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The TGF-b superfamily is an ancient metazoan protein class which cuts across cell and tissue differenti-
ation, developmental biology and immunology. Its many members are regulated at multiple levels from
intricate control of gene transcription, post-translational processing and activation, and signaling through
overlapping receptor structures and downstream intracellular messengers. We have been interested in
TGF-b homologues firstly as key players in the induction of immunological tolerance, the topic so closely
associated with Ray Owen. Secondly, our interests in how parasites may manipulate the immune system
of their host has also brought us to study the TGF-b pathway in infections with longlived, essentially
tolerogenic, helminth parasites. Finally, within the spectrum of mammalian TGF-b proteins is an exqui-
sitely tightly-regulated gene, anti-Müllerian hormone (AMH), whose role in sex determination underpins
the phenotype of freemartin calves that formed the focus of Ray’s seminal work on immunological
tolerance.
� 2015 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The TGF-b superfamily is an ancient metazoan protein class
which cuts across cell and tissue differentiation, developmental
biology and immunology. Its many members are regulated at mul-
tiple levels from intricate control of gene transcription, post-
translational processing and activation, and signaling through
overlapping receptor structures and downstream intracellular
messengers. We have been interested in TGF-b homologues firstly
as key players in the induction of immunological tolerance, the
topic so closely associated with Ray Owen. Secondly, our interests
in how parasites may manipulate the immune system of their host
has also brought us to study the TGF-b pathway in infections with
long-lived, essentially tolerogenic, helminth parasites. Finally,
within the spectrum of mammalian TGF-b proteins is an exqui-
sitely tightly-regulated gene, anti-Müllerian hormone (AMH),
whose role in sex determination underpins the phenotype of free-
martin calves that formed the focus of Ray’s seminal work on
immunological tolerance.
2. The TGF-b superfamily

TGF-b was named for its ability to drive fibroblast proliferation
before its broader role in development and immunity had been
established; in the meantime related proteins, such as the Bone
Morphogenetic Proteins (BMPs) were first characterized in verte-
brates before becoming discovered in Drosophila flies, Caenorhabdi-
tis elegans nematodes and other lower animals. Even within the
vertebrates, there are more than 30 distinct molecules including
three isoforms of TGF-b, Bone Morphogenetic Proteins (BMPs),
activins, inhibins, nodal and growth differentiation factors, and
anti-Müllerian hormone (AMH) [1–4]. Structurally, these proteins
are synthesized as �400-amino acid inactive pre-proteins, and
are cleaved by furin-like proteases to yield an active �110-amino
acid C-terminal domain; the active domain is tightly cross-linked
with 3–4 disulfide bonds, and generally forms a homodimer
through one additional cysteine residue on each chain.

The ligand family is complemented by a wide-ranging set of
receptors, which canonically are heterodimers composed of two
serine-threonine receptor kinases, termed Type I and Type II [3].
Depending on the TGF-b family member and expression of appro-
priate receptors on the surface of cells, these ligands initiate pleio-
tropic effects in a broad spectrum of biological processes including
embryogenesis, immunity, angiogenesis and wound healing [5].
Reflecting this remarkable multiplicity of events dependent on clo-
sely related TGF-b proteins, a complex and highly-regulated signal-
ing arrangement exists [6,7].

Regulation of TGF-b signaling takes place in three distinct set-
tings: the extracellular space, the cell membrane and the intracel-
lular region. The full-length TGF-b pro-protein is cleaved to
produce not only the C-terminal homology domain, but also a func-
tional N-terminal ‘latency-associated peptide’ (LAP) which remains
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non-covalently attached to the cytokine polypeptide thereby
retaining it in inactive form. Prior to secretion from a cell, the
LAP-TGF-b complex binds to a further protein, latent TGF-b binding
protein (LTBP). Because TGF-b is secreted in this way, as a compo-
nent of a biologically inactive compound, processes that liberate
the active TGF-b molecule can be as important to immunomodula-
tion as its transcription and synthesis [8]. In the extracellular
space, the active TGF-b molecule is also prone to sequestration
by ‘ligand trap’ proteins (including LAP), which limit the duration
and range of active TGF-b stimulation [9].

In vivo, cell surface receptors including many integrins have the
ability to bind LAP-TGF-b and release active TGF-b [10]. This mech-
anism is of considerable importance for example av integrin null
mice develop similar embryological aberrations to TGF-b�/� ani-
mals [11]. Furthermore, even if integrin-TGF-b interaction is
ablated solely within the dendritic cell compartment, the resultant
immunological dysfunction is sufficient to induce spontaneous col-
itis in normal environmental conditions [12].

Activated TGF-b signals as a homodimer via the union of two
type I TGF-b receptors and two type II TGF-b receptors. In humans,
5 variants of the type I receptor and 7 variants of the type II recep-
tor have been identified, in contrast to 29 potential ligands [13].
The affinity of each ligand for individual receptors varies, but most
ligands are also able to bind multiple heteromeric combinations of
type I and type II receptors, resulting in different downstream
effects [13]. Upon binding of the TGF-b ligand, the constitutively
active type II receptor is brought into close proximity of the type
I receptor, thereby enabling phosphorylation of the TbRI intracellu-
lar ‘GS’ domain and initiating the Smad signaling cascade [14]
(Fig. 1).
Fig. 1. TGF-b signaling and regulation. (A) Active TGF-b is prevented from binding to re
peptide (LAP). (B) Binding of TGF-b to the Type II TGF-b receptor leads to phosphoryla
signaling pathway, in addition to Smad-independent signaling including MAPK pathways
(D) Smad7, an inhibitory Smad, binds to the phosphorylated Type I TGF-b receptor and
Smads are intracellular proteins first identified in C. elegans
worms (as Sma genes in small phenotype organisms [15]) and
Drosophilia flies (as Mad genes [16]) and are the key intermediaries
in signaling from TGF-b receptors to the nucleus. Hence, not only
the ligands but the entire signaling pathway is conserved in the
animal kingdom, including parasites such as Schistosoma mansoni
[17,18].

Eight Smad proteins have been identified in vertebrates and
they are sub-categorized according to their function: receptor-
activated Smads (R-Smads), common Smads (Co-Smads) and inhi-
bitory Smads (i-Smads) [14]. When TGF-b binds and activates the
TGF-b receptor complex, the intracellular GS domain of TbRI phos-
phorylates Smad2 and Smad3 (R-Smads), which then form a com-
plex with Smad4 (Co-Smad) and enter the nucleus to initiate gene
transcription [19]. This process can be regulated intracellularly by
Smad7, an inhibitory Smad that can bind TbRI, prevent further sig-
nal transduction and then stimulate proteolytic degradation of the
receptor [14]. The importance of the i-Smad7 is underlined by obser-
vations that it is upregulated in inflammatory bowel diseases, and
colitis in mice can be attenuated by antisense Smad7 oligonu-
cleotides [20]. IRF3 is a related transcription factor which can bind
and inactivate Smad3; this mechanism may be important in viral
infections to suspend TGF-b-mediated immunoregulation until
the pathogen is cleared [21].

At the level of the cell membrane, another regulatory mecha-
nism comes into play in the form of ‘decoy’ receptors such as
BAMBI (BMP and activin membrane-bound inhibitor), a transmem-
brane protein that is structurally very similar to TbRI, but lacks an
intracellular GS domain [22]. BAMBI can therefore form a dimer
with TbRII and bind TGF-b without initiating any Smad signaling
ceptors due to incorporation with ‘ligand trap proteins’ such as latency-associated
tion of the Type I TGF-b receptor intracellular domain and activation of the Smad
. (C) Decoy receptors such as BAMBI bind TGF-b but prevent downstream signaling.
prevents downstream signaling.
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and thereby reduce the number of TbRIIs available to bind other
TGF-b molecules.

The Smad cascade is the ‘canonical’ signaling pathway for TGF-b
and is essential for TGF-b-driven immunoregulation and Treg/Th
cellular differentiation [23]. However, TGF-b is also able to activate
a number of Smad-independent signaling pathways including
mitogen-activated protein kinases (MAPKs). Of these, ERK phos-
phorylation is an important event in the process of epithelial to
mesenchymal transition (EMT), which is necessary in embryologi-
cal development, but can contribute to pathological fibrosis, one of
the major drawbacks in current strategies for therapeutic applica-
tions of TGF-b [24].
3. TGF-b in the immune system

TGF-b is a broadly immune suppressive mediator which can, for
example, block allergic inflammation in the lung [25] and autoim-
mune diabetes in the pancreas [26]. Deficiency in either the cyto-
kine or its receptors results in fulminant inflammatory disease
that proves lethal in the first weeks of life [27], a phenotype that
can be reproduced even if only T cells are unable to respond to
TGF-b [28]. The cytokine is instrumental in almost every compart-
ment of the immune system [29], inducing for example B cell class
switching to IgA [30,31] and driving myeloid cells into a more
tumor-promoting phenotype [32]. But its effects on T cells are per-
haps the most prominent, in particular its ability to stimulate naïve
CD4+ T cells to differentiate into Foxp3+ Treg that can suppress
effector T cell activation and proliferation [33,34], and prolong
allograft survival upon adoptive transfer into recipient animals
[35]. The level of Foxp3 expression by Treg correlates with func-
tional suppressive capacity [36] and stability of Foxp3 expression
is essential for maintenance of a regulatory phenotype [37]. Addi-
tionally, TGF-b is capable of promoting a tolerant state through
Foxp3-independent mechanisms, such as upregulation of CD73
[38], an ectoenzyme that acts to increase the local extracellular
concentration of adenosine.

The combination of TGF-b and certain other cytokines, may
induce T cells to differentiate into non-regulatory phenotyopes
such as Th17 effectors in the presence of IL-6 [39] and Th9 when
IL-4 is present [40]. The action of TGF-b on T cells is antagonized
by IFN-c and IL-4, representing an important pathway by which
these cytokines suppress Th17 differentiation [39].
4. TGF-b and regulatory T cells

CD4+ regulatory T cells (Treg), identified by expression of the
transcription factor Foxp3, are arguably the single most important
cell type in mediating peripheral tolerance [41,42]. Regulatory T
cells are subdivided into two types [43]. Thymic Treg (tTreg) con-
stitutively express Foxp3 before leaving the thymus, indepen-
dently of TGF-b, and play the predominant role of maintaining
tolerance to self antigens. In contrast, peripherally-induced Treg
(pTreg) develop from naïve, mature CD4+ cells exposed to antigens
under tolerogenic conditions (for example by immature DCs with
low levels of co-stimulation), and with an essential requirement
for TGF-b signaling [44].

Tregs are crucial for physiological immune homeostasis and
their absence leads to severe autoimmunity, which is universally
fatal in ‘scurfy’ mice that lack Foxp3 expression [45] and manifests
as a life-limiting multisystem disorder in humans – the immune
dysregulation, polyendocrinopathy, enteropathy, X-linked syn-
drome (IPEX) [46,47]. However, Tregs do also have the potential
to cause harm by permitting neoplastic cells to evade anti-tumor
immunity [48] and preventing immunity in infections [49]; the
long term effects of artificially manipulating Treg populations
in vivo are therefore unknown.

Other subsets of T cells exert regulatory effects while not
expressing Foxp3, through the release of other suppressive cytoki-
nes, in particular IL-10 and IL-35 from Tr1 [50] and iTr35 [51] cells.
While these have potent down-modulatory functions, TGF-b is
unique in being central to both the induction and function of Tregs.
5. TGF-b in transplantation

With the potential to synergise with pro-inflammatory cytoki-
nes such as IL-6, TGF-b has the potential to play janiform roles in
the context of transplantation [52]. In many experimental animal
models, TGF-b-induced immunoregulation, and regulatory T cells
in particular, clearly promote tolerogenesis and allograft survival.
However, detrimental effects can also arise through interstitial
fibrosis as a result of increased myofibroblast differentiation; in
addition, the ability of TGF-b to promote Th17 differentiation in
the presence of pro-inflammatory cytokines (IL-1b, IL-6) and TLR
ligands poses a major threat to transplant acceptance [53]. This
clearly cautions against the use of TGF-b activity as a strategy to
improve graft survival. However, in the absence of TGF-b, Th17
cells can still develop and indeed are more pathogenic due to
enhanced IL-23 receptor expression [54]. Furthermore, higher con-
centrations of TGF-b are able to overcome the Th17 pathway and
restore Treg differentiation [55], arguing that, depending on dose
and context, TGF-b may still provide a therapeutic option.
6. TGF-b in infectious diseases

The central immunosuppressive role of TGF-b is also reflected in
many infectious diseases, particularly in chronic infections. Hel-
minth parasites, which typically establish themselves as long-
term residents in the mammalian host are often associated with
both generalized immunosuppression and elevated TGF-b expres-
sion [56,57]. Moreover, patients with onchocerciasis [58] and lym-
phatic filariasis [59] show in vitro parasite antigen-specific T cell
hyporesponsiveness which can be reversed with anti-TGF-b anti-
bodies. In human helminth infections, IL-10 is also a very promi-
nent immunosuppressive factor [60]; whether this is driven by
high levels of TGF-b remains to be ascertained.

Alongside the elevation of TGF-b cytokine, many infectious dis-
ease settings are accompanied by expansion of Foxp3+ Tregs [49].
Specifically in the context of helminth parasitism, in murine infec-
tions with Brugia malayi [61], Heligmosomoides polygyrus [62–64]
and Strongyloides ratti [65] all drive marked increases in Tregs,
which in the latter twomodels can be shown to functionally inhibit
the host Th2 protective response and promote chronic infection;
moreover, blocking TGF-b signaling in H. polygyrus infection results
in greater worm expulsion [66], establishing a mechanistic link to
this key cytokine. The activity of Tregs is also enhanced in many
human helminth infections and, together with other regulatory
pathways, may establish a form of immunological tolerance to par-
asites allowing them to remain in the body for many months or
years [67,68].

Several mechanisms may operate to raise TGF-b levels in para-
site infection, such as (i) host homeostasis to minimize
immunopathology in chronic infection; (ii) pathogen triggering of
TGF-b production or activation; or (iii) parasite mimicry of the host
cytokine to drive the same pathway as host TGF-b. In fact, exam-
ples of all 3 can now be found (Fig. 2).



Fig. 2. Helminths and the TGF-b pathway. Several mechanisms may operate to raise TGF-b levels in parasite infection, such as (i) host homeostasis to minimize
immunopathology in chronic infection; (ii) pathogen triggering of TGF-b production or activation by host cells such as DCs; or (iii) parasite expression of homologues or
mimics of the host cytokine to drive the same pathway as host TGF-b.
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7. Host homeostasis or pathogen ploy?

Every immune response must engender a regulatory compo-
nent that will eventually dampen and terminate that response
[69]; hence an increase in TGF-b and Tregs during an infectious
episode may reflect host homeostatic mechanisms rather than a
strategy evolved by pathogens to suppress immunity.

In a number of parasite models, however, interfering with the
TGF-b pathway results in greater resistance to infection; although
inferential, these findings are often taken to argue that pathogens
benefit from (and may therefore have evolved to favor) TGF-b sig-
naling. These include in vivo studies with SB431542, an inhibitor of
the ALK5 receptor kinase, [66], and in vivo antibody neutralization
of host TGF-b [70], each of which lead to greater expulsion of the
chronic gastrointestinal parasite H. polygyrus.

Interestingly, mice in which T cells express a dominant negative
TGF-bRII are not more resistant to helminth infection, but show
marked overexpression of inflammatory cytokines such as IFN-c,
blocking an effective type 2 anti-parasite response [71,72]; in par-
allel, induction of IL-10 is abrogated in infected mice lacking T cell
TGF-b signaling, emphasizing the importance of TGF-b in driving
other pathways of immunosuppression [71]. Deletion of the TGF-
bRII only in myeloid cells, however, results in enhanced immunity
to intestinal helminths, indicating that the cytokine may normally
inhibit a protective effector myeloid phenotype in vivo [73].

Furthermore, while TGF-b levels are elevated in many helminth
infections, clearance of parasites through anthelmintic chemother-
apy reduces cytokine levels, indicating that the helminths may be
actively inducing high expression [74]. Conversely, in the B. malayi
model system, Foxp3+ Treg expansion required live parasite infec-
tion [61]; the inability of dead parasites to induce a regulatory
response indicated that Treg expansion is driven by the activity
and/or products of live helminths. In some cases, this process
may be indirect, as for example in the case of ES of Trichinella spi-
ralis, which stimulates host DCs to induce Tregs [75].
8. Parasite induction or activation of host TGF-b

TGF-b levels increase in many different helminth infections,
although only in some instances has a causal mechanism been
establishedbywhichparasites initiate a pathway to ensure cytokine
production. For example, in infectionwith thehelminth S.mansoni, a
regulatory cascade is generated through soluble egg antigens (SEA)
that induce T cell differentiation into Foxp3+ Tregs [76]; the effect is
sufficient to protect diabetes prone NOD mice from developing
autoimmunity. SEA is also capable of suppressing CD4+ T cell prolif-
eration and inducing Foxp3 expression indirectly.Whist SEA-driven
Foxp3 induction has only been demonstrated in the presence of DCs
(and not culture with CD4+ T cells alone), an increase in the expres-
sion of TGF-b latency associated peptide on the surface of CD4+ cells
suggests that SEA also induces enhanced secretion of TGF-b by acti-
vated T cells, further facilitating Foxp3+ Treg differentiation [77]. In
humans, although the mechanism has yet to be defined, helminth
infections such as Onchocerca volvulus elicit extremely high local
levels of TGF-b from many cell types around the nodules in which
adult parasite establish themselves [78].

Pathogens may also directly promote activation of TGF-b, as
was found in the case of influenza A neuraminidase activating
the latent TGF-b complex in epithelial cells and tissues [79]; fur-
thermore, the consequent upregulation of extracellular matrix pro-
teins facilitated the adhesion and infection with streptococcal
bacteria, thereby promoting secondary infection of the host.
9. Parasite-derived ligands – homology or mimicry?

We postulated that helminths may express TGF-b homologues
that could interfere with host immunity, and characterized several
members of the gene superfamily listed in Table 1 along with those
identified by other laboratories. In particular, we characterized two
ligands in Brugia [80,81] and four in H. polygyrus [82]. One, Bm-
TGH-2 from B. malayi, was found to activate the MFB-F11 reporter
cell line [81], but in unpublished work we found the closest homo-
logue from H. polygyrus did not do so. In Onchocerca, antibody to
mammalian LAP revealed widespread staining of somatic tissues,
indicating a parasite-encoded protein sufficiently similar to LAP/
TGF-b to be recognized by antibodies [83]. In platyhelminths (flat-
worms) activin-like homologues have been identified in both
S. mansoni [84,85] and Echinococcus multilocularis [86]; since mam-
malian Activin A can also stimulate Foxp3 induction and Treg
development [87,88], it will be interesting to learn if these parasite
ligands can act likewise.

Despite the inability of H. polygyrus TGF-b homologues to drive
signaling, the proteins secreted by this parasite (termed HES) did
directly induce Foxp3+ Treg differentiation in isolated CD4+Foxp3
(GFP)� T cells in vitro with stimulation from Concanavalin A or
plate-bound CD3/CD28 [66]. HES also suppressed proliferation of
CD4+Foxp3(GFP)� T cells and promoted IL-17 expression from naïve
CD4+ cellswhenco-culturedwith IL-6. This led to further investigation



Table 1
TGF-b ligands in helminth parasites.

Species Ligands Properties References

Ancylostoma caninum Dbl-1 like, Daf-7 like (TGH-2) Upregulated in arrested L3 larvae [93,95]
Brugia malayi Bm-TGH-1, TGH-2 TGH-2 ligated TGF-b reporter cell line [80,81]
Echinococcus multilocularis Activin homolog Induces Foxp3 [86]
Fasciola hepatica Fh-TLM and 2 other homologs Fh-TLM promotes development [99]
Haemonchus contortus Hc-TGH-2 Upregulated in L3 larvae [82]
Heligmosomoides polygyrus Hp-TGH-2 Upregulated in adult worms and eggs [82]
Nippostrongylus brasiliensis Nb-TGH-2 Upregulated in L3 larvae [82]
Parastrongyloides trichosuri Daf-7 like Upregulated in L3 larvae [94]
Schistosoma japonicum SjBMP Ovarian and tegumental expression [135]
Schistosoma mansoni SmInAct Functions in embryogenesis [84,85]
Strongyloides ratti Daf-7 like Upregulated in L3 larvae [94]
Strongyloides stercoralis Sst-TGH-1 [96]
Teladorsagia circumcincta Tci-TGH-1; TGH-2 [96,82]

Table 2
TGF-b family receptors and Smad signaling proteins in helminths.

Species Receptors Properties References

Brugia malayi and Brugia pahangi Bm-TGR-1, -2 [136]
Echinococcus multilocularis EnTR1 Interacts with host BMP2 [137]
Schistosoma mansoni RI + RII Interact with host TGFb [138–140]

Species Smad signaling proteins Properties References

Echinococcus multilocularis EmSmadA-D A and C lack MH1 domain [141,142]
Echinococcus multilocularis EmSmadE Phosphorylated by human BMP and TGFbRI [143]
Schistosoma mansoni Smad proteins [144,145]
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with a TGF-b reporter cell line (TGF-b�/�fibroblasts transfectedwith
a TGF-b-responsive alkaline phosphatase reporter), which con-
firmed TGF-b activity within HES that could be completely ablated
with a type I TGF-b receptor kinase inhibitor, but was unaffected
by a pan-vertebrate anti-TGF-b blocking antibody. Thus, HES con-
tains a TGF-b mimic that induces Foxp3 through ligation of the
TGF-b receptor complex, but is sufficiently structurally dissimilar
tomammalian TGF-b as to be unaffected by a neutralizing antibody.
Recently, in work to be published elsewhere, we have isolated the
gene encoding a novel protein with no sequence similarity to the
TGF-b family, which is able to ligate the mammalian receptor.

Similar expression of Foxp3 in T cells has been reported to be
induced by secreted proteins from some other helminths, such as
the fox tapeworm E. multilocularis [89], and the ruminant nema-
tode Teladorsagia circumcincta [66]. Most recently, products from
the Litomosoides sigmodontis filarial parasite have been shown to
ligate the host TGF-b receptor [90]. In each case, the active princi-
ples have yet to be determined.
10. TGF-b homologues in helminth arrested development

Originally the TGF-b superfamily gene daf-7 was found to be a
key player in controlling entry into the arrested larval stage of C.
elegans, the Dauer larvae, which follows the loss of daf-7 expression
[91]; in this model, daf-7 null mutants constitutively entered Dauer
arrest. Parasitic helminths enter crucial and often long-lasting
developmental arrest, for example as infective larvae awaiting
the opportunity to enter a new host, it was plausible that TGF-b
family members might similarly regulate arrest in parasites
[80,92]. However, contrary to this prediction, in a number of para-
sitic species in which TGF-b superfamily homologues were discov-
ered (Table 1), expression was found to be maximal in the arrested
third larval instar (L3) stage that is most closely analagous to the C.
elegans Dauer larva [93–97]. This suggests that either that there
has been a functional reversal in the TGF-b signaling pathway
between free-living and parasitic nematodes, or that this cascade
is not critical to the developmental program of the parasites exam-
ined. In a further departure from expectation, the closest daf-7
homologue in B. malayi, TGH-2, is highly expressed in the newborn
L1 stage, the microfilaria, which enters arrest in the bloodstream of
the host until uptake by hematophagous mosquitos [81]. Whether
this reflects an unusual plasticity in the role of TGF-b ligands in
nematode development has yet to be investigated.

In platyhelminths, the developmental role of superfamily mem-
bers is also being analyzed [18,84,98]. However, recent work has
screened genomic DNA sequences in the liver fluke Fasciola hepat-
ica, identifying 3 homologues, one of which (FhTLM) is able to
enhance egg embryogenesis and motility of juvenile parasites
when administered as a recombinant protein [99]. Further homo-
logs of the TGF-b receptor superfamily and Smad signaling proteins
have also been characterized from several major parasitic helminth
species (Table 2).
11. TGF-b homologue in embryonic sexual differentiation

During early development anti-Müllerian hormone (AMH)
ablates the Mullerian duct (the precursor of the oviduct) in the
male mammal; the only cells expressing AMH are the Sertoli cells
which generate high levels of secreted hormone in the developing
organism – at 11.5 to 12.5 days post-conception in the embryonic
mouse. Amh is secreted at lower levels in the male until puberty
and in the female by granulosa cells after puberty. Regulation of
AMH is one of the most rigorous examples of control in the gen-
ome, and is initiated following expression of the Sry sex determin-
ing region on the Y chromosome [100]. The amh locus is highly
conserved on human chromosome 19 and mouse chromosome
10, adjacent to widely expressed housekeeping genes; hence the
amh promoter appears to be tightly constrained within a few hun-
dred nucleotides of the start site [101].

Working with the murine Sertoli cell line SMAT-1, expression of
AMH was also found to require an enhancer immediately down-
stream of the 30 polyadenylation site. At the promoter level it has
been found that expression is extremely finely regulated by
enhancing (eg GATA1) and inhibitory (eg GATA4) transcription
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factors binding to noncoding regions (elements) of the gene which
are highly conserved between mammalian species [102–104]. In
particular, a high level of expression requires the presence of an
enhancer motif immediately downstream of the 30 polyadenylation
site [105]. Mutation of an element within this motif, or of the
Wilms tumor element which lies upstream of the gene, ablate high
level expression of amh; these sites can be considered as anchor
points for a specific bridging factor. Remarkably, mutation of a site
lying a few nucleotides upstream of the enhancer anchor point
leads to an accentuated amh expression. Looping between motifs
on either side of the coding sequence is necessary for strong acti-
vation of the gene.

Interestingly, if cattle conceive a heterosexual pair of twins, pla-
cental anastomoses expose the female fetus to the inhibitory
effects of AMH in utero, resulting in a masculinized infertile indi-
vidual known as a freemartin [106]. The other consequence of
the anastomosis is hematological chimerism, resulting in estab-
lishment of immunological tolerance between the twins, as
reported in Ray Owen’s landmark study in 1945 [107].
12. New therapeutic strategies?

The potency and breadth of effect of TGF-b ligands suggest
many therapeutic scenarios to treat inflammatory diseases and
facilitate transplantation. While the non-linear signaling and pleio-
tropic activities of TGF-b present significant therapeutic chal-
lenges, a considerable unmet clinical need currently exists across
many severe conditions, and recent advances in understanding
have brought the goal of driving immunological tolerance several
steps closer. The approaches currently being examined include
direct application to dampen inflammation, administration
in vivo to induce tolerance, and use ex vivo to condition patients’
T cells into the regulatory phenotype.

Direct administration is currently the least favored strategy, in
part because of the pro-fibrotic role of TGF-b which efforts to date
have not well dissociated from its immunosuppressive role. There
are also concerns that generalized immune suppression resulting
from administration of TGF-b might present risks of infection or
neoplasia comparable to those of current non-specific immunosup-
pression regimens.

In recent years, attention has been drawn to the possibility of
administering live helminth infections to attenuate or pre-empt
inflammatory disorders [108]. From a safety perspective, treatment
with low doses of helminth infection may not be hazardous, judg-
ing by the millions of people chronically infected with helminths
worldwide, of whom very few experience immunological sequelae
that approach those of current routine immunosuppression ther-
apy [109,110]. However, the balance between therapeutic efficacy
and parasite pathogenicity is not well understood, and is likely to
depend not only upon the parasite species in question, but also
the genetic predisposition of the host [111], so that adverse effects
in a minority of recipients cannot be excluded. Nevertheless, a total
of 28 clinical trials of therapeutic helminth infection are now
underway or have been completed [112]. While adverse effects
do appear to be reassuringly limited, the proposal of experimen-
tally infecting patients with live helminths still engenders a wide
range of regulatory, logistical and scientific challenges, such that
its unequivocal validation as a beneficial and viable therapy
remains elusive [113].

Identification and reproduction of individual helminth-secreted
immunomodulatory molecules as potential novel therapeutic
agents presents several advantages over live larval therapy [114].
These include consistent pharmacokinetics, scope for pharmaco-
logical modification and optimization (reducing immunogenicity
of large molecules, for example), improved public acceptability
and a lower cost barrier to large-scale production as a routine clin-
ical therapy. Compared with recombinant human TGF-b, it is also
likely that helminth-derived homologues have evolved to evade
some mechanisms of endogenous TGF-b regulation and may there-
fore provide the opportunity for greater precision in dosing and
specificity of action.

Combination therapies are another approach in development,
whereby TGF-b is administered with synergistic ‘Treg permissive’
agents which may allow some control over downstream cellular
differentiation. Of these, rapamycin (sirolimus) can act synergisti-
cally with TGF-b to favor Foxp3 expression and Treg differentiation
over Th17 effector cells [115], while retinoic acid (RA) is thought to
minimize the impact of inflammatory cytokines and co-stimulation
on impairing TGF-b-induced Foxp3 expression [116,117].

TGF-b-dependent induction of Treg also occurs in vivo and tech-
niques that exploit this mechanism to induce tolerance (such as
low dose antigen therapy [118]) appear to generate Treg with more
stable expression of Foxp3 than those generated in vitro [119]. This
suggests that additional stabilizing factors or conditions are pre-
sent in the in vivo setting and might provide encouragement for
in vivo Treg induction techniques over ex vivo expansion and rein-
fusion of isogeneic cells.

Nevertheless, prevailing concerns about in vivo administration
of TGF-b are encouraging emphasis on in vitro use to generate
Tregs which are then administered to patients. In mouse models,
adoptively transferred Treg mediate indefinite tolerance of murine
allografts including pancreatic islet [120], skin [121] and heart
[122]. Expectations of successful translation of Treg therapy into
the clinical setting have been high and preliminary clinical trials
have now been completed in graft-versus-host disease [123] and
hematopoietic stem cell transplantation [124] with modest but
encouraging results. To ensure that transfused Tregs are specific
for the pathogenic epitope (such as an auto- or allo-antigen), it is
also possible to transduce patient T cells in vitro with an engi-
neered T cell receptor, creating a highly-targeted and effective reg-
ulatory T cell population [125].

However, a number of obstacles and concerns persist. First,
Good Manufacturing Practice (GMP)-compliant ex vivo expansion
of Tregs for subsequent reinfusion is a highly specialized process
at a cost of approximately $45,000 per patient [126]. Even if this
level of funding could be justified, the infrastructure and highly
qualified personnel required are likely to limit translation into rou-
tine clinical practice.

Secondly, due to the lack of a unique human regulatory T cell
surface marker, accurate identification of Treg populations remains
imperfect. The optimal approach is with fluorescence-activated cell
sorting (FACS), with selection of, for example, CD4+CD25+CD127lo

cells [124]. However, GMP-compliant FACS isolation of Treg for
clinical therapeutic use is available at very few centers throughout
the world necessitating the use of magnetic cell sorting techniques
for preliminary clinical trials, with Treg populations consequently
of a lower purity [127,128]. Additional steps such as CD8+ T cell
depletion can limit alloreactive effector T cells to a very small per-
centage, but it is likely that any remaining are highly activated, and
the long-term impact of their infusion into a transplant recipient is
unpredictable [128].

Thirdly, concern remains over the question of whether isolated
Treg maintain their regulatory phenotype following re-infusion,
particularly in the context of an inflammatory environment.
Alloantigen-specific pTreg offer the potential advantages of high
functional suppressive ability and a specificity of action that might
lower the risk of side effects such as early viral reactivation
(observed in trial of Treg therapy in hematopoietic stem cell trans-
plantation [129]) and the potential risk of neoplasia with non-
specific Treg therapy. A further caution has been the loss of Foxp3
expression (and therefore regulatory phenotype) once induced
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Tregs are no longer exposed to TGF-b [130]. This poses a risk of infus-
ing a population of cells that effectively revert to allograft-specific
effector T cells, and the ability or otherwise to treat this scenario
with conventional immunosuppression is unknown [131]. Thera-
peutic infusion of tTreg and pTreg comprise two separate arms of
the ONE Study that is currently underway (NCT02129881).

Finally, in the long-term it is unknown whether Treg-mediated
immunosuppression might present risks of infection or neoplasia
comparable to those of current non-specific immunosuppression
regimens. To date, four clinical trials of Treg therapy have been
published: three investigating prevention or treatment of graft vs
host disease (GvHD) [123,132,133] and one for treatment of type
I diabetes [134]. Early follow-up has provided some degree of reas-
surance, with no adverse events reported other than a slightly
increased incidence of viral reactivation in the context of GvHD
[129]. However the longest follow-up period that has been
reported is only 12 months [134] and, particularly regarding a
potential long-term risk of malignancy, it may be very difficult to
determine a follow-up period wherein this question can be
answered definitively. In short, Treg cellular therapy is an attrac-
tive potential therapeutic strategy that has advanced rapidly in
recent years, but many questions and logistical barriers still exist,
such that translation to routine clinical practice is by no means
guaranteed.
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