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Abstract: Dental follicle progenitor/stem cells (DFPCs) are a group of dental mesenchyme stem
cells that lie in the dental follicle and play a critical role in tooth development and maintaining
function. Originating from neural crest, DFPCs harbor a multipotential differentiation capacity.
More importantly, they have superiorities, including the easy accessibility and abundant sources,
active self-renewal ability and noncontroversial sources compared with other stem cells, making
them an attractive candidate in the field of tissue engineering. Recent advances highlight the
excellent properties of DFPCs in regeneration of orofacial tissues, including alveolar bone repair,
periodontium regeneration and bio-root complex formation. Furthermore, they play a unique
role in maintaining a favorable microenvironment for stem cells, immunomodulation and nervous
related tissue regeneration. This review is intended to summarize the current knowledge of DFPCs,
including their stem cell properties, physiological functions and clinical application potential. A deep
understanding of DFPCs can thus inspire novel perspectives in regenerative medicine in the future.

Keywords: tooth development; differentiation; tissue regeneration; stem cell therapy; scaffold; im-
munoregulation

1. Introduction

Dental follicle (DF) is a loose connective tissue surrounding the dental papilla and
enamel organ during the early developing stages of the tooth [1]. It is an ectomesenchyme-
derived tissue originating from cranial neural crest and is a crucial participant during
tooth development. DF can give rise to periodontium tissue, including cementum, alveolar
bone and periodontal ligament (PDL) [2]. The formation of periodontal attachment appa-
ratus is crucial for the building of root-bone interface during root development process.
Moreover, DF plays a central role in the regulatory network during the tooth eruption
process by regulating alveolar bone resorption and formation [3,4]. As research focusing
on DF goes deeper, a mesenchymal stem cells (MSCs) population residing in DF receives
growing attention. Dental follicle cells were first isolated from rat molars characterized by
a fibroblast-like appearance in 1992 [5]. Later, a population of colony-forming and plastic
adherent cells were isolated from DF of human third molars in 2005 [6]. Since these cells
harbor properties similar to the classic MSCs, they are defined as dental follicle progeni-
tor/stem cells (DFPCs), a novel kind of dental MSCs. Human DFPCs (hDFPCs) express a

Biomolecules 2021, 11, 997. https://doi.org/10.3390/biom11070997 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-9972-7343
https://doi.org/10.3390/biom11070997
https://doi.org/10.3390/biom11070997
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11070997
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom11070997?type=check_update&version=1


Biomolecules 2021, 11, 997 2 of 18

series of classic MSC markers, including CD44, CD73, CD90, CD105, NOTCH-1, NESTIN
and STRO-1, while negative for hematopoietic stem cell markers such as CD34, CD45 and
CD11b [7–10].

DFPCs are capable of multipotent differentiation with high pluripotency. A series
of pluripotent genes, including Octamer-binding transcription factor 4 (OCT-4), sex de-
termining region Y box-2 (SOX-2) and NANOG, were shown to be expressed in DFPCs,
which confirmed their self-renewal capacity and multipotent potential [11,12]. The hetero-
geneity of DFPCs was revealed by the cloning of three distinct DF cell lines with unique
characteristics [13]. The first line was highly proliferative without mineralization behavior,
indicating that it might contribute to PDL-type lineage. The second line had extreme
high alkaline phosphatase (ALP) activity, suggesting an undifferentiated state. The third
cell line might give rise to cementoblasts or alveolar bone osteoblastic lineage for their
mineralization feature [13]. This profound cellular heterogeneity of DFPCs could explain
their multi-differentiation potential. Resulting from the neural crest origin, DFPCs can
differentiate into osteoblasts, adipocytes, chondrocytes, cementoblasts and periodontal lig-
ament cells as well as neuronal cells [14,15]. Therefore, DFPCs are regarded as a promising
candidate for regenerative medicine and tissue engineering. Compared with MSCs of other
origins, DFPCs have several advantages in regard to tissue regeneration. First, DFPCs can
be separated from impacted third molars. The extraction of the third molar is harmless to
normal dentition and minimally invasive, which makes DFPCs easily accessed. Second,
DFPCs are a kind of adult stem cells obtained from developing tissue. They may exhibit
greater multilineage differentiation potential. Third, studies showed that DFPCs had
higher proliferation ability compared with dental pulp stem cells (DPSCs) [16]. Research
highlighted that DFPCs possessed more similar protein profiles to cranial neural crest
cells (CNCCs) compared with DPSCs [17]. Furthermore, it is feasible to cryopreserve DF
tissue as a resource for DFPCs in the long run [18]. These features increase the potential
application of DFPCs in tissue engineering, especially in the orofacial region.

In this review, we aim to summarize the current knowledge of DFPCs focusing on
their function in tooth development, regulatory mechanisms of the multilineage differenti-
ation potential together with the application in stem cell-based regenerative medicine and
tissue engineering.

2. The Role of DFPCs during Tooth Eruption

Tooth eruption is a biological process whereby a tooth within bone emerges into
the oral cavity and reaches the occlusal plane to properly function. This process can be
divided into three stages, the pre-eruptive, eruptive and post eruptive tooth movement [19].
During the pre-eruptive tooth movement stage, dental epithelial cells develop into enamel
organ and recruit dental mesenchyme inside the tooth bud. The mesenchyme originated
cells gather into dental papilla located apically to the enamel organ and the surround-
ing DF. The enamel organ originated ameloblasts secrete enamel while dental papilla
originated odontoblasts produce dentin. This process continues until the tooth crown is
gradually formed and ready to emerge. The eruptive stage starts from the initiation of
tooth root development and lasts until the crown emerges and reaches the occlusal plane.
This process is subdivided into intraosseous and supraosseous phases, which requires
polarized resorption and formation of alveolar bone surrounding the tooth to remove the
coronal resistance and provide apical motivation at the same time. The main biological
activity during post-eruptive tooth movement stage is the maturation and stabilization of
periodontium tissue to achieve proper function.

During the tooth eruption process, DF plays a crucial role in providing the traction
power and forming the eruption pathway. Surgical removal of DF prevented tooth eruption,
which proved that DF exerted great influence on the eruption process, especially during
the second and third stage [3]. As the tooth germ gradually develops, DF can be separated
into a coronal part and a periapical/basal part. The former is close to the tooth crown and
develops into periodontium, while the latter is located apically from the dental papilla [20].
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To elucidate the diverse function of DF, an elegant study selectively eliminated the coronal
or basal part of DF, which led to arrested tooth eruption under either circumstance [21].
Removal of the coronal part of DF interrupted coronal bone resorption and the formation
of the eruption pathway while absence of the basal part of DF led to the loss of apical bone
formation [21]. This study revealed that coronal cortical shell resorption and apical bone
formation during tooth eruption are regulated by two adjacent parts of DF respectively.

Root development and the establishment of root-bone connection are closely inter-
twined with tooth eruption [22]. The constitution of functional tooth-bone interface (TBI)
requires proper formation of the acellular cementum, PDL and cryptal bone. DFPCs are
responsible for the building of TBI, which makes them the major contributors to alveolar
bone remodeling and periodontium tissue development. DFPCs are able to differentiate
into osteoblasts to participate in alveolar bone formation while exerting regulatory influ-
ence on monocyte/osteoclast lineage differentiation and function [23,24]. Recent studies
discovered that spatiotemporal gene expression of DFPCs are key to regulating asymmetric
bone resorption and bone formation around bony crypt during tooth eruption [25,26].

2.1. Regulation of Osteoclastogenesis and Bone Resorption Process

Mononuclear cells (osteoclast precursors) and osteoclasts are essential to the formation
of the eruption path [27]. Tartrate-resistant acid phosphatase (TRAP, a marker enzyme
of osteoclast lineage) positive mononuclear cells were detected in DF prior to eruption
and then gradually reduced during the eruption process [28]. Studies show a colony of
mononuclear cells swarming into the DF at a specific time prior to eruption [28,29]. These
osteoclast precursors are derived from hematopoietic stem cells and differentiated from
monocyte-macrophage lineage in bone marrow or peripheral blood [30]. Recently, research
discovered that various adult tissue-resident macrophages originate from erythron-myeloid
progenitors (EMPs) during embryonic stage [31]. This finding suggests a novel source of
osteoclasts in the orofacial region, which may participate in the tooth eruption.

Osteoclastogenesis required for eruption is tightly controlled by different pathways
and cytokines, such as colony-stimulating factor-one (CSF-1), receptor activator of nuclear
factor kappa (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) axis and parathyroid
hormone related peptide (PTHrP). These factors function directly or in crosstalk to form
a regulatory network for bone resorption during tooth eruption. CSF-1, also named as
macrophage colony-stimulating factor (M-CSF), is a prerequisite factor for proliferation
and differentiation of osteoclast precursors [32,33]. It is reported that DFPCs expressed
chemokines for mononuclear cells, CSF-1 and monocyte chemotactic protein-1 (MCP-1), to
recruit monocytes from the peripheral blood before tooth eruption [12]. Failure of tooth
eruption occurred in CSF-1 knockout mice due to impaired osteoclast formation and bone
resorption [34]. Endothelial monocyte-activating polypeptide-2 (EMAP-2) expressed in DF,
also has a chemotactic effect on mononuclear cells by upregulating the expression of CSF-1
and MCP-1. CSF-1 and EMAP-2 downregulate secreted frizzled-related protein-1 (SFRP-
1), a cytokine that suppresses osteoclastogenesis, to promote osteoclast formation [35].
Moreover, the stellate reticulum layer of enamel organ can release transforming growth
factor β1 (TGF-β1) and interleukin-1α (IL-1α) to enhance CSF-1 expression in DF through
a paracrine manner [36–39]. These findings reveal an epithelial-mesenchymal interaction
to stimulate osteoclast formation through DF.

CSF-1 can also activate osteoclastogenesis by upregulating the expression of RANKL
and downregulating OPG [40,41]. RANKL/RANK/OPG axis is indispensable for osteoclast
differentiation and bone resorption [42]. Briefly, the transmembrane or secreted RANKL
combines with the RANK on the osteoclast precursor cells and thereby contributes to
differentiation, survival, fusion and activation of osteoclasts. On the contrary, OPG is a
secreted decoy receptor that competitively binds to RANKL to inhibit RANK activation
and bone resorption [33]. A recent study has demonstrated significantly higher expression
of RANKL in the coronal part of human DF compared with the apical part, suggesting
the enhancement of osteoclastogenesis in the coronal bone shell [25]. This activation of
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RANKL/RANK signaling leads to an expansion of the TBI [43]. It is reported that non-
canonical Wnt ligand Wnt5a abundantly upregulated RANKL expression in DFPCs [24].
Moreover, vascular endothelial growth factor (VEGF) is another key factor highly expressed
in DF, which stimulates the expression of RANK in osteoclast precursors [44].

The signaling crosstalk mechanisms centered on RANKL/RANK/OPG axis are gradually
unraveled. Delayed tooth eruption occurs in patients with cleidocranial dysplasia (CCD), a
runt-related transcription factor 2 (Runx2) mutation/haploinsufficiency related disease. DFPCs
isolated from CCD patients displayed significantly lower osteoclast-inductive ability [45,46].
This resulted from lower ratios of RANKL/OPG and RANKL/RANK regulated by abnormal
RUNX2-miR-31-special AT-rich sequence-binding protein 2 (SATB2) loop. Reduced RUNX2 (a
transcriptional inhibitor of miR-31), higher miR-31 and downregulated SATB2 disturbed the
osteoclast-inductive signaling in DFPCs of CCD patients [47].

Parathyroid hormone-related peptide (PTHrP) is another key factor responsible for
osteoclast formation [48]. It has been demonstrated that PTHrP-null mice displayed a
failure of tooth eruption with normal developed tooth trapped in bone, since no formation
of eruption pathway took place [48]. In situ hybridization showed highly expressed PTHrP
in the coronal epithelial layers while its receptor, parathyroid hormone 1 receptor (PTH1R),
was positive in the surrounding alveolar bone and DF [48]. A coculture experiment
confirmed that epithelial-original PTHrP could stimulate DFPCs to induce osteoclast
differentiation and contribute to coronal bone resorption [49]. PTHrP functions to stimulate
the expression of RANKL while downregulating OPG in dental follicle cells [50,51].

Furthermore, gap-junction communication plays a significant role during tooth erup-
tion since its major subunit, gap-junction protein, alpha 1, 43 kDa (CX43), is a highly
expressed molecule in human DF [25]. CX43 and gap-channels are reported to be necessary
for the development and bone resorption activities of osteoclast precursors and mature
osteoclasts [52–54]. It is also involved in osteoblast differentiation, formation and miner-
alization of the bone matrix [52,55]. The detailed regulatory mechanisms of gap-junction
communication in DFPCs require further investigation.

2.2. DFPCs Contribute to Osteoblast Differentiation and Bone Formation
2.2.1. DFPCs Are Involved in Apically Alveolar Bone Formation In Vivo

Peri-apical alveolar bone formation of developing tooth has long been proposed as a
critical factor for eruption. It is reported that bone formation started to fill the alveolar crypt
of rat first molars at the postnatal day 10 and lasted through the eruption process [56,57].
High levels of osteogenic-related factors, such as collagen type 1 (COL1) and ALP, were ex-
pressed in human DF, indicating its participation in bone formation [25]. Research showed
that bone morphogenetic protein 6 (BMP6) was expressed predominately in osteoblasts
within the base of alveolar bony crypt [58]. After using siRNA to interfere with the BMP6 ex-
pression in rat dental follicles, alveolar bone formation was significantly reduced, resulting
in delayed or failure of eruption [58]. Therefore, the increased expression of BMP6 observed
in the DF tissue may reflect the activation and maintenance of the osteogenesis ability
of DFPCs to provide the motive force during eruption [59]. The development of distinct
reporter mice and lineage tracing methods boost research focusing on tissue development.
Through the generation of lineage-tracing models, Osterix (Osx), PTHrP, GLI family zinc
finger 1 (Gli1) and Prx1 positive MSCs were found residing in DF, which can be defined
as different DFPCs populations [60–63]. Gli1CreER and Prx1Cre mouse models were used
to identify MSCs while OsxCre is widely accepted as a promoter targeting osteoblast
precursors. Conditional knockout of PTH1R in Osx, Prx1 or PTHrP positive cells resulted
in failure of tooth eruption, indicating the significance of PTH1R signaling during this
process [60,61,63]. It is shown that Prx1 and PTHrP expressing DFPCs could differentiate
into osteoblasts located in the alveolar bone crypt [61,63]. The use of PTHrPCreER system
to eliminate PTH1R in DFPCs revealed the autocrine manner of PTHrP to regulate bone
formation. It is reported that autocrine PTHrP could enhance osteogenic differentiation
of DFPCs independently of the hedgehog signaling pathway [64]. Moreover, ablation
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of PTH1R using Prx1Cre led to reduced alveolar bone volume, which mainly resulted
from impaired bone formation since bone resorption was not affected [63]. However, Prx1
is predominantly expressed in orofacial bone-marrow-derived mesenchymal stem cells
(OMSCs). To what extent DFPCs contribute to the observed phenotype requires further
investigation. Figure 1 illustrates the brief mechanisms of DF/DFPCs regulating osteoclast
formation and osteoblast differentiation during tooth eruption.
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Figure 1. Schematic graph illustrates the mechanisms of DF/DFPCs in regulating osteoclast forma-
tion and osteoblast differentiation during tooth eruption. Colony-stimulating factor-one (CSF-1),
monocyte chemotactic protein-1 (MCP-1), endothelial monocyte-activating polypeptide-2 (EMAP-2),
receptor activator of nuclear factor kappa ligand (RANKL), osteoprotegerin (OPG), parathyroid
hormone related peptide (PTHrP), vascular endothelial growth factor (VEGF), collagen type 1 (Col1),
alkaline phosphatase (ALP), bone morphogenetic protein 6 (BMP6) and parathyroid hormone 1
receptor (PTH1R).

2.2.2. DFPCs Differentiate into Osteogenic Lineage In Vitro

Considering the multipotent potential of DFPCs, a large number of studies focused on
the regulatory mechanisms of the osteogenic differentiation of DFPCs. Researchers have
speculated that the molecular mechanisms in DFPCs during osteogenic differentiation
are distinct from that of bone marrow-derived MSCs (BMMSCs) [65]. Unlike BMMSCs,
the expressions of Runx2, distal-less homeobox 5 (DLX-5) and msh homeobox 2 (MSX-2)
of DFPCs were unaffected during osteogenic induction in vitro while the trend of DLX-
3 was in consistent with BMMSCs. Various factors and pathways are involved in the
regulatory network of osteogenesis, the top hits among which include BMP signaling
pathway, Wnt signaling pathway and transforming growth factor (TGF) signaling pathway
as well as their crosstalk and interaction.

BMP2 contributes to the osteogenic differentiation of DFPCs by inducing Patched 1
(PTCH1), suppressor of fused (SUFU) and PTHrP to repress hedgehog signaling pathway
under osteogenic induction [66,67]. BMP2 and its downstream transcription factor DLX3
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form a positive-feedback loop of the BMP2-dependent SMAD signaling pathway to direct
osteogenic differentiation of DFPCs [66]. BMP2 also interacts with the WNT/β-catenin
pathway by stimulating β-catenin phosphorylation via protein kinase A (PKA). BMP2
can facilitate LEF1/SMAD4/β-catenin complex to bind with DLX3 promoter to enhance
osteogenesis. In a positive-feedback manner, β-catenin also activates PKA to sustain
BMP2/DLX3-mediated osteogenesis of DFPCs [66].

Due to the potent osteogenic ability of BMP9, transfecting DFPCs with BMP9 resulted
in significant enhancement of ALP expression and calcium deposition, which was depen-
dent on the downstream mitogen-activated protein kinases (MAPK) signaling pathway [68].
Another study using BMP9 transfected DFPCs to investigate the osteogenic activities under
inflammation microenvironment stimulated by TNF-α. TNF-α activated canonical Wnt
signaling pathway and suppressed the non-canonical pathway, leading to the downregula-
tion of osteogenic ability. However, the addition of Dickkopf 1 (DKK1), a canonical Wnt
signaling inhibitor, also led to decreased osteogenesis. The inhibition effect was reduced
when DKK1 was added with TNF-α, suggesting a possible approach for the treatment of
alveolar bone defects resulting from periodontitis [69].

In addition to the study focusing on interaction between BMP and Wnt signaling,
PKC/Akt axis, naked cuticle homolog 2 (Nkd2), adenomatosis polyposis coli down-
regulated 1 (APCDD1) and long noncoding RNA maternally expressed 3 (lncRNA MEG3)
also function through Wnt signaling pathway. Classical PKCs are reported to inhibit the
osteogenesis ability of DFPCs by regulating canonical Wnt signaling and the expression
of β-catenin together with Akt [70]. It is reported that Nkd2, a signal-inducible feedback
antagonist of the canonical Wnt signaling, promotes the osteogenic differentiation of DFPCs
through Wnt/β-catenin signaling [71]. Another Wnt inhibitor, APCDD1, stimulates osteo-
genesis by increasing the expression of β-catenin and osteogenic markers in DFPCs [72].
Lnc RNA MEG3 and its downstream are involved in gene silencing. It was found that
MEG3 significantly decreased in DFPCs, which stimulated the Wnt/β-catenin pathway via
activating Wnt gene promotors [73]. These investigations provide novel mechanisms in
regulating osteogenesis of DFPCs.

Another well-studied osteogenic-related pathway is TGF signaling. Inflammation
microenvironment caused by lipopolysaccharide (LPS) suppressed osteogenesis of DFPCs.
LPS-treated DFPCs showed low level of TGF-β1 and high level of TGF-β2 while inhibition
of TGF-β2 improved expression of TGF-β1 and osteogenic ability. Thus, TGF-β2 can be a
promising target in treatment of inflammation related alveolar bone loss [74]. It has been
reported that the injection of bleomycin into DF inhibited tooth eruption, which is related
to decreased osteogenic capacity and increased TGF-β1 expression. SMAD7 is a crucial
mediator in the downstream cascade of TGF signaling by suppressing Runx2 expression in
DFPCs [75].

Besides, there are also other effective regulators involved in osteogenic differentiation
of DFPCs. It is demonstrated that nuclear factor I-C (NFIC) stimulated osteogenesis of
DFPCs by increasing ALP activity and the expression of osteogenic-related cytokines
including Runx2, Col1 and β-catenin [76]. Another signaling pathway is AMP-activated
protein kinase (AMPK) and its downstream cascade, which is crucial in cellular energy and
metabolic homeostasis [77]. It is shown that activation of AMPK decreased ALP activity and
the expression of osteogenic markers in short term cultures. DFPCs are sensitive to AMPK
in early stages of osteogenic differentiation and this process is related to autophagic activity.

The majority of cell studies in vitro were performed in static conditions, while Salgado
et al. explored the influence of dynamic culture by innovatively applying centrifugal
force on DFPCs or DPSCs laden porous 3D scaffolds. Results showed that dynamic
conditions not only promoted the proliferation of DFPCs, but also increased osteogenic-
related gene expressions, ALP activity and osteopontin (OPN) deposition compared with
static culture conditions. Interestingly, the dynamic conditions exerted distinct effects on
DPSCs, including lower ALP activity and OPN secretion [78]. Thus, the effects of different
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culture conditions on cells from various sources should be explored and chosen wisely
according to the final tissue engineering target and clinical application.

2.3. DFPCs Give Rise to Periodontal Attachment Apparatus

Root development requires epithelial stimulation from Hertwig’s epithelial root sheath
(HERS), a bilayer structure developed from the inner and outer enamel epithelium. This
epithelial–mesenchymal interaction induced DFPCs to differentiate into cementoblasts [79–81].
The expression of Wnt3a, a representative canonical Wnt ligand, was detected in HERS during
root formation. Wnt3a stimulated the expression of Runx2, Osx and Alp in DFPCs, indicating
that early cementoblast/osteoblast differentiation of DFPCs was induced through Osx and
canonical Wnt signaling [82].

Ablation of PTH1R in Osx+ DFPCs using conditional knockout mouse model led to
root ankylosis characterized by the absence of PDL, abnormal cellular cementum formation
along with accelerated cementoblasts differentiation [60]. Histone deacetylace-4 (HDAC4)
may be a key downstream mediator during this process since the ablation of HDAC4
partially recapitulated the phenotypes, including thicker cementum. PTH1R deficiency in
PTHrP expressing DFPCs also resulted in the loss of periodontal attachment and unusual
formation of cellular cementum [61]. Knockout of PTH1R shifts the cell fate of DFPCs
to non-physiological cementogenesis. The cementogenesis ability of DFPCs is driven
by BMPs produced by HERS and enamel matrix derivatives (EMD). It is reported that
expression of cementum attachment protein (CAP) and cementum protein-23 (CP-23) has
been detected in whole DF stimulated by EMD and in cultured DFPCs stimulated by EMD
or BMP2/7 [10]. A recent study demonstrated the role of discoidin domain receptor 2 (Ddr2)
during development of periodontium tissue and tooth root. Ddr2-LacZ knock-in mice
showed the abundant expression of Ddr2 in DF. Widened PDL space and interradicular
alveolar bone defects along with abnormal collagen content within the PDL were observed
in Ddr2-null mice [83].

DFPCs differentiate into periodontal specific lineages in a growth factor dependent
way [84]. DFPCs cultured in the induction medium containing recombinant human fibrob-
last growth factor-2 (rhFGF-2) or recombinant human cementum protein-1 (rhCEMP-1)
presented higher expression of fibroblast or cementoblast related genes. Another cytokine,
F-spondin, is reported to suppress the differentiation of DFPCs into PDL by inhibiting
TGF-β. F-spondin decreased the expression of periostin and Col1 in DF. Thus, it may
function to maintain the immature phenotype of the DF [85].

3. DFPCs in Tissue Engineering
3.1. The Potential of DFPCs in Dental Tissue Engineering
3.1.1. Craniofacial Bone Regeneration

A number of studies have demonstrated that DFPCs participate in the formation of
craniofacial bone. After being transplanted into dorsum of immunodeficient mice, DFPCs
formed bone-like hard tissue, which makes DFPCs-based therapy feasible in the treatment
of calvaria and alveolar bone defect [74]. Tsuchiya et al. first applied DFPCs to regenerate
bone tissue in the calvaria defect. They constructed a critical size parietal defect in porcine
and filled it with cell pellet [86]. After four weeks, hard tissue was observed in the defect
sites, and the bone area generated in DFPCs transplantation group was more extensive.
Subsequently, DFPCs were implanted in skull defects of rats, which showed approximately
50% woven bone formation after eight weeks [87]. These studies demonstrated a capacity of
craniofacial bone regeneration of DFPCs. On the other hand, DFPCs, as seeding cells of bio-
hybrid implants, were transplanted into a bony hole of alveolar bone in a tooth-loss model.
After seven weeks, the bio-hybrid implant restored physiological functions and regenerated
the severe bone defect [88]. Noteworthy, it was not certain enough to obtain effective tissue
repairment relying on cell differentiation singly. The scaffold of bio-hybrid implants above
conducted DFPCs adhesion and proliferation. It was considered as a candidate for artificial
organ building. It is reported that dynamic culture conditions enhanced the migration of
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DFPCs into the inner part of the scaffolds and contribute to higher tissue ingrowth after
being implanted subcutaneously in vivo [78]. Moreover, physiological status of DFPCs
plays a critical role in osteogenic differentiation, and DFPCs derived from inflammatory
environment displayed less hard tissue formation than normal cells [74]. It is notable that
the passage of DFPCs also has an effect on tissue regeneration. DFPCs at late passage could
lose their osteogenic ability and only form connective tissues [89].

3.1.2. Periodontal Tissue Regeneration

Periodontitis is a common prevalent oral disease characterized by excessive host
immune response, and results in inflammation and destruction of tooth supporting tis-
sues [90]. Traditional clinical therapies can only control the progression of periodontitis,
which are limited in restoring the complete periodontal tissue. MSC-based tissue regenera-
tion is a novel trend for the treatment for periodontitis. As precursor cells participating
in periodontal tissue formation during tooth development, DFPCs have been considered
as the most attractive candidates for PDL regeneration. By transferring DFPCs into the
carrier chamber and seeding into renal capsules, Wu et al. found that DFPCs can form
a large mass of cementum-like tissue distinct from the original dentin [91]. In addition,
subcutaneous transplantation of DFPCs with dentin matrix in nude mice for 6 weeks
resulted in the formation of cementum-like tissue with embedded fibers and PDL-like
tissue along with blood vessels [92]. Furthermore, DFPCs sheets were implanted in two-
wall intrabony defects of canine experimental periodontitis. After one month, a complex
cementum-PDL structure was observed in the defect area, implying the potential of DFPCs
to regenerate complete periodontal tissue [93]. Besides structural recovery, periodontal
tissue regenerated by DFPCs can also recover the physiological functions, including the
ability to perceive noxious mechanical and chemical stimulation, highlighting a significant
advancement of DFPCs in periodontal regeneration [88]. Additionally, cementum and
PDL-like tissue formation were markedly promoted when DFPCs were pre-exposed to
HERS cells via epithelial-mesenchymal interactions, indicating an appropriate stimulation
from HERS can induce the differentiation and immigration of DFPCs [94,95]. Although
periodontal ligament stem cells (PDLSCs) have been proven to regenerate periodontal
tissue as well, some comparative studies found the distinct regeneration capacity between
DFPCs and PDLSCs. Proteomic analysis revealed that there were 32 differentially expressed
proteins between DFPCs and PDLSCs [96]. After being transplanted into periodontal de-
fects, DFPCs exhibited a stronger capacity for regeneration of cementum and periodontal
attachment than PDLSCs [92]. It was speculated that DFPCs harbored a better periodontal
regeneration ability due to participation of the extracellular matrix, yet the regulatory
mechanisms need further investigation.

3.1.3. Root-Like Tissue Regeneration

Tooth loss is commonly caused by periodontal diseases, trauma, endodontic complica-
tions and other diseases. The applications of dental implants are widely recommended in
clinical practice. However, implants cannot acquire a physiological movement and defend
overload stress due to the lack of the periodontal tissue, which limits the effect of the
therapy [97]. Apart from bone and cementum-PDL structure, DFPCs can also regenerate
dentin-pulp like tissue, which makes it possible to regenerate an integrated tooth root.
Yang et al. seeded DFPCs to biological scaffolds and implanted them into nude mice sub-
cutaneously [98]. Eight weeks later, they found cementum-PDL complex, which consists of
cementum, periodontal ligament fibers and blood vessels outside the scaffold. Meanwhile,
they also observed dentin-pulp like tissue reconstruction, including dentinal tubules, pre-
dentin, polarizing odontoblast-like structures and collagen fibers. This finding brings hope
to root regeneration therapy. DFPCs-based root regeneration makes it possible to form bio-
root, which is closer to natural root. After that, DFPCs combined with biological scaffolds
were transplanted into alveolar fossa, omental pockets and cranial fossa. Interestingly,
although mineralized matrix was observed in omental pockets and cranial fossa, root-like
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tissues were only formed in alveolar fossa. This study implies that the microenvironment
of the alveolar fossa is suitable for tooth root construction when DFPCs are applied [99].
A bio-root complex was constructed through combining DFPCs with treated dentin matrix
(TDM) scaffold. Using computer aided design (CAD), this bio-root complex not only
successfully regenerated root-like structure but also performed masticatory function and
remained stable for at least three months after crown restoration [100].

3.1.4. Providing a Favorable Microenvironment

In physiological conditions, MSCs secrete abundant factors and cytokines, such as TGF-
β, hepatic growth factor (HGF), prostaglandin E2 (PGE2), interleukin-10 (IL-10), nitric oxide
(NO), indolamine2, 3-dioxygenase (IDO), heme oxygenase-1 (HO-1) and human leukocyte
antigen-G (HLA-G). These factors mediate communication between MSCs and other cells,
which play a pivotal role in the immunomodulatory function of MSCs [101]. As one of
the MSCs in dental region, DFPCs also express various soluble factors. A protein array
showed that there were 42 differentially expressed proteins in the conditioned medium of
DFPCs (DFPCs-CM) compared with normal medium, including growth factors, cytokines,
chemokines, matricellular proteins and transmembrane proteins [102]. These factors play a
critical role in stemness maintaining and immunomodulation by constructing a specific
microenvironment. In this context, DFPCs can provide a beneficial environment and act on
other cells through a paracrine manner in MSC-based tissue engineering. Therefore, it is
advisable to explore immunomodulation of DFPCs in oral diseases [103].

Pulpitis is a common inflammatory disease leading to irreversible pulp destruction
and necrosis [104]. DFPCs attenuated LPS-induced inflammatory dental pulp cells (DPCs)
through paracrine mechanisms. DFPCs-CM downregulated the extracellular regulated
protein kinases 1/2 (ERK1/2) and nuclear factor kappa-B (NF-κB) signaling pathways
to suppress IL-1β, IL-6. Furthermore, DFPCs-CM enhanced the capacity of proliferation,
migration and odontogenesis of inflammatory DPCs. Capped with an aseptic gelatin
sponge soaked in DFSCs-CM, pulp tissue showed a relieved inflammatory infiltration
and increased Runx2 expression in odontoblast-like cells near the injured site. These find-
ings bring up a novel therapy using DFSCs-CM to attenuate excessive inflammation and
preserve pulp vitality.

Additionally, DFPCs could provide a favorable microenvironment for PDLSCs regen-
eration. Liu et al. harvested PDLSCs from healthy individual (HPDLSCs) and periodontitis
patients (PPDLSCs). They found that PPDLSCs had weaker pluripotency and differenti-
ation capacity compared to HPDLSCs, verifying that microenvironment in periodontitis
has an adverse effect on PDLSCs, which may postpone periodontal regeneration. Nev-
ertheless, when pretreated PPDLSCs with DFPCs-CM and then transplanting them into
immunodeficient mice, they found an improvement of proliferation and differentiation
of PPDLSCs. In addition, DFPCs promoted the formation of cell layers and extracellular
matrix in PDLSCs cell sheets, and PDLSCs pretreated with DFPCs-CM improved peri-
odontal regeneration in vivo [105]. DFPCs may provide a beneficial microenvironment to
restore the biological impairment of PPDLSCs through a paracrine manner and ultimately
promote periodontal regeneration of PDLSCs, yet the underlying mechanisms remain to
be explored.

CNCCs are a clump of multipotent embryonic stem cells arising from the neural
folds of the developing embryo, and can differentiate into various dental tissues, such as
dental papilla and dental follicles. Therefore, CNCCs are essential for tooth morphogenesis.
However, CNCCs tend to spontaneously differentiate into smooth muscle or osteoblast
lineages due to their heterogeneity, which significantly limits clinical application of CNCCs.
Wen et al. isolated p75NTR positive (p75+) CNCCs by fluorescence activated cell sorter,
and then incubated them in DFPCs-CM combined with dentin non-collagenous proteins
(dNCPs) [106]. As a result, the morphological features of p75+ CNCCs have been altered,
along with increased calcified nodule formation and higher expression of cementoblast
lineage related markers when treated with dNCPs/DFPCs-CM. Specific cellular and acel-
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lular components usually provide a particular microenvironment and govern stem cell
fate [107]. These results indicated that dNCPs/DFPCs-CM may direct the differentiation of
dental stem cells into cementoblast lineage.

3.1.5. DFPCs and Scaffolds

Stem cell based regenerative medicine has been acknowledged as a hot topic to recover
the damaged and lost tissues and regain the function. Although stem cell sheets provide a
living microenvironment for the seeded cells, the low survival rate of implanted cells and
failure of an integrated morphology reconstruction are major challenges in the development
of cellular transplantation. Besides multipotent seeding cells, biomaterial scaffolds are
crucial for tissue regeneration. An ideal scaffold not only maintains a long-term mechanical
strength, but also provides a bioactive microenvironment to mimic the native extracellular
matrix. Currently, a variety of scaffolds combined with DFPCs have been applied to tooth
engineering (Table 1).

Table 1. Summary of the recent evidence of DFPCs with scaffolds in regeneration
medicine.

Scaffolds Tissue
Regeneration Origin Transplantation Model Reference

hydroxyapatite (HA)
powder

Fibrous tissues and
cementum-like

matrix
Bovine SCID mice

subcutaneous pockets
Handa et al. 2002

[108]

HA-coated dental
implant

Bone-like and PDL
tissues Murine Mice

tooth-loss model
Oshima et al. 2014

[88]

HA ceramic discs Cement/woven
bone-like tissues Human Immunocompromised rats

subcutaneous pockets Yagyuu et al. 2010 [9]

HA/collagen-gel
Acellular

cementum-like
tissues

Human SCID mice
subcutaneous pockets

Shinagawa-Ohama
et al. 2016 [109]

HA/tricalcium
phosphate particles Bone-like tissues Human Immunodeficient mice

subcutaneous pockets Um et al. 2018 [74]

Collagen
nanohydroxyap-

atite/phosphoserine
biocomposite cryogel

Bone-like tissues Human Immunodeficient mice
subcutaneous pockets

Salgado et al. 2020
[78]

Treated dentin
matrix (TDM)

Periodontal-like
tissues Canine

Canine
one-wall periodontal

intrabony defects
Yang et al. 2019 [110]

TDM Root-like tissues Rat Rats
alveolar fossa Guo et al. 2012 [99]

TDM Dentin-like tissues Human Immunodeficient mice
subcutaneous pockets Tian et al. 2015 [96]

TDM Periodontal-like
tissues Human Nude mice

subcutaneous pockets Guo et al. 2013 [92]

TDM Root-like tissues Human Immunodeficient mice
subcutaneous pockets Yang et al. 2012 [98]

Extracellular matrix Bone-like tissues Porcine Immunocompromised rats
critical size parietal defect

Tsuchiya et al. 2010
[86]

Dentin
non-collagenous
proteins (dNCPs)

Cementum-like
tissues Rat Rats

renal capsules Wu et al. 2008 [91]

Ceramic bovine bone Cementum-PDL
complex Human Nude mice

subcutaneous pockets Guo et al. 2012 [111]

Titanium implants
with hydroxyapatite

(TiHA), with
silicatitanate (TiSiO2)

Enhanced
osteogenic

differentiation
capabilities

Human In vitro Lucaciu et al. 2015
[112]

Fuoride nanosilicate
platelets (NS+F)

Enhanced
osteogenic

differentiation
capabilities

Human In vitro Veernala et al. 2019
[113]

Graphene-oxide
(GO), Thermally

reduced graphene
oxide (TRGO),

Nitrogen-doped
graphene (N-Gr)

low levels of
cytotoxicity and

mitochondria
induced damage

Human In vitro Olteanu et al. 2015
[114]

Ceramic scaffolds, including hydroxylapatite (HA) and tricalcium phosphate (TCP),
were the most extensively applied materials in DFPCs regeneration because of their biocom-
patibility properties. HA powder was first applied with DFPCs in 2002 [108]. Then porous
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HA ceramic discs were proved to induce the osteogenesis of DFPCs [9]. After that, a
variety of scaffolds, such as HA/collagen-gel, HA-coated dental implant and HA/TCP,
showed favorable for DFPCs adhesion and proliferation abilities as well as dental tissue
differentiation [74,88,109]. As their chemical property and physical ingredient are similar
to native bone, ceramic scaffolds can replicate a unique environment for DFPCs fate.

Furthermore, natural polymers and native structures were widely used due to their
availability and convenience. Ceramic bovine bone (CBB) was one of the easiest native
structure scaffolds [111]. A cementum-PDL complex was observed when transplanting
DFPCs combined with CBB. dNCPs consist of a mixture of proteins extracted from dentin,
including glycoproteins/sialoproteins, phosphoproteins, proteoglycans and growth fac-
tors. Studies suggested that dNCPs scaffold could stimulate DFPCs to differentiate into
cementoblast lineages [91]. TDM is a dentin-based decellularization scaffold and generated
by sequential demineralization [99]. It has been reported that TDM has a good bioactivity
and biocompatibility, and can release key factors to induce tooth development. The release
of osteogenic proteins induces the osteogenic differentiation of DFPCs, which accelerates
bone defects recovery and cementum-PDL complex regeneration. More importantly, TDM
can promote odontogenesis of DFPCs due to odontogenic-related proteins. Thus, the
combination of DFPCs and TDM successfully regenerated cementum-PDL complex and
dentin-pulp like tissue, making it possible to regenerate complete bio-root [110].

More recently, the development of synthetic materials enlighten studies related to
transplanted scaffolds. Graphene-oxide (GO) and its derivatives, fluoride nanosilicate
platelets (NS+F) and titanium implants with HA (TiHA) were applied in DFPCs-based
regeneration in vitro. The study found that GO was able to support cellular attachment,
proliferation and differentiation of dental stem cells [115]. Both GO and nitrogen-doped
graphene (N-Gr) have low cytotoxic effects and injury of oxide stress for DFPCs, indicating
they are valuable candidates for DFPCs scaffolds [114]. In addition, NS+F revealed a similar
effect on providing a suitable microenvironment and enhancing DFPCs osteogenesis [113].
Moreover, TiHA can induce osteogenic differentiation of DFPCs even in the absence of
exogenous factors owing to their chemical and topographical properties [112]. As the
ingredient is specific, synthetic materials seem to be more controllable and predictable,
resulting in repeatable results.

3.2. Application in Other Diseases
3.2.1. Nervous Tissue Regeneration

Apart from dental tissues, DFPCs have been proven as a candidate for the treatment of
spinal cord injury (SCI). SCI is a severe disease leading to a series of impairments in sensory,
motor and autonomic functions. The pathological process of SCI is complicated, character-
ized by tissue damage in the acute phase and a cascade of secondary necrotic of neurons
and astrocytes, resulting in an irreversible loss of axons and demyelination [116,117]. By far,
the effect of traditional therapies, such as supportive treatment and pharmacotherapy, are
still unsatisfactory [118]. Owing to DFPCs originating from the cranial neural crest and
expressing some neurogenic membrane markers, such as nestin and tubulin β III, it was
supposed that DFPCs harbored the potential in neural regeneration [119]. Li et al. trans-
planted human DFPCs (hDFPCs) to restore the defect in rat spinal cord and demonstrated
that implanted hDFPCs expressed oligodendrogenic lineage maker oligodendrocyte lin-
eage transcription factor 2 (Olig2) in vivo, therefore contributing to remyelination [120].
Further studies revealed the mechanisms of DFPCs in SCI repair. First, DFPCs function
to suppress inflammatory response in the acute phase through inhibiting the expression
of IL-1β. They also reduce secondary hemorrhagic necrosis via downregulating the ex-
pression of sulfonylurea receptor 1 (SUR-1). Secondly, DFPCs inhibit the activity of ras
homolog gene family member A (RhoA), which is induced by injury and restrained neurite
regeneration. Lastly, survived DFPCs are able to differentiate into mature neurons and
oligodendrocytes but not astrocytes, avoiding the formation of glial scar [121]. In sum,
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DFPCs may have a potential for neural differentiation, and DFPCs-based therapy brings a
new strategy for diseases related to nervous system.

3.2.2. Therapy of Autoimmune and Inflammatory Diseases

MSCs-based therapy is promising to modulate the immune system and is widely used
in preclinical treatment studies of several autoimmune disorders and inflammatory dis-
eases [103]. Specifically, MSCs have an effect on both innate and adaptive immunity by regu-
lating immune cells, including T cells, B cells, natural killer cells, monocytes/macrophages,
dendritic cells and neutrophils [122]. A large variety of soluble factors secreted by MSCs,
such as TGF-β1, IDO and PGE2 can reduce immunoreaction [123]. In turn, interferon
γ (IFN-γ) produced by T cells could upregulate adhesion molecules of MSCs, such as
programmed death ligand 1 (PDL-1) and vascular cell adhesion molecule-1, and increase
the immunomodulation capacity of MSCs [124].

Recently, MSCs reserved in dental and oral tissue, were successfully isolated, which
sparked the application of dental derived MSCs. The easily accessibility and less ethical
issues encourage DFPCs application in autoimmune diseases. Ulusoy et al. used DFPCs to
administrate myasthenia gravis (MG) in 2015 [125]. MG is a T cell-associated autoimmune
disease. Acetylcholine receptor (AChR) antibodies induce the dysfunction of neuromus-
cular junction (NMJ), resulting in fluctuating muscle weakness [126]. Currently, steroids,
azathioprine and other cytotoxic drugs, are applied to suppress global immunoreaction
in MG patients, but traditional pharmacotherapy is accompanied by substantial side ef-
fects [126]. Therefore, it is urgent to find novel therapeutic treatment strategies. After
DFPCs inoculation, mice with MG showed decreased incidence and clinical symptoms,
accompanied by lower serum levels of anti-IgG1, IgG2b and IgG3. Moreover, DFPCs
inhibited the proliferation of lymph node cells, and suppressed lymphocyte responses
to IL-6 and IL-12. Strikingly, cytokines secreted by T cells and B cells were not affected,
indicating DFPCs mainly suppressed the innate immune system in MG. Overall, DFPCs
therapy is beneficial to ameliorate MG through a distinct regulatory effect on immunity.

DFPCs have also been applied in the treatment of asthma. Asthma is a chronic
inflammatory disease mediated by T helper type 2 cells (Th2). Allergen exposure could lead
to an inflammation in airway and epithelial damage. In this process, antigen is presented
to naïve T lymphocytes by dendritic cells, and then Th2 is polarized [127]. Meanwhile,
B cells produce IgE antibodies to bind with mast cells, which could recruit immune cells
when re-exposed to allergens [128]. However, pharmacotherapy of corticosteroids and
glucocorticoids may bring side effects, and allergen specific immunotherapy needs long
time and has a risk of anaphylaxis. Therefore, a short-term and safe approach is needed
to modulate immune system with less side effects. To figure out the effect of DFPCs in
asthma, peripheral blood mononuclear cells (PBMCs) of asthmatic patients were isolated
and co-cultured with DFPCs in vitro. They found that DFPCs inhibited proliferation of
CD4+ T lymphocytes by increasing CD4+CD25+ regulatory T cell (Treg) amounts [129].
Additionally, IFN-γ stimulation enhanced the potential capacity of immunosuppression of
DFPCs. Subsequently, they found DFPCs inhibited Th2 polarization by decreasing IL-4
cytokine levels and reduced the costimulatory activation of monocytes [130]. These results
implied that DFPCs can enhance immune tolerance in allergic asthma, suggesting DFPCs
would be an ideal therapeutic drug for inflammation diseases. Nonetheless, these results
mentioned above are based on in vitro experiments. Considering a complicated interaction
in vivo, extensive analysis using animal models is needed in the future.

4. Future Perspective

DFPCs are an important type of dental stem cells originating from dental follicles
and play a critical role during tooth development. During tooth eruption, DFPCs can
provide a traction power and participate in construction of an eruption pathway via
mediating alveolar bone formation and resorption. Furthermore, DFPCs contribute to the
development and maintenance of an periodontal attachment apparatus, which is beneficial
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to perceive mechanical stress and exert physiological function of the tooth. With high
pluripotency, DFPCs can differentiate into osteoblasts, cementoblasts, adipocytes and
PDL cells as well as neuronal cells, implying potential applications in tissue engineering.
In the past decades, stem cell-based therapy brings a hope to regenerative medicine, but
difficulties in cellular acquiring and ethical issues limit the development of this therapy.
DFPCs can be harvested from discarded tooth conveniently and noninvasively, making
them a promising source of stem cells in regenerative medicine.

In tissue engineering, a feasible therapeutic tool involves stem cells, scaffolds and
specific factors. Although progress has been made in understanding the remarkable tissue
regeneration ability of DFPCs, there are still several limitations, which need further inves-
tigations. First, derived from dental follicle, DFPCs were considered as a heterogeneous
population, which showed variational phenotypes and differentiative capacities [111]. Het-
erogeneity disturbs directional differentiation of DFPCs and reduces efficiency for tissue
regeneration. Thus, future studies need to thoroughly identify subpopulations of DFPCs.
The rigorous single-cell technology will be hopeful to analyze new markers to distinguish
each subgroup, which may accelerate generating new transgenic mouse models to reveal
the distinct characteristics of each subgroup. Second, current research mainly chose dor-
sum and omenta transplantations in animal experiments for tissue regeneration. However,
root-like tissues, developed from DFPCs and TDM complex, can only be regenerated in the
alveolar fossa, implying the significance of microenvironment in cellular differentiation [99].
Studies using in situ transplantations are important to understand the differentiation trait
of DFPCs. Third, DFPCs have been reported to restore mineralized tissue in calvaria and
alveolar bone defects with integrated morphology, but it is urgent to assess the physical
characteristics of newly formed tissues. Notwithstanding, the masticatory function of
bio-root complex show a success after three months usage; a long-term observation is
needed to evaluate its function [100]. Lastly, an ideal scaffold is of vital importance in
DFPCs-based tissue engineering. The rapid development of novel synthetic materials and
advanced preparation technology will push a perfect implanting approach forward.
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