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Introduction
Greater understanding of the mechanisms underlying appetite 
control is crucial to address the health problems that are associ-
ated with poor dietary choices and overconsumption of food 
(Wang et al., 2011). Moreover, given the health costs associated 
with unhealthy eating patterns (Scarborough et al., 2011), it is 
important to explore new avenues for improving eating behav-
iour through the development of comprehensive models of appe-
tite control that open the way for thinking about novel 
interventions and advice on nutrition.

The neural control of eating involves activity in brain circuits 
that process signals of nutritional state and food reward value. 
The ingestion of food reduces the incentive value of food, which 
is reflected in decreased activity in reward-related brain areas 
(Spetter et al., 2012; Thomas et al., 2015). However, eating is 
also influenced by higher cognitive processes such as attention 
and memory (Higgs, 2016) and it has recently been suggested 
that metabolic signals may have indirect effects on food reward 
processing via alterations in higher cognitive function (Thomas 
et al., 2014). This review will highlight new evidence that the 
control of eating involves interactions between cognitive, meta-
bolic and reward mechanisms. We will consider how this new 
framework can inform our understanding of the causes of over-
eating and comorbidities between cognitive dysfunction and dis-
ordered eating. Finally, we will assess the implications for the 
development of new approaches to healthy eating and weight 
management.

Concepts in appetite control
Traditionally, appetite has been investigated by two parallel lines 
of research focusing on the homeostatic and hedonic systems. 
Research on the neurobehavioural control of appetite, by homeo-
static mechanisms, has focused for many years on the role of 
nutrient sensing processes coordinated in the brain by the hypo-
thalamus (Waterson and Horvath, 2015). This research has been 
important in identifying how information about metabolic state 
(for example, information about whether we are fed or fasted) 
reaches the brain from the periphery and then undergoes further 
processing so that eventually motor outputs (eating behaviours) 
are generated. It is well known that the metabolic signals 
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generated by the gastrointestinal (GI) tract when food is ingested 
are associated with changes in eating behaviour. Specifically, 
hormones including cholecystokinin (CCK) and glucagon-like 
peptide 1 (GLP-1) are released when food is eaten and this is 
associated with reductions in intake (Antin et al., 1975; Turton 
et al., 1996). Conversely, ghrelin, a hormone released from the 
stomach during fasting, is associated with increased food intake 
(Nakazato et al., 2001).

Appetite is also known to be responsive to hormones such as 
the pancreatic hormone insulin and the adipokine leptin that are 
secreted in proportion to the amount of fat stored in adipocytes 
(Halaas et al., 1995; Woods et al., 1979). The arcuate nucleus 
(ARC) of the hypothalamus acts as an integrator of such signals 
from the periphery. Pro-opiomelanocortin (POMC)/cocaine, 
amphetamine-regulated transcript (CART) and agouti-related 
protein (AgRP)/neuropeptide Y (NPY) neurones in the ARC 
have been strongly implicated in the control of food intake (for 
reviews see Clemmensen et al., 2017; Waterson and Horvath, 
2015; Yeo and Heisler, 2012). These hypothalamic neurones 
express receptors for leptin and ghrelin and are modulated by the 
neurotransmitter serotonin (5-HT; for review see Garfield and 
Heisler, 2009). The caudal brainstem is another major integrator 
of information on nutrient ingestion relayed from the gut (for 
review see Grill and Hayes, 2012). Neurones in the nucleus trac-
tus solitarius (NTS) are responsible for processing multiple nutri-
ent status signals from the periphery and relay output to other 
regions involved in the control of intake including the hypothala-
mus (Grill and Hayes, 2012).

From a hedonic system perspective, research has focused on 
the importance of reward processes in motivated behaviours, 
including eating. This research has elucidated how cues associ-
ated with the consumption of tasty foods can promote food seek-
ing and intake (Berridge, 1996). When we eat a food that evokes 
a pleasurable hedonic response, we will come to associate the 
characteristics of that food (e.g. the sight and the smell of the 
food) with the positive consequence (‘liking’ response). As a 
result of this learning, the food-associated visual and olfactory 
cues acquire the ability to become sought after (they become 
‘wanted’) (Berridge, 1996). For example, we might have a strong 
desire to consume pizza if we see a shop advertising pizza from 
which a strong smell of pizza is emanating.

The neurobiology of food reward circuitry has been well stud-
ied: coordinated activity in a network of opioidergic and cannabi-
noidergic hedonic hotspots in the nucleus accumbens (NAcc), 
ventral pallidum and brainstem is thought to mediate ‘liking’ 
responses (e.g. Higgs et al., 2003; Higgs and Cooper, 1996; Mahler 
et al., 2007; Pecina and Berridge, 2005; for a review see Castro and 
Berridge, 2014). On the other hand, evidence suggests that the 
mesolimbic dopamine neurotransmitter system is crucial for food 
‘wanting’ (e.g. Pecina et al., 2003; Tindell et al., 2005; Wyvell and 
Berridge, 2000; for a review see Castro and Berridge, 2014).

More recently, the idea that there are independent homeostatic 
and hedonic systems has been abandoned in favour of a frame-
work that emphasises the crosstalk between the neurochemical 
substrates of the two systems (Berthoud et al., 2017). This 
approach is consistent with incentive motivation theories of 
behaviour, which argue that metabolic state influences eating 
behaviour by modulating the hedonic value of food and food-
associated cues (Toates, 1986). It is also consistent with evidence 
that pleasurable sensations are affected by metabolic state, a 

process known as alliesthesia (Cabanac, 1971, 1979). Food is 
more highly liked and desired when hungry and less liked when 
satiated: the smell and taste of a pizza is usually less alluring 
when we have just eaten (Berridge et al., 2010).

Metabolic signals modulate food 
reward circuitry
Extensive evidence has now accumulated that neural systems of 
food reward interact with homeostatic networks, thus providing a 
mechanism by which food deprivation or satiation affects food 
attractiveness. For example, food deprivation increases the 
incentive value of food, which is reflected in enhanced responses 
to appetitive stimuli in reward-related brain areas in humans 
(Cornier et al., 2009; DelParigi et al., 2005; Führer et al., 2008; 
Gautier et al., 2000; Goldstone et al., 2009; Haase et al., 2009; 
Killgore et al., 2003; Kringelbach et al., 2003; LaBar et al., 2001; 
Porubska et al., 2006; Simmons et al., 2005) whereas satiation 
decreases responses in reward-related circuitry (Fletcher et al., 
2010; Thomas et al., 2015). These effects are likely to be medi-
ated by a direct action of metabolic signals, such as leptin, insu-
lin, GLP-1 and ghrelin, on the mesocorticolimbic dopamine 
system (Batterham et al., 2007; Farooqi et al., 2007; Figlewicz 
et al., 2006; Fulton et al., 2006; Guthoff et al., 2010; Hallschmid 
et al., 2012; Jerlhag et al., 2012; Malik et al., 2008). It is well 
known that insulin acting at peripheral sites promotes body-
weight gain by stimulating energy storage. However, specific 
stimulation of brain insulin receptors decreases activity in mes-
olimbic dopamine circuits and reduces food reward (Figlewicz, 
2003; Mebel et al., 2012), probably because insulin also func-
tions as a negative feedback signal to the brain about levels of 
body fat (Woods et al., 1979). Hence, insulin may mediate 
reduced reward after consumption of high-energy meals (Davis 
et al., 2010). In line with this suggestion, we found that intranasal 
administration of insulin to healthy humans reduces the intake of 
palatable food in the post-prandial state (Hallschmid et al., 2012). 
Leptin administration also decreases activity in the mesolimbic 
dopamine system of rats (Fulton et al., 2006) and leptin replace-
ment in humans with a congenital absence of leptin reduces 
heightened reward responses to food pictures when satiated 
(Farooqi et al., 2007). There have also been recent advances in 
our understanding of the role of reward-related mechanisms in 
the effects of GLP-1 signalling on eating behaviours from rodent 
studies (Alhadeff et al., 2012; Dickson et al., 2012; Dossat et al., 
2011). GLP-1 receptor activation in the ventral tegmental area 
(VTA) and NAcc core reduces intake of highly palatable, energy 
dense food without affecting intake of a standard diet (Alhadeff 
et al., 2012). These data suggest that GLP-1 signalling in the 
mesolimbic system may have a selective effect to reduce the 
rewarding value of palatable food. In support of this suggestion, 
it has been reported that the GLP-1 analogue liraglutide reduces 
activity in brain reward circuitry in participants with type 2 dia-
betes (Farr et al., 2016). Conversely, the orexigenic hormone 
ghrelin stimulates dopaminergic (DA) activity (Jerlhag et al., 
2012) and increases responding for sucrose in rats when injected 
peripherally and directly into the VTA (Skibicka et al., 2012a,b). 
Ghrelin has also been found to increase the neural response to 
food pictures in reward-related circuitry (orbitofrontal cortex 
(OFC) and striatum) in humans (Malik et al., 2008).
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Investigations of the role of 5-HT in the control of appetite 
have focused on both homeostatic and hedonic mechanisms 
(Blundell, 1984; Dourish, 1995). Neurobiological studies have 
demonstrated the role of hypothalamic mechanisms in the effects 
of serotonergic drugs on food intake. The melanocortin system of 
the ARC has been identified as a key network in the anorectic 
effects of 5-HT agonists, including the 5-HT2C receptor agonist 
lorcaserin (Heisler et al., 2002, 2006; Sohn et al., 2011), which 
has recently been approved by the US Food and Drug 
Administration (FDA) for weight management. Alterations in 
5-HT transmission also affect reward-related circuits in the brain 
to influence food intake. Thus, 5-HT2C receptors expressed in the 
VTA (Bubar and Cunningham, 2007) modulate activity of DA 
projections to the NAcc to alter motivation for food and drug 
reinforcers in rats (Fletcher et al., 2004; Higgins et al., 2013). 
These preclinical data suggest a specific role for 5-HT2C receptor 
activation in linking hypothalamic energy-sensing mechanisms 
to motivational aspects of eating behaviour. Recently we reported 
that the 5-HT2C receptor agonist meta-chlorophenylpiperazine 
(mCPP) reduced consumption of a palatable energy dense snack 
eaten after a satiating meal in healthy volunteers. Using func-
tional magnetic resonance imaging (fMRI) we further observed 
that mCPP caused a marked reduction in activity across reward-
related brain regions in response to the sight of food pictures. 
These data suggest a role for 5-HT2C receptor mechanisms in 
inhibiting food-reward, especially after eating.

In addition to direct links between metabolic signalling and 
the mesolimbic dopamine system, there are indirect links via the 
lateral hypothalamus (LH) (Leinninger et al., 2009). It is well 
established that electrical stimulation of the LH elicits feeding in 
rats (Hoebel and Teittelbaum, 1962; Valenstein et al., 1968) and 
that this effect is modulated by metabolic state (Sheng et al., 
2014). There is now evidence that these effects are mediated by 
heterogeneous projections from the LH to the VTA, including 
neurones expressing orexin (Harris et al., 2005), neurotensin 
(Leinninger et al., 2009), and gamma-aminobutyric acid (GABA) 
or glutamate (Nieh et al., 2015, 2016). In addition, recent evi-
dence suggests a role for agouti-related peptide (AGRP)/neuro-
peptide Y (NPY) neurones in the ARC in integrating internal 
metabolic signals with external signals on food availability to 
provide an output that drives downstream reward circuitry and 
promotes eating in mice (Chen et al., 2015).

The effects of metabolic signals on food reward go some way 
to explaining why food is usually more attractive when we are 
hungry and less attractive when we are full. But individuals do 
not always respond to the presence of food cues by initiating eat-
ing, and eating may continue even when someone has already 
consumed a large amount of food. Eating is a complex behaviour 
that can be initiated or brought to a close depending on a multi-
tude of influences that include taste and smell as well as contex-
tual factors and prior experiences (Higgs, 2005). Individual 
differences in the initial response to a food cue, sensitivity to 
metabolic signals, and cognitions will affect the outcome. As 
such, eating may be inhibited even in the presence of highly pal-
atable food-relevant stimuli or a depleted metabolic state. To pro-
vide a simplified example we can think about a situation in which 
we are confronted with a food cue, such as the sight, smell or 
taste of food or a food advert. An appetitive response to this stim-
ulus may be inhibited if someone has a desire to avoid consump-
tion of certain foods bearing in mind long-term consequences for 

health. This kind of thinking has led to an expanded view of the 
neural control of appetite that includes brain regions important 
for learning, memory and attention including the hippocampus, 
amygdala and pre-frontal cortex (for reviews see Coppin, 2016; 
Hargrave et al., 2016; Kanoski et al., 2017; Parent, 2016).

Cognitive modulation of food reward
The view that motivation to eat depends on cognitive modulation 
of reward processes is gaining traction and it has been argued that 
everyday control of appetite involves cognitive processes such as 
learning, attention and memory (Higgs, 2016). For example, it 
has been demonstrated that a focus on the longer-term health out-
comes of eating unhealthy foods is associated with inhibition of 
reward-related brain activity (Hare et al., 2009, 2011a). These 
cognitive processes are likely to operate across all aspects of 
appetite control including before a meal begins, during a meal 
and in the intervals between meals (see Figure 1) and will be 
reviewed briefly here. One point of note is that suggesting eating 
involves cognition does not imply that we consciously consider 
food decisions all the time. Much of the time, eating seems to 
engage no mental effort but this does not infer that eating is 
‘mindless’ (Herman and Polivy, 2014). There are other complex 
behaviours, such as driving a car, that we would readily accept 
involve the coordination of complex cognitive processes includ-
ing attention, learning and memory but also appear routine and/
or effortless. Thus we can think of eating in the same way: we 
may be made aware of the underpinning mental processes but 
they are not constantly in awareness.

Cognitive processes involved in 
responses to food cues before eating 
begins
The sight of a tasty food can elicit appetitive behaviours, such as 
food seeking and a desire to eat, and it will also evoke cognitive 
expectations about how the food will taste, how satiating it is and 
whether eating it will be consistent with our longer-term health 
goals (Brunstrom, 2011; Rangel, 2013). These expectations are 
factored into choices about whether to eat and/or how much to 
eat (Rangel and Hare, 2010). They are based on conditioned 
responses that arise from learned associations about the conse-
quences of eating (Dickinson, 2012) as well as mental simula-
tions of the outcomes of specific choices based on episodic 
memories (Daw and Shohamy, 2008; Lengyel and Dayan, 2008). 
The value of individual predicted outcomes is computed in the 
ventromedial-prefrontal cortex (vmPFC) and a network that 
includes dorsolateral prefrontal cortex (dlPFC) uses the value 
input from the vmPFC to select an action (Hare et al., 2009, 
2011b). This system enables eating behaviour that is goal 
directed, and adaptable to circumstance, rather than simply food 
cue driven. Thus, if we have a long-term goal of healthy eating, 
then an urge to consume a tempting food that is energy dense, but 
nutritionally deplete, may be resisted. Alternatively, if we have a 
positive memory of eating a food in a specific restaurant, then 
this might bias our decision towards choosing that food (Robinson 
et al., 2012).

However, one’s ability to maintain goal-directed behaviour will 
be affected by several factors including: whether the longer-term 
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consequences of behaviour are retrieved from memory and are 
then a focus of attention (Hare et al., 2010; Hofmann et al., 2012; 
Whitelock et al., 2017); the extent to which we are exposed to 
stimuli that trigger competing cue-driven urges in our food envi-
ronment; and whether other competing cognitive demands like 
watching television interfere with the ability to inhibit these com-
peting responses (Braude and Stevenson, 2014; Ward and Mann, 
2000), which may explain why dieting often fails (Herman and 
Mack, 1975; Herman and Polivy, 2004).

There are also individual differences in the ability to adhere to 
longer-term goals in the face of immediate rewards. The conflict 
between the delayed rewards of good health versus the immedi-
ate reward of a tasty food is a dilemma modelled in the delay 
discounting task (McHugh and Wood, 2008). In this task, partici-
pants are presented with a choice between a small reward avail-
able immediately, or a larger reward available after a delay. The 
indifference point (IP) is the value at which the participant is 
indifferent to the reward being received now or after a delay. A 
low IP value indicates that the participant is not very willing to 
wait for the reward: in other words they discount the future 
reward value. Discounting of the future on both money and food-
based tasks has been related to over eating and obesity (Bickel 
et al., 2014; Jarmolowicz et al., 2014; Price et al., 2016; Weller 

et al., 2008). A key factor in delay discounting is likely to be the 
ability or lack of ability to inhibit pre-potent responses, which 
has also been linked to obesity and overconsumption of palatable 
foods (Hall, 2012; Hofmann et al., 2009; Nederkoorn et al., 
2006). Hence, cognitive processes of inhibitory control, most 
likely underpinned by activity in the dLPFC (e.g. Ballard and 
Knutson, 2009), are also involved in the response to food cues 
(Higgs, 2016).

The desire to eat may be triggered by the sight of food, but 
also by thoughts of food that come spontaneously to mind, espe-
cially if one is hungry (Berry et al., 2007). Whether or not we 
notice food around us, or bring food easily to mind, is influenced 
by higher-level cognitive processes, in particular, working mem-
ory. If we are thinking about food (holding food information in 
working memory), this guides our attention towards food-related 
stimuli in the environment (Higgs et al., 2012; Rutters et al., 
2015), ensuring that food cues are likely to have a greater influ-
ence on individuals who are thinking about food; for example, 
individuals who are hungry (Mogg et al., 1998). Attentional bias 
to food cues has also been linked to increased food intake and 
hunger (Field et al., 2016). The underlying mechanisms are 
unclear but one possibility is that paying attention to a stimulus 
increases the readiness to execute actions associated with that 

Figure 1. Cognitive processes throughout the day that influence eating behaviour. The outer circle provides an overview of the processes that 
operate before a meal: the expectation and sight of the food to be consumed, and the interplay between any (health) goals, memory of the taste 
and pleasure of the food and attention to food cues will determine if individuals will start eating and what kind of food they will choose. The 
middle circle represents within-meal processes that influence the amount consumed: pleasantness and reward values will decrease while eating and 
ultimately lead to meal termination. Additionally, attention to the process of eating and cognitive control also will influence the termination of the 
meal. The inner circle represents the processes operating between meals, for example episodic memory of a meal will influence decisions about when 
to eat a next meal. dlPFC: dorsolateral prefrontal cortex; OFC: orbitofrontal cortex; vmPFC: ventromedial-prefrontal cortex.
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stimulus e.g. reaching for a tempting food (Anderson, 2017; 
Krebs et al., 2010). Another possibility is that selective attention 
to sensory/hedonic attributes of food biases choice towards food 
consumption because these attributes of food are weighed more 
strongly than longer-term goals in reward valuation processes 
(Werthmann et al., 2016).

Thoughts of food may guide attention to food and stimulate 
appetitive behaviour but we may also experience food cravings 
and emotional responses if an initial thought is embellished in 
memory (Kavanagh et al., 2005). For example, the sight of a 
cookie might elicit specific memories of past eating, as discussed 
previously, but also recall the smell and taste of cookies and how 
it would feel if one ate a cookie (Papies, 2013). There is some 
evidence to suggest that brain areas associated with food taste are 
activated in response to the viewing of food pictures, suggesting 
that processing of food cues is grounded in the same brain areas 
that underpin sensory responses to food itself (Chen et al., 2016). 
Maintenance of this kind of elaborated food imagery in working 
memory most likely serves a function to facilitate food seeking in 
the absence of direct contact with specific cues (Kavanagh et al., 
2005). However, a conscious preoccupation with food or vivid, 
intrusive thoughts about food may serve to bias attention towards 
food cues even when they have been devalued, for example in a 
state of satiety. Thus, a failure to inhibit intrusive thoughts about 
food could result in a reduced ability to dampen responses to 
food cues when satiated, which may cause overeating in the 
absence of hunger and contribute to disordered eating patterns 
(Higgs, 2016; Martin and Davidson, 2014).

Cognitive processes involved in 
responses to food cues during eating 
and satiation
In the later phases of a meal, there is a decline in the perceived 
pleasantness of food that contributes to the cessation of eating 
(Hetherington, 1996). The reduction in the rewarding properties 
of food as it is eaten may be specific for that food, as in sensory 
specific satiety (Rolls et al., 1981), but there is also a general 
decline in the attractiveness of all foods as mentioned previously, 
which is known as alliesthesia (Cabanac, 1971, 1979). 
Habituation of neural responses in the OFC, which codes for a 
representation of the reward value of the taste of food, is one 
mechanism that is likely to underlie within-meal reductions in 
food pleasantness (Critchley and Rolls, 1996; O’Doherty et al., 
2000), alongside reduced signalling in the mesolimbic dopamine 
system. We investigated the neural underpinning of natural satia-
tion in humans using fMRI (Thomas et al., 2015). In line with 
previous data on sensory specific satiety and alliesthesia, we 
found that eating to fullness after a natural inter-meal interval 
was accompanied by decreases in reward-related brain activa-
tions in the OFC and the mesocorticolimbic dopamine system. A 
novel finding was that natural satiation increased activity in the 
dorsolateral prefrontal cortex (dlPFC) (Thomas et al., 2015), an 
area that is associated with attention, memory and cognitive con-
trol (Duncan, 2013). Moreover, activity in the vmPFC was nega-
tively correlated with activity in the dlPFC and connectivity 
between these areas was increased in the satiated state. These 
data suggest that natural satiation is associated with a distributed 
pattern of changes in neural activity suggestive of metabolic 

influences on both reward-related circuitry and areas involved in 
higher cognitive functions and decision making. An implication 
of this finding is that if either habituation or reward valuation 
processes are disrupted, then satiation will be impaired, as has 
been observed for eating while distracted (Braude and Stevenson, 
2014). The specific cognitive processes involved have yet to be 
elucidated but may relate to the role the dlPFC plays in modulat-
ing food value in response to changes in context (in this case 
metabolic state) (Rudorf and Hare, 2014). Alternatively, given 
the importance of the dlPFC for working memory, there may be 
an important role for working memory modulation of attention to 
food cues (Curtis and D’Esposito, 2003).

Cognitive processes involved in 
responses to food cues in intervals 
between eating episodes
Cognitive processes are also important for the inhibition of food 
intake that occurs after an eating episode (satiety). There is con-
siderable experimental evidence that memory of a recent eating 
episode inhibits eating (Higgs, 2016). A striking example of the 
importance of memory for recent eating in satiety is that amnesic 
patients who are unable to recall recent eating will eat multiple 
meals in quick succession (Hebben et al., 1985; Higgs et al., 
2008b; Rozin et al., 1998). Manipulation of the memory of a 
meal in healthy volunteers is also sufficient to affect snacking 
after that meal. Enhancing memory of recent eating by facilitat-
ing recall or augmenting encoding of food memories decreases 
subsequent food intake (Higgs, 2002; Higgs et al., 2008a; Higgs 
and Donohoe, 2011; Robinson et al., 2014). On the other hand, if 
encoding of episodic food memories is disrupted by engagement 
in a secondary activity, such as watching television or playing a 
computer game while eating, subsequent snack intake is increased 
(Higgs, 2016; Higgs and Woodward, 2009; Mittal et al., 2011; 
Moray et al., 2007; Oldham-Cooper et al., 2011). Moreover, 
remembered food intake is a better predictor of later hunger than 
the amount eaten (Brunstrom et al., 2012). The data from humans 
on the importance of meal memories in satiety is supported by 
evidence that hippocampal-dependent episodic memory of a 
recently eaten meal influences the timing of the next meal and the 
amount consumed at that next meal in rats (Parent, 2016). Rats 
with selective lesions to the hippocampus have disturbed meal 
patterns and overeat (Clifton et al., 1998; Davidson et al., 2005; 
Davidson and Jarrard, 1993) and temporary inactivation of the 
hippocampus of rats accelerates the onset of the next meal 
(Henderson et al., 2013). Taken together, these data suggest that 
satiety is in part cognitively constructed and dependent upon epi-
sodic memory (Higgs, 2008; Redden, 2014).

Linking cognitive processes of 
appetite control with metabolic 
signalling: the role of hormonal and 
neurotransmitter mechanisms
Until recently, research on the cognitive control of eating had not 
been well integrated with research on metabolic control. An 
emerging literature is documenting the broader effects of meta-
bolic signals on higher-level cognitive processes such as attention 
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and learning and memory. This literature suggests that some 
effects of metabolic signals on eating may be mediated by their 
effects on cognition, although research specifically linking cogni-
tive effects of metabolic signals with appetite is in its infancy.

Insulin and cognition
A high density of insulin receptors is expressed in the cerebral 
cortex, olfactory bulb, hippocampus, cerebellum and hypothala-
mus (Unger et al., 1991). Intracerebroventricular administration 
of insulin to rodents and intranasal insulin administration to 
humans (at doses up to 80 IU) raises brain insulin levels without 
inducing concomitant changes in blood insulin or glucose levels 
and improves memory (e.g. Benedict et al., 2004; Park et al., 
2000). There is substantial evidence that centrally acting insulin 
enhances cognitive function (Shemesh et al., 2012). For example, 
intranasal insulin improves declarative memory and working 
memory in humans (Benedict et al., 2004, 2008; Hallschmid 
et al., 2008, 2012; Stockhorst et al., 2004). Neural responses to 
intranasal insulin and resting state function have been examined 
using fMRI and the results are consistent with the idea that insu-
lin acts to alter neural activity in brain circuits that are important 
for higher cognitive function, including the pre-frontal cortex 
(e.g. Kullmann et al., 2013, 2015). In addition, the results of clin-
ical trials of the effects of intranasal insulin in patients with either 
mild cognitive impairment (MCI) or Alzheimer’s disease suggest 
improvements in verbal and visuo-spatial working memory in 
these patients (Claxton et al., 2015; Reger et al., 2008a,b). 
Furthermore, central nervous system (CNS) insulin resistance 
has been linked to cognitive impairment (Craft et al., 2013; De 
Felice, 2013), including reduced performance on tests of episodic 
and working memory (Talbot et al., 2012) and impaired perfor-
mance on an episodic memory task that is linked to reduced 
activity in the core neural network associated with memory recall 
(Cheke et al., 2017). Insulin resistance is also a risk factor for the 
development of dementia (Chatterjee et al., 2015). The specific 
mechanisms underlying the effects of CNS insulin administration 
and insulin resistance on memory have yet to be fully elucidated, 
but it is likely that regulation of synaptic plasticity in the hip-
pocampus is involved (Fadel and Reagan, 2016).

In relation to the effects of enhanced brain-insulin signalling 
on food intake (Guthoff et al., 2010; Hallschmid et al., 2010), it 
is unclear to what extent its pro-cognitive effects play a role. Data 
from a study by Hallschmid and colleagues (2012) suggest that 
insulin enhancement of consolidation of a recent meal memory is 
not a likely mechanism, but the possibility remains that the 
effects of insulin in the hippocampus may mediate encoding of 
meal memories. Whether effects of meal-related insulin secretion 
on working memory are involved in active inhibitory processes 
of context dependent reward valuation that may occur towards 
the end of a meal is currently being explored in our laboratory.

Leptin and cognition
Leptin receptors are located in the cerebral cortex, hippocampus, 
basal ganglia, hypothalamus, brainstem and cerebellum (Elmquist 
et al., 1998; Hâkansson et al., 1998; Savioz et al., 1997; Shanley 
et al., 2002) and there is evidence that leptin has effects on cogni-
tion (Farr et al., 2015; Morrison, 2009). At the cellular 

level, leptin plays a role in the synaptic plasticity of hippocampal 
neurones as well as long-term potentiation (LTP) (Harvey et al., 
2005; Irving and Harvey, 2014). Leptin administration has been 
reported to improve memory function in rodents (Farr et al., 
2006; Oomura et al., 2006), whereas cognitive performance is 
impaired in genetic models of leptin deficiency (Li et al., 2002; 
Paz-Filho et al., 2008). As with insulin, leptin resistance is also 
associated with impaired cognition, especially during aging, and 
impaired leptin function may contribute to cognitive impairment 
in MCI in humans (Holden et al., 2009; Witte et al., 2016).

Interestingly, while leptin’s effects on cognition have not been 
directly linked to food intake in humans, leptin replacement has 
been reported to reduce neuronal activity to food images in the 
insular, parietal and temporal cortex but increase activation in the 
prefrontal cortex (Baicy et al., 2007), suggesting a potential role 
for leptin in inhibitory cognitive processes related to satiation 
(Thomas et al., 2015). In addition, administration of leptin to the 
ventral hippocampus of rats suppressed both food intake and 
memory consolidation for the spatial location of a food reward 
(Kanoski et al., 2011). These data suggest that the effects of lep-
tin on eating may be mediated in part by its effects on the retrieval 
of food memories. Further investigation of the relationship of the 
pro-cognitive effects of leptin to appetite control are warranted.

GLP-1 receptors and cognition
Activation of either peripheral or central GLP-1 receptors (GLP-
1Rs) in the hypothalamus and NTS reduces food intake (Hayes 
et al., 2011; Holst, 2007; Schick et al., 2003). GLP-1Rs are also 
present in the hippocampus (Hamilton and Hölscher, 2009) and 
their activation improves learning and memory, including hip-
pocampal -dependent spatial memory in the Morris water maze 
(During et al., 2003). Further, GLP-1R knockout mice exhibit 
impairment in object recognition learning (Abbas et al., 2009) 
and the GLP-1 agonist liraglutide enhances memory in a mouse 
model of Alzheimer’s disease (Hansen et al., 2015). Liraglutide 
is currently in clinical trials for Alzheimer’s disease 
(NCT01843075) but there has been little investigation of the 
effects of GLP-1 ligands on cognition in healthy humans.

A link between the anorectic and cognitive effects of GLP-1 
receptor activation is provided by the observation that injection 
of the GLP-1R agonist exendin-4 into the ventral hippocampus 
of rats reduces meal size and lever pressing for palatable food 
(Hsu et al., 2015a). In contrast, GLP-1 receptor activation had no 
effect on the expression of a conditioned place preference (CPP) 
for food (Hsu et al., 2015a). A possible explanation offered by the 
authors is that exendin-4 may only decrease food-related respond-
ing when there is food present during the test session (in the CPP 
paradigm there is no food available during testing). The effects of 
exendin-4 in the hippocampus differ from those of leptin, since 
leptin reduced retrieval of food-related memories when delivered 
into the hippocampus. An interesting point to consider in future 
research will be the time course of the actions of long-term adi-
posity-related factors such as leptin versus short-term metabolic 
signals, i.e. prandial signals like GLP-1, on cognition and food 
intake. For example, prandial signals might be expected to have 
a greater influence on cognitive functions that are important for 
meal termination (satiation) whereas adipose factors might have 
a more significant role to play in cognitive mechanisms involved 
in meal initiation.



1466 Journal of Psychopharmacology 31(11) 

5-HT and cognition
5-HT plays in a role in modulating cognitive function, although 
the effects of global manipulations of 5-HT on memory and 
attention in healthy volunteers are generally small. Nevertheless, 
reducing 5-HT by acute depletion of the 5-HT precursor trypto-
phan produces reliable impairment of memory consolidation 
(Mendelsohn et al., 2009). There is also an extensive preclinical 
literature on the role of 5-HT receptors in cognition, in particular 
there has been a focus on 5-HT1A receptors, 5-HT3 receptors and, 
more recently, 5-HT6 receptors (Glikmann-Johnston et al., 2015; 
Lummis, 2012; Machu, 2011; Ramírez, 2013). However, 5-HT3 
receptor and 5-HT6 receptor antagonists (for example the 5-HT6 
receptor antagonist, idalopirdine), which showed promising 
results in preclinical studies and early Phase 2 clinical trials for 
Alzheimer’s disease, subsequently failed in large Phase 3 trials 
(Lundbeck, 2016; Ramírez, 2013). Few studies have investigated 
the role of 5-HT receptors in cognition in healthy humans and to 
date there is no consistent evidence for involvement of specific 
5-HT receptor subtypes (for review see Cowen and Sherwood, 
2013). However, we have recently reported the novel finding that 
the 5-HT2C receptor agonist mCPP enhances recall of emotional 
words (Thomas et al., 2014). Given that the effect of mCPP on 
recall was unlikely to be related to effects on anxiety, further 
investigation of the specific role of the 5-HT2C receptor in mem-
ory function is warranted. An interesting possibility is that mCPP 
(and by implication the 5-HT2C receptor agonist, lorcaserin, 
which is marketed for obesity) might act to decrease food intake 
via enhancement of meal memories (Thomas et al., 2014).

There is a large literature that has implicated 5-HT in behav-
ioural inhibition (e.g. Faulkner and Deakin, 2014; Soubrié, 
1985). 5-HT is thought to play a specific role in behavioural inhi-
bition that occurs in response to predictions of aversive outcomes 
(Boureau and Dayan, 2011; Crockett et al., 2009, 2012; Dayan 
and Huys, 2009) and in the ability to wait in order to obtain future 
reward, a specific type of impulsive responding (Miyazaki et al., 
2014). Recently, it has been proposed that these actions are cap-
tured by a framework positing that 5-HT affects cognitive pro-
cesses involved in action control and value-based decision 
making (Cools et al., 2011; Meyniel et al., 2016). Specifically, it 
has been argued that 5-HT overcomes the costs of actions, such 
as the cost of having to wait to receive a reward, to affect action 
selection, perhaps by down-regulating the weight the cost has in 
the decision to produce an effort (Meyniel et al., 2016; 
Schweighofer et al., 2008). Relating this idea to food choices, 
5-HT may overcome the cost associated with the delayed benefits 
of choosing a ‘healthy’ food, thus facilitating goal-directed food 
choices (Vlaev et al., 2017). In the context of food intake, 5-HT 
could enhance the prefrontal cortical control of food value com-
putations that may occur during satiation (Thomas et al., 2015), 
although this remains to be tested.

Ghrelin and cognition
Ghrelin is the endogenous ligand of the growth hormone secreta-
gogue receptor (GHSR), and is highly expressed in the ARC and 
in the hippocampus (Bennett et al., 1997; Guan et al., 1997; 
Zigman et al., 2006). Ghrelin has been reported to enhance spa-
tial learning and memory formation and promote the formation 
of synapses in the hippocampus in mice (Diano et al., 2006). 

Activation of GHSRs in the ventral hippocampus increases food 
intake and enhances feeding in response to external food-associ-
ated cues in rats (Kanoski et al., 2013). These data suggest a role 
for ghrelin signalling in the ventral hippocampus in learning 
about food cues to facilitate foraging behaviour (Diano et al., 
2006; Hsu et al., 2015b). Consistent with this proposal, ghrelin 
administration to humans has been reported to enhance memory 
for food compared to non-food pictures in a simple recognition 
paradigm (Malik et al., 2008) and increase hippocampal activa-
tion while viewing food pictures (Goldstone et al., 2014). 
However, a recent study failed to identify an effect of ghrelin on 
either spatial memory encoding or consolidation (Kunath et al., 
2016) and there appears to be no clear relationship between cog-
nitive function and serum ghrelin levels (Gahete et al., 2011; 
Spitznagel et al., 2010; Stoyanova, 2014; Theodoropoulou et al., 
2012). There is much still to learn about the potential cognitive 
enhancing effects of ghrelin in humans. A comparison of the 
effects of ghrelin, insulin and leptin and ligands for 5-HT and 
GLP-1 receptors in a range of behavioural and fMRI tasks might 
help differentiate their effects on cognition and further elucidate 
their role in appetite control.

In summary, activity in multiple metabolic signalling path-
ways is associated with alterations in cognition. While the effects 
of metabolic signals on cognitive performance and eating behav-
iour have traditionally been considered separately, it is increas-
ingly apparent that an integrated approach may be more 
successful in advancing our understanding of this complex area 
of research (e.g. Rangel, 2013). In addition, recent results suggest 
that nutrition-related signals are likely to serve an important role 
in modulating the cognitive processes that underpin eating 
behaviours. However, it is important to note that much research 
to date has been conducted using animal models and further work 
is required to assess the extent to which these findings translate to 
humans.

Implications for understanding and 
treating disordered eating
There is a growing appreciation that obesity is associated with 
alterations to brain structure and function that are linked with 
neurocognitive problems, particularly in the domains of learning 
and memory and decision-making (Horstmann, 2017; Prickett 
et al., 2015; Stoeckel et al., 2016). There is also evidence that a 
high-fat/high-sugar diet (the so called ‘Western diet’) can have 
detrimental effects on cognitive function (Hsu and Kanoski, 
2014). Given what is now known about the impact of metabolic 
signals on cognition, it is possible that neurocognitive changes 
associated with obesity may result from metabolic adaptations 
that occur in response to obesity and the consumption of certain 
diets (Stoeckel et al., 2016). However, neurocognitive problems 
may also be a cause of obesity given data on the importance of 
cognitive processes for appetite control (Higgs, 2016). The 
vicious cycle model of obesity, metabolic disease and cognitive 
decline (Davidson et al., 2014) proposes that eating a high-fat/
high-sugar diet may lead to changes in the brain (most likely hip-
pocampal dysfunction) that result in greater responsiveness to 
food-related cues, which in turn leads to overconsumption and 
weight gain in a perpetuating cycle (Kanoski and Davidson, 
2011). However, there is some evidence that these brain and 
behavioural changes may be reversible. For example, the results 



Higgs et al. 1467

of a recent meta-analysis suggest that intentional weight loss is 
associated with improvements in cognitive function in individu-
als who are overweight and/or obese (Veronese et al., 2017). 
These data suggest that interventions targeting diet- and/or obe-
sity-induced changes in cognition could be helpful in breaking 
the vicious cycle.

One approach would be to develop cognitive training pro-
grammes that strengthen the ability to inhibit responses to food. 
A number of such training programmes have been developed and 
are currently in the early stages of testing (Allom et al., 2016; 
Stice et al., 2016). There is some evidence that programmes 
aimed at altering eating behaviour by enhancing inhibitory con-
trol can decrease food intake, but the specific cognitive mecha-
nisms underlying these effects have not yet been elucidated 
(Veling et al., 2017). Other potentially promising programmes 
have targeted working memory processes (Houben et al., 2016) 
or used a smartphone application (app) to target food memory 
recall and ‘attentive’ processes during eating (Robinson et al., 
2013). An interesting approach would be to combine these cogni-
tive interventions with dietary and surgical interventions for obe-
sity to enhance inhibitory control of food intake. Interestingly, 
bariatric surgery is associated with improvements in cognitive 
function (Handley et al., 2016). The underlying mechanisms are 
not well understood but are unlikely to be explained by weight 
loss alone and may relate to changes in metabolic signalling soon 
observed soon after surgery (Handley et al., 2016). For example, 
increased serum leptin and ghrelin concentrations following bari-
atric surgery have been suggested to contribute to the observed 
postoperative cognitive improvements (Alosco et al., 2015). 
Exercise has also been linked with improvement in cognitive per-
formance, specifically inhibitory control, which may indicate the 
potential for additional benefit of regular exercise on appetite 
control (Lowe et al., 2016).

Given that weight loss is difficult to achieve, and maintain, by 
changes to diet and exercise patterns alone, the use of approved 
pharmacotherapy, along with lifestyle changes, can be useful for 
chronic weight management (Bray et al., 2016). At present how-
ever, pharmacotherapy options for obesity are limited and there 
have been concerns over the long term efficacy and safety of 
drugs for weight management (Narayanaswami and Dwoskin, 
2017). FDA-approved monotherapy drugs include phentermine 
(Adipex-P), orlistat (Xenical), lorcaserin (Belviq) and liraglutide 
(Saxenda). Recent developments in weight-management phar-
macotherapies have focussed on drug combinations such as 
bupropion/naltrexone (Contrave) and phentermine/topiramate 
(Qsymia) that act on multiple targets within the appetite control 
system (Narayanaswami and Dwoskin, 2017). However, the 
weight loss induced by lorcaserin is relatively modest and while 
Qsymia is more efficacious than lorcaserin as a weight-loss agent 
it is associated with unpleasant side effects (Heal et al., 2012). 
Therefore, there is a need for improved drug therapies.

The effects of pharmacotherapies might be enhanced by cog-
nitive interventions, especially if the mechanism of action to 
reduce food intake is at least in part explained by cognitive mod-
ulation, as may be the case for the GLP-1 receptor agonist lira-
glutide and the 5-HT2C receptor agonist lorcaserin. New drugs 
could be developed that target the cognitive processes involved 
in appetite control. Interestingly, lisdexamphetamine (Vyvanse) 
has been marketed for a number of years for the treatment of 
cognitive symptoms of attention deficit hyperactivity disorder 

(ADHD) and has recently been approved by the FDA for treat-
ment of binge eating disorder. It is unclear how lisdexampheta-
mine reduces binge eating but one potential mechanism relates to 
its effects on attentional processes. Future consideration in novel 
drug therapy for weight management could be given to combin-
ing cognitive-enhancing drugs with ligands that have comple-
mentary actions on metabolic targets.

Another approach to overcome problems with cognitive con-
trol in obesity would be to target pathologies in the brain areas 
that underlie those functions or target the neural mechanisms 
underlying cognitive control with non-invasive neuromodulation 
techniques. For example, transcranial direct current stimulation 
(tDCS) and repetitive transcranial magnetic stimulation (rTMS), 
or the non-invasive neurotherapeutic tool real-time fMRI (rt-
fMRI) neurofeedback (for review see Bartholdy et al., 2013; 
Stoeckel et al., 2014; Val-Laillet et al., 2015) are being explored. 
The first proof-of-concept results in people who are overweight 
or obese on self-regulation (rt-fMRI) of the insula and amygdala 
(Frank et al., 2012; Ihssen et al., 2016) suggest both eating-
related brain areas, and networks related to top-down control of 
appetite, (vmPFC-dlPFC connectivity) (Spetter et al., 2017), 
show promise for this approach. Similar activation patterns were 
observed when participants were asked to consciously regulate 
their desire for food by thinking about the longer-term conse-
quences of eating (Hollmann et al., 2012; Yokum and Stice, 
2013), however additional behavioural effects are still to be 
found. Neuromodulation of dlPFC resulted in a suppression of 
self-reported food craving and appetite scores (Goldman et al., 
2011; Uher et al., 2005), and there is evidence that tDCS and 
rTMS reduce food consumption (Gluck et al., 2015; Jauch-Chara 
et al., 2014; Lapenta et al., 2014), while theta-burst stimulation of 
the area increased snack intake and craving (Lowe et al., 2014). 
Moreover, rTMS of the dlPFC in individuals with bulimia or ano-
rexia reduced disease-associated symptoms such as food craving, 
feeling fat and feeling anxious (Van den Eynde et al., 2010, 
2013). The promising results of these initial studies has generated 
significant interest (see for review Hall et al., 2017; Lowe et al., 
2017), but the behavioural findings are not always consistent and 
further research is needed to more comprehensively assess the 
full potential of this approach (Cirillo et al., 2017) and deal with 
the significant challenges of translating laboratory based findings 
into the natural environment and the clinic.

Interestingly, there may also be a link from the gut microbi-
ome to cognitive dysfunction (Noble et al., 2017), which sug-
gests that interventions aimed at improving the gut microbiome 
could have positive effects on cognition that in turn may help to 
ameliorate cognitive problems associated with obesity and type 2 
diabetes. A potential explanatory mechanism is that diet-induced 
changes in the gut microbiome in part underlie low-grade chronic 
inflammation associated with obesity (Bleau et al., 2015; 
Spyridaki et al., 2016): low-grade inflammation is known to 
adversely affect cognitive function (Miller and Spencer, 2014) 
and the hippocampus is particularly vulnerable to these effects 
(Hsu et al., 2015c). Diet-induced alterations in gut microbiota 
may also impair peripheral insulin sensitivity, which could con-
tribute to cognitive problems (Noble et al., 2017).

Finally, there are implications for the treatment of mental ill-
ness because many psychiatric disorders including depression, 
anxiety, ADHD and schizophrenia are associated with disordered 
eating and obesity (Bulik et al., 2016; Javaras et al., 2008; Kaisari 
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et al., 2017b; Simmons et al., 2016). Metabolic adaptations 
occurring as a result of weight gain are likely to exacerbate the 
cognitive impairments associated with psychiatric disorders such 
as schizophrenia (Bora et al., 2017). Hence, treatment of the met-
abolic disorder is likely to improve functional outcomes. In addi-
tion, further research is required to clarify the nature of the 
mechanisms underlying the association between psychiatric con-
ditions and disordered eating. While there is a well-known con-
tribution of medication to food intake patterns in psychiatric 
conditions (Correll et al., 2015), it is possible that core cognitive 
features of these conditions also contribute to disordered eating. 
For example, we recently identified that inattention symptoms of 
ADHD are associated with both binge-like eating and restrictive 
eating in ADHD (Kaisari et al., 2017a). It is possible that cogni-
tive symptoms such as attentional problems and cognitive con-
trol, which cut across traditional categories of psychiatric 
disorder may help to explain comorbidities.

We have proposed a research framework to guide studies on 
disordered eating in psychiatric disorders based on the National 
Institute of Mental Health Research Domain Criteria Initiative 
(RDoC). The RDoC encourages research on dimensions of 
observable behaviour and neurobiology rather than a categorical, 
symptom-based approach to the study of mental health (Kaisari 
et al., 2017b). Our proposed framework comprises multi-modal, 
laboratory-based assessment of cognitive constructs and meas-
ures of eating behaviour in participants recruited from the com-
munity to span the range of variation in cognitive processes 
associated with psychiatric conditions. This dimensional 
approach ensures that potential confounds associated with clini-
cal research (e.g. medication status) can be minimised. Our pro-
posed framework enables testing for causal relationships between 
cognitive constructs and disordered eating because processes 
such as attention and cognitive control can be manipulated and 
effects on laboratory measures of eating assessed. A similar 

RDoC approach has been adopted to understand increased and 
decreased eating phenotypes in depression by relating symptom 
clusters to the neural mechanisms involved in mood-related 
appetite changes in the disorder (Simmons et al., 2016).

Conclusions
We have reviewed the evidence that signals relating to the inges-
tion of food arising from the GI tract (metabolic signals) modu-
late the neural homeostatic and reward processes in the brain that 
determine how much a food is desired. Food is less attractive 
when we have eaten for this reason. We have also reviewed 
recent evidence indicating that cognitive processes such as atten-
tion and memory underpin everyday eating behaviours. Finally, 
we have integrated an emerging literature on cognitive effects of 
metabolic signals with their effects on eating and argued that 
metabolic signals are likely to affect eating behaviours at least in 
part via modulation of higher cognitive functions. Further inves-
tigation in this area is required, in particular, to elucidate how 
metabolic signals influence complex food-related decision-mak-
ing processes in humans. Such work will be important in fleshing 
out a comprehensive model of the control of appetite that inte-
grates cognitive mechanisms with homeostatic and reward mech-
anisms (see Figure 2). There are important implications of this 
model for understanding the factors that may contribute to disor-
dered patterns of eating. Furthermore, there are opportunities for 
developing more effective treatment approaches, such as com-
bining cognitive interventions with pharmacotherapies.
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Figure 2. Schematic diagram outlining a model of appetite control involving interactions between homeostatic, reward and cognitive processes 
(indicated by solid arrows) and the modulation of these processes by metabolic signals such as insulin, leptin, glucagon-like peptide 1 (GLP-1), 
5-HT and ghrelin (indicated by dashed arrows).
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