
between the best model and the other model(s) in the same developmental account.



Sasanguie et al: The Development of Number Line Estimations390

Lo
g-

Li
n

2
Li

n-
Li

n
Pr

op
M

ea
n

Be
st

 A
cc

ou
nt

%
 c

hi
ld

re
n

M
ea

nΔ
A

IC
c

%
 c

hi
ld

re
n

M
ea

n 
Δ

A
IC

c
%

 c
hi

ld
re

n
M

ea
n 
Δ

A
IC

c
%

 c
hi

ld
re

n
M

ea
n 
Δ

A
IC

c

1s
t G

ra
de

Lo
g-

Li
n

–
–

40
6.

02
 (2

.4
1)

40
3.

61
 (2

.6
3)

40
4.

81
 (2

.7
8)

2L
in

-L
in

7
1.

57
 (1

.3
4)

–
–

7
2.

88
 (2

.2
5)

7
2.

22
 (1

.6
9)

Pr
op

53
2.

85
 (2

.3
9)

53
3.

70
 (2

.3
5)

–
–

53
3.

30
 (2

.3
8)

2n
d 

G
ra

de

Lo
g-

Li
n

–
–

17
6.

51
 (2

.7
8)

25
2.

90
 (3

.1
5)

21
4.

35
 (3

.4
3)

2L
in

-L
in

0
–

–
–

8
3.

93
 (0

.7
8)

4
3.

93
 (0

.7
8)

Pr
op

75
4.

91
 (3

.6
1)

75
4.

66
 (2

.7
8)

–
–

75
4.

79
 (3

.1
9)

6t
h 

G
ra

de

Lo
g-

Li
n

–
–

0
–

20
0.

81
 (0

.8
8)

10
0.

81
 (0

.8
8)

2L
in

-L
in

5
5.

55
 (6

.0
9)

–
–

25
1.

08
 (0

.9
6)

15
2.

11
 (2

.8
7)

Pr
op

75
4.

04
 (2

.8
6)

75
3.

67
 (2

.6
9)

–
–

75
3.

85
 (2

.9
2)

Ta
bl

e 
3

: P
er

ce
nt

ag
e 

of
 c

hi
ld

re
n 

w
ho

se
 s

ym
bo

lic
 n

um
be

r l
in

e 
es

ti
m

at
io

n 
pa

tt
er

n 
is

 b
es

t d
es

cr
ib

ed
 b

y 
a 

sp
ec

ifi
c 

ac
co

un
t i

n 
co

m
pa

ri
so

n 
to

 a
no

th
er

 
ac

co
un

t w
it

h 
th

e 
co

rr
es

po
nd

in
g 

m
ea

n 
Δ

A
IC

c 
(S

D
 in

 p
ar

en
th

es
es

), 
pe

r g
ra

de
.

N
ot

e.
 A

IC
c 

= 
A

ik
ai

ke
’s

 In
fo

rm
at

io
n 

Cr
it

er
iu

m
 c

or
re

ct
ed

 fo
r 

sm
al

l s
am

pl
es

. T
he

 r
ow

s 
di

sp
la

y 
th

e 
pe

rc
en

ta
ge

 o
f c

hi
ld

re
n 

w
ho

se
 e

st
im

at
io

n 
pa

tt
er

n 
is

 b
es

t 
de

sc
ri

be
d 

by
 a

 s
pe

ci
fic

 a
cc

ou
nt

, t
og

et
he

r 
w

it
h 

th
e 

m
ea

n 
Δ

A
IC

c,
 r

ef
le

ct
in

g 
th

e 
st

re
ng

th
 o

f e
vi

de
nc

e 
in

 fa
vo

ur
 o

f t
hi

s 
ac

co
un

t 
co

m
pa

re
d 

to
 e

ac
h 

of
 th

e 
ot

he
r t

w
o 

ac
co

un
ts

 (c
ol

um
ns

), 
re

sp
ec

ti
ve

ly
.



Sasanguie et al: The Development of Number Line Estimations 391

sixth grader from the data analyses on the 
non-symbolic number line task. Accordingly, 
the final sample here consisted of 32 first, 34 
second, and 39 sixth graders. 

Error rates
A one-way ANOVA on the mean PAEs 
revealed a significant main effect of grade, 
F(2,102) = 53.35, p < .0001, ηp

2 = .51, indi-
cating increasing accuracies with grade 
(see Table 1). Tukey post-hoc tests revealed 
significant differences between all grades, 
all ps ≤ .001.

Frequency analysis on the best fitting models 
within each developmental account
Table 4 shows, for each grade and develop-
mental account, the percentage of partici-
pants whose estimation pattern was best 
described by a particular model, together 
with the mean ΔAICcs. The log-to-lin 
transformation account was confirmed by 
a significant association between the best 
model and grade, χ²(2) = 21.34, p < .0001. 
With increasing grade, the percentage of 

participants whose estimation pattern was 
best described by the log model decreased, 
thus leading to more estimation patterns 
being best described by the linear model. 
Mean ΔAICcs for the linear model increased 
with age from 6.35 to 12.95, indicating 
increasingly less  support for the logarith-
mic model. The developmental transforma-
tion from a two-linear to a linear model was 
also confirmed by a significant association 
of the best fitting model and grade, χ²(2) = 
10.72, p = .005. With increasing grade, there 
was an increase in the percentage of partic-
ipants whose estimation pattern was best 
described by the linear model. Mean ΔAICc 
for the linear model decreased slightly from 
first (i.e. 3.16) to second grade (i.e. 2.44) 
but then increased strongly to 7.12, reveal-
ing less support for the two-linear model. 
Similar to the symbolic number line data, 
we did not observe an association between 
the different proportion models and grade, 
χ²(2) = 2.88, p = .33. However, the data in 
Table 4 suggest that the number of par-
ticipants whose estimation pattern was 

Grade

1 2 6

Model % children Mean ΔAICc % children Mean ΔAICc % children Mean ΔAICc

Log-Lin Account

Log 78 11.80 (4.51) 48 6.48 (4.16) 23 5.49 (4.12)

Lin 22 6.35 (6.65) 52 8.80 (6.57) 67 12.95 (9.91)

2Lin-Lin Account

2Lin 72 12.10 (8.15) 56 8.19 (6.72) 33 5.14 (3.90)

Lin 28 3.16 (2.47) 44 2.44 (1.14) 67 7.12 (2.26)

Proportion Judgement Account

Pow 88 10.15 (4.64) 82 7.72 (5.76) 72 7.90 (5.73)

n-Cycle 12 3.13 (1.53) 18 4.14 (3.80) 28 3.46 (3.64)

Table 4: Percentage of children whose non-symbolic number line estimation pattern is best 
described by a specific model and the corresponding mean ΔAICc (SD in parentheses), for 
each developmental account and per grade.

Note. ΔAICc is the difference in Aikaike’s Information Criterium corrected for small samples 
between the best model and the other model(s) in the same developmental account.
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best described by a n-cycle power model 
increased with age. Mean ΔAICc values 
ranged for the n-cycle model between 3.13 
and 4.14, indicating again considerably less 
support for the simple power  model. 

Developmental account best reflecting the 
development of estimation patterns
Table 5 shows the percentage of children 
whose estimation pattern is best described 
by a specific account, together with the 
mean ΔAICc. A Chi-square analysis revealed 
a marginally significant association between 
grade and account, χ²(4) = 8.77, p = .07. As for 
the symbolic number line data, we observed 
a trend wherein the percentage of children 
for whom the proportion judgment account 
was the preferred account increased with 
grade, while there was an opposite pattern 
of results with respect to the log-lin account. 
Again, the two-lin-to-lin account did not 
exhibit a consistent pattern of change. Mean 
ΔAICc values ranged between 2.59 and 9.48, 
suggesting in most cases considerable sup-
port for the best account.

Discussion
The aim of the current study was to provide 
a complete picture of which developmen-
tal account (log-to-lin account, twolin-to-lin 
account or proportion judgment account) 
best characterizes the development of chil-
dren’s symbolic and non-symbolic number 
line estimation patterns, by including all the 
models of each of the three developmental 
accounts into the analyses and using two 
complementary methodological approaches. 
In Experiment 1, we investigated this cross-
sectionally by testing 1st, 2nd and 6th graders. 

Results of Experiment 1 provided evi-
dence for all three developmental accounts 
described in the literature (e.g. Barth & 
Paladino, 2011; Ebersbach et al., 2008; 
Siegler & Opfer, 2003). In line with the 
log-to-lin transformation account, the sym-
bolic number line data suggested that, with 
increasing grade, the percentage of children 
exhibiting a logarithmic estimation pattern 

decreased, whereas the percentage of chil-
dren who showed a linear estimation pat-
tern increased. This trend is consistent with 
previous results (e.g. Aschraft & Moore, 
2012; Booth & Siegler, 2008; Sasanguie et 
al., 2012). A similar pattern was observed 
in the non-symbolic task, albeit with a cer-
tain delay: Although the percentage of chil-
dren exhibiting a linear estimation pattern 
increased, the percentage of children still 
showing a logarithmic estimation pattern 
was, in comparison with the symbolic condi-
tion, larger here (e.g. for the non-symbolic 
task, not all sixth graders exhibited a linear 
estimation pattern yet). The present log-to-
lin representational shift for both symbolic 
and non-symbolic number line estimations, 
based on the AICc, is completely in line with 
previous findings by Sasanguie et al. (2012) 
who used R2 as a criterion to determine the 
best model fit. In accordance with the twolin-
to-lin developmental account, the symbolic 
number line data demonstrated that, with 
increasing age, children evolve from a two-
linear to a simple linear estimation pattern. 
In case of the non-symbolic number line data, 
again a similar but delayed developmental 
transformation towards a linear estima-
tion pattern was observed: The percentage 
of participants demonstrating a two-linear 
estimation pattern was in each age group 
considerably higher than in the symbolic 
condition. For the first graders, for example, 
the linear model best fitted twice as much 
estimation patterns for the symbolic than for 
the non-symbolic task. These non-symbolic 
data extend the findings of Ebersbach et al. 
(2008), who observed the same developmen-
tal transformation of children’s estimation 
performance on the 0–100 symbolic number 
line task. Finally, the proportion judgment 
account was reflected in both the symbolic 
and non-symbolic data by a trend towards a 
decreasing number of children exhibiting an 
estimation pattern being best fit by a simple 
power model with increasing grade. As in the 
two previous developmental accounts, the 
proportion judgment account also showed 
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a developmental delay in the non-sym-
bolic compared to the symbolic data: More 
children exhibited an estimation pattern 
being best fit by a simple power model in all 
age groups for the non-symbolic task in com-
parison to the symbolic task. Again, these 
symbolic data confirm and the non-symbolic 
data extend the previously observed estima-
tion patterns by Barth and colleagues (Barth 
& Paladino, 2011; Slusser et al., 2013).

When comparing several developmental 
accounts, in case of the symbolic number 
line estimation task, our findings revealed 
that the proportion judgment account best 
reflected the development of symbolic num-
ber line estimation patterns in all grades. 
These findings are highly similar to what 
Slusser et al. (2013) demonstrated, except 
that these researchers observed that in case 
of the first graders, the log-to-lin account 
and the proportion judgment account 
described the data equally well, while this 
was not the case in our data (see Table 3, 
mean ΔAICc = 2.85). The observation that 
especially the proportion judgment account 
(and the n-cycle power model within this 
account) best describes the estimation pat-
tern of most children is in contrast with 
Xu et al. (2013) who observed a better fit 
for the two-linear and the linear model in 
5–6 year old children than for the loga-
rithmic or n-cycle power models. Moreover, 
this is in contrast with Ashcraft and Moore 
(2012), who observed a better fit for the log 
(exponential)-to-lin account than for the 
models of the proportion judgment account, 
in grades 1–5. However, in those studies, R2 
values instead of AICc values were used and 
the simple power model from the propor-
tion judgment account was not considered 
in their analyses. Moreover, Ashcraft and 
Moore (2012) used a P-N task instead of a N-P 
task. These three differences might account 
for the contrasting results. Additional sup-
port for this claim is the aforementioned 
observation that our results are more in line 
with those of Slusser et al. (2013), who also 
made use of the AICc, a N-P task, and consid-
ered all models of the proportion judgment 

account into their analyses. For the non-sym-
bolic number line task, we observed that the 
estimation patterns of the first graders were 
described better by the log-to-lin account, 
whereas for the estimation patterns of the 
second- and the sixth graders again the pro-
portion judgment account best reflected 
the development. To date, no study exists 
in which the three developmental accounts 
have been contrasted using non-symbolic 
number line estimation data. Therefore, 
we cannot discuss this finding with respect 
to previous studies. However, we elaborate 
more on this finding in the general discus-
sion. Finally, it should be noted that the 
ΔAICc values were somewhat smaller when 
comparing models between accounts than 
when comparing models within a particu-
lar account. A plausible explanation would 
be that, in the comparisons between the 
accounts, the best fitting models from the 
respective accounts compete with each 
other, whereas in the comparisons within 
an account a worse and a best fitting model 
compete with each other.

To increase the robustness of these find-
ings, a second experiment was conducted in 
which the development of children’s sym-
bolic and non-symbolic estimation patterns 
were investigated by means of a longitudinal 
design. Such a longitudinal approach has 
already been followed by Geary et al. (2008) 
and Muldoon, Towse, Simms, Perra and 
Menzies (2013) for the log-to-lin account, but 
not for the other two accounts. 

Experiment 2: Longitudinal study
Method
Participants
Participants were the first and second grad-
ers of Experiment 1 who were retested one 
year later. From three first graders and one 
second grader, data could not be obtained 
at this second test moment (T2). As a result, 
the re-tested sample consisted of 30 second 
graders (Mage = 95.07 months, SD = 3.39, 12 
males) and 36 third graders (Mage = 106.49 
months, SD = 3.39, 15 males). From now 
on, these two developmental groups will 
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be referred to as Cohort 1 (i.e. group of first 
graders at T1) and Cohort 2 (i.e. group of 
second graders at T1).

Materials and procedure
The materials and the procedure for 
Experiment 2 were identical to Experiment 1. 

Data analysis and results
The longitudinal results for the symbolic 
number line task are reported first, followed 
by those for the non-symbolic task. First, error 
rates of the different age groups within each 
cohort are compared. Next, the percentages of 
children whose individual estimation pattern 
fits best with a particular model are discussed 
for each developmental account. Finally, we 
analyzed which developmental account pro-
vides the best fit in each of the two cohorts. 

Symbolic number line task
Based on the same exclusion criteria as in 
Experiment 1, two children from Cohort 
1 were excluded from the analysis. This 
resulted in a sample of 27 children in Cohort 
1 and 32 in Cohort 2. 

Error rates
We examined whether the accuracy on the 
number line task improved with grade by 
means of a t-test for dependent samples 
on the PAEs, for each cohort separately. For 
Cohort 1, we observed that the PAE in grade 
1 (M = 11.21, SD = 5.02) was significantly 
larger than in grade 2 (M = 7.57, SD = 3.24), 
t(26) = 4.78, p < .0001. Similarly, in Cohort 2, 
the PAE in grade 2 (M = 7.92, SD = 3.92) was 
significantly larger than in grade 3 (M = 4.88, 
SD = 2.56), t(31) = 5.52, p < .0001. 

Frequency of the best fitting models within each 
developmental account
Table 6 shows, for each cohort and devel-
opmental account, the percentage of par-
ticipants whose estimation pattern was 
described by the ‘best model’ within the 
account, together with the mean ΔAICc. The 
longitudinal data in Cohort 1 showed the 
expected developmental trend for both the 

log-lin and the two-lin-to-lin account, indicat-
ing an increase in the percentage of children 
whose estimation pattern is best described 
by the most advanced model within these 
accounts, namely the linear model. For the 
proportion judgment account, there were no 
substantial changes from grade 1 to grade 2 
in the percentage of children whose estima-
tion pattern was described best by a specific 
model. Mean ΔAICc values were all larger 
than 3 (range: 3.94 – 20.30) for the log-lin 
account and larger than 4 for the two-lin-
to-lin account (range: 4.83 – 11.80), indicat-
ing considerable support for the best model 
in each comparison. For the proportion 
judgment account, mean ΔAICc values lied 
between 3 and 5 (range: 3.20 – 4.32) reflect-
ing somewhat less support for the best model 
in each comparison compared to the other 
two accounts. For Cohort 2, we observed 
for all accounts the expected developmen-
tal trend. As for Cohort 1, mean ΔAICc val-
ues were on overall largest for the log-to-lin 
account (range: 7.06 – 19.74), followed by 
the two-lin-to-lin account (range: 4.46 – 7.37) 
and the proportion judgment account (range: 
3.97 – 7.77). So, all best models in all three 
accounts received considerable support.  

Developmental account best reflecting the 
development of estimation patterns
The percentage of children in Cohort 1 
whose estimation pattern was best described 
in terms of the twolin-to-lin or proportion 
judgment account increased from Grade 
1 to Grade 2, while there was an opposite 
pattern of results for the log-lin account 
(see Table 7). Mean ΔAICc values ranged 
between 2.42 and 4.42, indicating consider-
able support for the best models. For Cohort 
2, we observed an increase in the percentage 
of children whose estimation pattern was 
best described in terms of the proportion 
judgment account and an opposite pattern 
of results for the log-to-lin account. There 
was hardly any change for the two-lin-to-lin 
account. Mean ΔAICc values ranged between 
2.64 and 4.77, indicating considerable sup-
port for the best models.
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Non-symbolic number line task
Based on the aforementioned criteria, one 
child from Cohort 2 was excluded from the 
data analysis, resulting in a sample of 29 chil-
dren in Cohort 1 and 31 children in Cohort 2.

Error rates
As for the symbolic number line data, 
we examined whether the accuracy of 
the estimations improved with grade by 

conducting, for each cohort separately, a 
t-test for dependent samples on the PAEs. 
For Cohort 1, we observed that the PAE in 
grade 1 (M = 19.02, SD = 5.58) was signifi-
cantly larger than in grade 2 (M = 13.74, SD 
= 4.72), t(28) = 3.64, p = .001. Similarly, in 
Cohort 2, the PAE in grade 2 (M = 13.13, 
SD = 4.43) was significantly larger than in 
grade 3 (M = 10.05, SD = 4.81), t(29) = 3.39, 
p = .002. 

Cohort 1

Grade 1 Grade 2

Model % children Mean ΔAICc % children Mean ΔAICc

Log-Lin Account

Log 60 6.80 (2.71) 30 3.94 (3.59)

Lin 40 11.82 (7.49) 70 20.30 (8.26)

2Lin-Lin Account

2Lin 33 5.04 (3.54) 26 8.91 (7.02)

Lin 67 4.83 (2.11) 74 11.80 (8.52)

Proportion Judgement Account

Pow 41 3.53 (3.10) 44 4.09 (3.41)

n -Cycle 59 3.20 (2.45) 56 4.32 (1.86)

Model Cohort 2

Grade 2 Grade 3

% children Mean ΔAICc % children Mean ΔAICc

Log-Lin Account

Log 31 7.06 (5.60) 3 10.19 (–)

Lin 69 13.79 (7.02) 97 19.74 (9.75)

2Lin-Lin Account

2Lin 19 7.37 (4.94) 9 4.46 (3.91)

Lin 81 5.89 (2.80) 91 5.69 (3.47)

Proportion Judgement Account

Pow 41 4.13 (5.17) 28 7.74 (9.65)

n -Cycle 59 4.17 (3.89) 72 3.97 (3.51)

Table 6: Percentage of children whose symbolic number line estimation pattern is best 
described by a specific model and the corresponding mean ΔAICc (SD in parentheses), for 
each developmental account, per grade and per cohort.

Note. ΔAICc is the difference in Aikaike’s Information Criterium corrected for small samples 
between the best model and the other model(s) in the same developmental account.
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Frequency of the best fitting models within each 
developmental account
Table 8 shows the percentage of children 
whose individual estimation pattern was 
best described by a particular model in each 
developmental account. The longitudinal 
data showed for both cohorts an increase 
in the percentage of children that were best 

described by the more advanced model for 
the log-to-lin account and the twolin-to-
lin account, whereas such an increase was 
not observed for the proportion judgment 
account. Despite the developmental trend 
from the less advanced to the more advanced 
model within an account however, Table 8 
also demonstrated that the non-symbolic 

Cohort 1

Grade 1 Grade 2

Model % children Mean ΔAICc % children Mean ΔAICc

Log-Lin Account

Log 76 11.39 (4.51) 45 7.58 (4.57)

Lin 24 6.35 (6.65) 55 8.11 (5.95)

2Lin-Lin Account

2Lin 69 12.04 (8.33) 52 7.64 (5.62)

Lin 31 3.16 (2.47) 48 5.73 (3.17)

Proportion Judgement Account

Pow 86 10.00 (4.84) 83 11.42 (5.95)

n -Cycle 14 3.13(1.53) 17 3.88 (2.67)

Cohort 2

Grade 2 Grade 3

Model % children Mean ΔAICc % children Mean ΔAICc

Log-Lin Account

Log 50 6.14 (4.06) 32 6.28 (4.62)

Lin 50 9.28 (6.68) 68 12.03 (7.20)

2Lin-Lin Account

2Lin 58 7.62 (6.44) 48 6.28 (5.58)

Lin 42 2.37 (1.44) 62 5.50 (3.41)

Proportion Judgement Account

Pow 87 7.60 (5.84) 84 7.69 (4.87)

n -Cycle 13 4.96 (4.62) 16 2.33 (1.54)

Table 8: Percentage of children whose non-symbolic number line estimation pattern is best 
described by a specific model with the corresponding mean ΔAICc (SD in parentheses), for 
each developmental account, per grade and per cohort.

Note. ΔAICc is the difference in Aikaike’s Information Criterium corrected for small samples 
between the best model and the other model(s) in the same developmental account.
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estimation pattern of a considerable 
percentage of children, within each devel-
opmental account, was described best by 
the less advanced model.  Mean ΔAICc val-
ues in Cohort 1 were all larger than 6 (range: 
6.35 – 11.39) for the log-to-lin account, 
larger than 3 for the twolin-to-lin account 
(range: 3.16 – 12.04) and larger than 3 
(range: 3.13 – 11.42) for the proportion judg-
ment account, indicating considerable sup-
port for the best model in each comparison. 
A similar pattern was observed for Cohort 
2, except for the log-lin account, where an 
equal number of second graders’ estimation 
pattern was best described by the logarith-
mic or the linear model. The mean ΔAICc 
values in this account provided considerable 
support for the best model and were higher 
for the linear (range: 9.28 – 12.03) than for 
the logarithmic model (6.14 – 6.28). Mean 
ΔAICc values for the more advanced models 
in the two other accounts ranged between 
2.33 and 7.69, revealing in most cases con-
siderable support for the best model. 

Developmental account best reflecting the 
development of estimation patterns
The longitudinal data indicate for Cohort 
1 an increase in the percentage of children 
whose estimation pattern is best described 
by the proportion judgment account and a 
decrease in the percentage of children being 
best described by the log-to-lin account (see 
Table 9). About one fourth of the children 
kept on being best described by the two-lin-
to-lin account. For Cohort 2, we observed a 
slight increase (from 41% up to 50%) in the 
percentage of children being best described 
by the proportion judgment account and a 
slight decrease in the percentage of children 
being described best by the two-lin-to-lin 
account (34% to 22%). The percentage of 
children being described best by the log-lin 
account remained around 25%. Mean ΔAICc 
values in Cohort 1 ranged between 2.90 and 
9.95, providing support for the best model. 
These values ranged in Cohort 2 between 
2.66 and 5.66. The log-lin account received 
the least support in this cohort. 

Discussion 
Experiment 2 aimed at investigating the 
development of children’s symbolic and 
non-symbolic estimation patterns by means 
of a longitudinal design, to check whether 
these longitudinal patterns mirrored the 
findings of Experiment 1 and of previous 
cross-sectional studies. First, frequencies 
revealed that the longitudinal data almost 
perfectly mirrored the cross-sectional data, 
in both symbolic and non-symbolic estima-
tions. Indeed, the longitudinal data again 
provided evidence for the three develop-
mental accounts and Tables 6 and 8 clearly 
demonstrate that, with increasing age, 
children evolve from the less to the more 
advanced model within a specific develop-
mental account. In particular, Cohort 1-chil-
dren’s model fit at T2 was similar as Cohort 
2-children’s model fit at T1, whereas the 
model fit of the Cohort 2-children at T2 mir-
rored the fit of the sixth graders observed in 
Experiment 1. In addition, as in Experiment 
1, a delay in the development of non-sym-
bolic estimation patterns in comparison with 
symbolic estimation patterns was observed. 
These findings extend the results of Geary et 
al. (2008) and Muldoon et al. (2012) – who 
already observed these longitudinal devel-
opmental trajectories for symbolic data and 
the log-to-lin account – with similar devel-
opmental findings for the non-symbolic data 
and the other two accounts. 

Second, the analyses considering the ‘best 
developmental account’ demonstrated with 
regards to the symbolic number line esti-
mation data, that the longitudinal data of 
Cohort 1 and 2 mirror the cross-sectional 
data of grades 1–2 and 2–6 described in 
Experiment 1, respectively. Indeed, for 
both Cohort 1 and 2 the percentage of 
children whose estimation pattern was 
best described by the proportion judgment 
account increased over time. Moreover, the 
longitudinal non-symbolic number line esti-
mation data of Cohorts 1 and 2 were in line 
with the cross-sectional data of grades 1–2 
and 2–6 respectively. Most children’s estima-
tion patterns were at first best described by 
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the log-lin account, but this decreased over 
time, in favour of an increasing percentage 
of children whose estimation pattern was 
best described by the proportion judgment 
account. A similar delay of non-symbolic 
data in comparison with the symbolic data 
as observed in the cross-sectional data of 
Experiment 1 was thus replicated with this 
longitudinal design.  

General discussion
How do children’s symbolic and non-
symbolic number line estimation patterns 
develop with age and which developmental 
account described in the literature reflects 
this development best? The current study 
was the first to compare three different devel-
opmental accounts in 1st, 2nd and 6th grade 
children, using one scale (0–100), one type of 
task (N-P task) and one criterion for compar-
ing the different model fits (AICc). In order 
to provide a clear answer to this research 
question, children were presented with both 
symbolic and non-symbolic number lines in 
a cross-sectional (Experiment 1) as well as a 
longitudinal study (Experiment 2).

First, we observed, for all three develop-
mental accounts, that the longitudinal data 
nicely mirrored the cross-sectional data: 
With increasing age, children evolved within 
each developmental account from the less 
advanced (logarithmic, twolinear or simple 
power model) to the more advanced (linear 
or n-cycle) model. This finding was observed 
in symbolic, but also in non-symbolic esti-
mations, although with a certain delay in 
the latter case. In the proportion judgment 
account, however, this evolution was less 
pronounced, in both the (symbolic as well 
as non-symbolic) cross-sectional and longi-
tudinal data. These observations are in line 
with and extend the results of Sasanguie et 
al. (2012) who also observed these patterns 
for the log-to-lin account, but did not investi-
gate the other two accounts.

Second, both the cross-sectional and the 
longitudinal data revealed that, in case of 
symbolic estimation, with increasing age, the 
(n-cycle power model within the) proportion 

judgment account described children’s 
estimation patterns best. These results are in 
line with, but, more importantly, also extend 
the cross-sectional findings reported by 
Slusser et al. (2013), who used a comparable 
analytical approach. This suggests that shifts 
in children’s symbolic number line estima-
tions do not reflect a developmental change 
in their mental representations of number, 
but rather that children might start using 
certain strategies that are based on (inter-
nal) anchor points (Barth & Paladino, 2011; 
Cohen & Sarnecka, 2014; Link, Huber, Nuerk, 
& Moeller, 2014; Slusser et al., 2013). 

Third, in case of the non-symbolic estima-
tions, we were the first to demonstrate, on the 
basis of both cross-sectional and longitudinal 
data, that most young children’s estimation 
patterns were best described by a logarith-
mic model (within the log-to-lin account), 
whereas the estimation patterns of most older 
children were best described by the simple 
power model (within the proportion judg-
ment account). These results demonstrate a 
similar, but different development for non-
symbolic and symbolic estimation patterns: 
For both types of stimuli, the proportion 
judgment account best reflected the estima-
tion patterns of at least the older children, 
but whereas in the symbolic data the n-cycle 
power model was for most childen the “best” 
model in each of the model comparisons, 
in the non-symbolic data the simple power 
model appeared to be the “best” model for 
most children. Where being  best described by 
the proportion judgment account for the sym-
bolic number line data reflected children’s use 
of certain number line estimation strategies, 
this interpretation does not hold for the non-
symbolic number line data. The observation 
that most non-symbolic estimation patterns 
are best described by the less advanced (i.e. 
simple power) model within this developmen-
tal account suggests that even older children 
do not seem to be able to employ particular 
anchor-based strategies when solving this 
task, although they know the begin- and 
endpoint value of the line (see instructions). 
Furthermore, in case of the youngest children, 
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we observed that the logarithmic model 
described the estimation patterns better than 
the simple power model – although both 
models are very similar (see Footnote 1 and 
Figures 1A versus 1D). Most likely, the latter 
can be explained by young children’s ten-
dency to overestimate small numbers (Meijas 
& Schiltz, 2013), which results in a logarith-
mic curve (see e.g. Figure 1A), while the more 
adequate estimations of small numbers from 
older children are better described by a simple 
power model (see e.g. Figure 1D).

Finally, it must be noted that not all chil-
dren exhibited the expected evolution from 
the less advanced to the more advanced 
model in a particular account. In Table 6, 
for example, it can be observed that some 
children whose estimation pattern was best 
described by a n-cycle model in the first grade 
(T1), dropped back one year later, as reflected 
in a better description by the simple power 
model at T2. This finding has also been 
observed by other researchers: Slusser et al. 
(2013) for instance already reported that the 
cyclic models of older children sometimes 
showed a reversed pattern. However, the 
reason for such reversed patterns is not yet 
understood well. Future studies should there-
fore focus on further unravelling the individ-
ual estimation trajectories by examining the 
relationship between number line estimation 
performance and the performance on a vari-
ety of cognitive ability tests in order to reveal 
which cognitive abilities may play a role in 
the development of these kind of patterns. 

Conclusions
In sum, because of its use of one single cri-
terion to compare the three developmental 
accounts (i.e. the AICc), the present study 
provides the strongest evidence to date 
that the development of children’s symbolic 
and non-symbolic number line estimations 
does not reflect a developmental change 
in their mental representations of number, 
but rather the extent to which they might 
be using strategies such as using (inter-
nal) anchor points. Whereas all elementary 
school children are successful in this with 

symbolic number lines, the application of 
such strategies appears still too difficult in 
case of non-symbolic number lines, even 
for the oldest ones. Investigating whether, 
and to what extent, adults might be able 
to apply these strategies on non-symbolic 
number lines could offer solace with 
respect to the research question whether 
the development of non-symbolic number 
line estimations is characterized by a simi-
lar developmental trajectory as for symbolic 
number line estimations – albeit with a 
delay – or whether a different mechanism 
underlies symbolic and non-symbolic num-
ber line estimations.

Notes
	 1	 The power model is able to fit the same 

data as a logarithmic model and both 
models have been used in psychophysical 
studies to model estimation data that do 
not have a one-to-one relationship with 
the to be the to be estimated physical 
stimulus (i.e. Weber-Fechner law).

	 2	 An exponential function in the Position-
to-Number (P-N) task is essentially a mirror 
image of the logarithmic function in the 
Number-to-Position task (N-P) (Ashcraft 
& Moore, 2012).

	 3	 To improve comparability between the 
different developmental accounts, we 
collapsed children whose estimation pat-
tern was best fit by either a one-cycle or 
a two-cycle power model into one cat-
egory: n-cycle power model. This way, a 
similar dichotomy was achieved for each 
developmental account.
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