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Simple Summary: The silverleaf whitefly (B. tabaci) is an important agricultural pest damaging
several agricultural and horticultural crops worldwide. Keeping in mind the status of insecticide
overuse, the current experiment was designed to evaluate the sensitivity of B. tabaci towards im-
idacloprid and thiamethoxam (two popularly used neonicotinoids in India). The lab population
of B. tabaci was found to be more susceptible to thiamethoxam compared to imidacloprid. qPCR
studies revealed a higher expression of insecticide-resistant genes, CYP6CM1 and CYP6CX1, after
imidacloprid treatment that might be responsible for increased resistance to insecticides. Our results
also put forward the different interactions between symbionts and insecticide resistance. qPCR
studies revealed thiamethoxam-treated B. tabaci populations harbored a higher amount of primary
endosymbiont Portiera and a lower amount of secondary symbiont Rickettsia.

Abstract: The silverleaf whitefly, Bemisia tabaci (Gennadius, Hemiptera: Aleyrodidae), is a major
threat to field and horticultural crops worldwide. Persistent use of insecticides for the management
of this pest is a lingering problem. In the present study, the status of sensitivity of B. tabaci to
two neonicotinoids, imidacloprid and thiamethoxam, was evaluated. The expression pattern of
two cytochrome P450 (cyp) genes and changes in the relative amount of symbionts in insecticide-
treated B. tabaci were also assessed. Quantitative PCR (qPCR) studies indicate that the CYP6CM1
and CYP6CX1 genes were always expressed higher in imidacloprid-treated whitefly, suggesting a
correlation between gene expression and the insect’s ability to detoxify toxic compounds such as
insecticides. In addition, the thiamethoxam-treated population harbored higher Portiera and lower
Rickettsia titers, whereas the imidacloprid-treated population harbored more Rickettsia at different
time intervals. Interestingly, we also examined that an increase in exposure to both the insecticides
resulted in a reduction in the mutualistic partners from their insect host. These differential responses
of endosymbionts to insecticide exposure imply the complex interactions among the symbionts inside
the host insect. The results also provide a deeper understanding of the molecular mechanism of
resistance development that might be useful for formulating effective management strategies to
control B. tabaci by manipulating symbionts and detoxifying genes.

Keywords: qPCR; gene expression; cytochrome P450; Portiera; Rickettsia; management

1. Introduction

The whitefly Bemisia tabaci (Gennadius, Hemiptera: Aleyrodidae) is a polyphagous
pest that inflicts damage by direct feeding on phloem sap or by vectoring a large number

Insects 2021, 12, 742. https://doi.org/10.3390/insects12080742 https://www.mdpi.com/journal/insects

https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0002-5817-2054
https://orcid.org/0000-0002-4090-929X
https://orcid.org/0000-0001-9326-3392
https://orcid.org/0000-0001-6634-5771
https://doi.org/10.3390/insects12080742
https://doi.org/10.3390/insects12080742
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/insects12080742
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects12080742?type=check_update&version=1


Insects 2021, 12, 742 2 of 16

of plant viruses [1,2]. It is a major threat to various field and horticultural crops worldwide.
B. tabaci consists of a complex of biotypes, which vary largely with respect to characters
such as host range, insecticide resistance, fecundity, and their ability to transmit plant
viruses [3–5]. Huge economic loss due to whitefly is a common phenomenon observed
globally, including in India. The virus transmission ability and wide host adaptability of
this pest make its management more difficult [6]. This has, in turn, led to heavy dependence
on chemical pesticides for managing this notorious pest. Several agricultural practices,
such as poor insecticide selection, substandard application techniques, and overdose of
insecticide application against B. tabaci, have resulted in control failures in fields, along with
the development of resistance to various organophosphates, synthetic pyrethroids, and
neonicotinoid insecticides [7–10]. During the past several years, a high level of resistance
in whitefly against a wide range of insecticides, including compounds of novel chemistry,
has been reported from China [11], India [12] Iran [13], Israel [14], Italy [15], Malaysia [16],
Pakistan [17], and the USA [18]. Nonetheless, persistent use of these toxic compounds for
managing sucking pests, especially B. tabaci, has adverse effects on the environment and
human health.

The molecular mechanisms underlying insecticide resistance reveal two basic prin-
ciples, i.e., target site insensitivity and metabolic detoxification [19]. Primarily, metabolic
detoxification may occur due to gene amplification, overexpression, or modification of
the gene-coding proteins of major detoxifying enzymes, namely cytochrome P-450 s
(P-450 s), glutathione S-transferases (GSTs), and others [20]. The P450s encoded by cyp
genes, constituting a superfamily of enzymes [21,22], are known for their contribution
to several imperative roles such as the growth, development, and detoxification of both
endogenous and xenobiotic compounds [23]. Reports indicate the presence of around
600 P450s in insects belonging to 17 cyp families, and those in families 4, 6, 9, and 12 are
associated with detoxification processes rendering tolerance to insecticides [22,24]. Fur-
thermore, among the different cytochrome P450 genes, the CYP6CM1 and CYP6CX1 genes
were found to be highly correlated with neonicotinoid resistance in a field population
of whitefly in China [25]. Involvement of different cytochrome P450 genes in insecticide
resistance has also been recorded in other insects, including Musca domestica and Drosophila
melanogaster, against imidacloprid and DDT, respectively [26,27]. As insecticide resistance
lowers the proficiency of chemical substances on the target pest [28], delineating the un-
derlying mechanism of resistance in whitefly against different groups of insecticides, it
has opened gateways for extensive research. However, the gene-mediated response alone
cannot be held accountable for resistance in whitefly, as symbiotic bacteria may also have
an important role in the detoxification of xenobiotic compounds.

Substantial evidence exists regarding microbe-mediated effects in whitefly, which
confers several physiological benefits, including increased heat tolerance [29] and nutri-
tional fitness [30] to mention a couple; however, studies exploring the relationship between
symbionts and insecticide resistance are limited despite the link being indicated several
decades ago [31]. For example, earlier reports suggest the presence of Rickettsia is instru-
mental in increasing the susceptibility of whitefly to insecticides such as thiamethoxam
and acetamiprid [32]. Hence, it can be said that there exists a connotation between white-
fly microbiota and insecticide resistance. All whitefly species harbor a diverse bacterial
community. These comprise primary symbionts (P-symbionts) such as Portiera, which
occur in all individuals located in certain specialized cells called bacteriocytes, and a multi-
tude of secondary symbionts (S-symbionts) such as Hamiltonella, Arsenophonus, Cardinium,
Wolbachia, and Fritschea present in hemolymphs, the midgut, etc. [33]. Unlike primary
symbionts, which have a direct mutualistic relationship with the host, these secondary
endosymbionts form a less stable partnership with their host and provide adaptive benefits
to their partner, with effects being positive, negative, or neutral [34,35]. The involvement of
these symbionts in protecting their host partners against thermal stress and many natural
enemies is well documented [35,36], but the intricate interactions between symbionts and
insecticide resistance have been less explored. Nonetheless, the exact mechanism under-
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lying the associations between endosymbionts and insecticide resistance is still a matter
of curiosity.

Keeping these points in mind, the current study was designed to evaluate the lethal
effects of two neonicotinoids, imidacloprid and thiamethoxam, against adult whitefly pop-
ulations. Changes in the bacterial microbiome community and expression pattern of two
cytochrome P450 genes in imidacloprid- and thiamethoxam-treated whitefly populations
were also monitored in parallel. Primarily, the following questions were addressed: (1) Do
facultative and obligate symbionts respond differently to chemical stress imposed on white-
fly? (2) How does the response of these symbionts vary with the time interval? (3) What are
the changes in the expression pattern of different cytochrome P450 genes (CYP6CM1 and
CYP6CX1) in imidacloprid- and thiamethoxam-treated whitefly populations? Precisely,
we discussed certain key research priorities, shedding light on the complex interaction
between insect functioning, their microbial community, the insecticide-resistant gene, and
their ability to tolerate xenobiotic compounds. An increasing number of studies indicate
such complex interactions in a vast range of insects worldwide; however, this research
experiment from India can be considered an important step in accentuating the possible
mechanisms for the development of resistance in whitefly against prevailing insecticides
used in the country, further suggesting novel management strategies of this pest.

2. Materials and Methods
2.1. Whitefly Rearing

The B. tabaci populations used in this study were collected from a research farm (C
block) in B.C.K.V, and a running culture of B. tabaci was maintained on eggplant seedlings
(Samrat) under controlled environmental conditions at 27 ± 1 ◦C with 60% RH and 16 h
light/8 h dark conditions.

2.2. Genetic Identification of Whitefly and Their Symbiont

The MtCoI gene was used for confirmation of whitefly with forward primer C1-J-2195
(5′-TTGATTTTTTGGTCATCCAGAAGT-3′) and reverse primer L2-N-3014 (5′ TCCAATG
CACTAATCTGCCATATTA-3′) [37]. Total DNA was extracted using a Genomic DNA
Isolation Kit (Sigma-Aldrich, St louis, USA) from 20 whitefly samples. The presence of four
endosymbionts (C. Portiera, Wolbachia, Arsenophonus, and Rickettsia) was detected in the
reared whitefly populations using their specific primers (Table 1) [38].

Table 1. List of primers used in the study.

Organism Accession Number Primer Name Primer Sequences (5′→3′)
Annealing

Temperature
(◦C)

Diagnostic PCR

“Ca. Portiera
aleyrodidarum” MT585785 Por-F

Por-R
CGTACGGAAACGTACGCTAA

TAAGCATAGGGCTTTCACATAAA 60

Rickettsia sp. MT027499 Ric-F
Ric-R

GCTCAGAACGAACGCTGG
GAAGGAAAGCATCTCTGC 56

Wolbachia MT 032316 Wol-F
Wol-R

CGGGGGAAAATTTATTGCT
AGCTGTAATACAGAAAGGAAA 56

Arsenophonus MT026928 Arse-F
Arse_R

CGTTTGATGAATTCATAGTCAAA
GGTCCTCCAGTTAGTGTTACCCAAC 54

B. tabaci PRJEB41468 C1-J-2195
L2-N-3014

TTGATTTTTTGGTCATCCAGAAGT
TCCAATGCACTAATCTGCCATATTA 53

qPCR Target Gene Primer Name Primer Sequences (5′→3′)
Annealing

Temperature
(◦C)
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Table 1. Cont.

Organism Accession Number Primer Name Primer Sequences (5′→3′)
Annealing

Temperature
(◦C)

“Ca. Portiera
aleyrodidarum” 16 S rDNA Port73-F

Port266-R
TAGTCCACGCTGTAAACG

AGGCACCCTTCCATCT 60

Rickettsia sp. gltA glt375-F
glt574-R

AAAGGTTGCTCATCATGCGTT
GCCATAGGATGCGAAGAGCT 60

Arsenophonus 23 S rDNA 23 S-F
23 S-R

CGTTTGATGAATTCATAGTCAAA
GGTCCTCCAGTTAGTGTTACCCAAC 60

Wolbachia Wsp Wsp-F
Wsp-R

TGGTCCAATAAGTGATGAAGAAAC
AAAAATTAAACGCTACTCCA 60

B. tabaci CYTP6CM1 CM1-F
CM1-R

CACTCTTTTGGATTTACTGC
GTGAAGCTGCCTCTTTAATG 60

B. tabaci CYTP6CX1 CX1-F
CX1-R

GTGCCCTACATCTCGCCTATC
CATTTCTTTCGTCGTCTCCAAC 60

B. tabaci β-actin Actin-F
Actin-R

ACCGCAAGATTCCATACCC
CGCTGCCTCCACCTCATT 60

A PCR program was carried out in a total volume of 25 µL, containing 2 µL of template
DNA, 12.5 µL of PCR master mix, 8.5 µL of molecular-grade water, and 1 µL each of forward
and reverse primer specific to the symbiont. The thermal cycler programmed a denaturation
step at 94 ◦C for 5 min, followed by 40 cycles at 94 ◦C for 30 s, annealing at different
temperatures specific to the endosymbiont (60 ◦C for Portiera, 54 ◦C for Arsenophonus, 56 ◦C
for Wolbachia and Rickettsia) for 30 s. Extension was carried out at 72 ◦C for 40 s with a final
extension at 72 ◦C for 5 min.

2.3. Insecticides

Susceptibility of whitefly to two insecticides, namely imidacloprid 17.80 SL (Bayer,
Pune, India) and thiamethoxam 25 WG (Syngenta, Thane, India), belonging to a neonicoti-
noid chemical group, was tested in the laboratory.

2.4. Bioassays

The toxicity of imidacloprid and thiamethoxam was evaluated against B. tabaci adults
(5 days old) by following a modified leaf dip bioassay method of the Insecticide Resis-
tance Action Committee [10]. To evaluate the toxicity, final doses were decided on a
pre-experimental basis, and five dilutions, each of imidacloprid (3, 15, 30, 60, and 300 mg/L
(ppm)) and thiamethoxam (1, 5, 10, 50, and 100 mg/L (ppm)), were prepared in tap water
by the serial dilution method. In each treatment, eggplant leaves with petioles were dipped
in the respective insecticide dilutions for 25 ± 2 s in a corning glass Petri plate (diameter
= 15 cm) and air dried. The control leaves were dipped in water alone. After drying the
solution on the surface of the leaves, the treated leaves were transferred to the corning glass
Petri plate (diameter = 9 cm) containing 2% agar slants. Each treatment was replicated
three times. In each replication, ten B. tabaci adults (30 in a treatment) were released, and
plates were covered with ventilated lids. The experiment was conducted under laboratory
conditions (temperature, 25 ± 2 ◦C; relative humidity, 75 ± 10%; and photophase, 14 h).
The observations of the mortality were taken at 24, 48, 72, and 96 h after exposure (HAE).
Moribund adults were considered dead.

2.5. Insecticide Treatment on Whiteflies

The whitefly population used in the experiment were fed leaves treated with sublethal
concentrations, i.e., an LC30 concentration of imidacloprid and thiamethoxam at 24 h after
exposure (HAE) taken from a previous bioassay. Whiteflies fed on untreated leaves were
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considered as control. The samples (surviving adults) collected at 24, 48, and 72 h (1, 2, and
3 days after exposure, i.e., 1 DAE, 2 DAE, and 3 DAE) during feeding on treated leaves
were killed with the help of chloroform and stored at −80 ◦C for further analysis. The
samples were subsequently used for extraction of DNA and RNA to determine the effect of
chemical (insecticide) stress on the changes in the relative amount of symbionts, as well as
on the expression pattern of two cytochrome P450 genes (CYP6CM1 and CYP6CX1) using
quantitative PCR (qPCR).

2.6. DNA Extraction

DNA was extracted from the adult whiteflies treated with imidacloprid and thi-
amethoxam at intervals of 1 DAE, 2 DAE, and 3 DAE separately by using a Genomic DNA
Isolation Kit (Sigma-Aldrich, St Louis, USA). The purified DNA template was eluted in
40 µL of nuclease-free water supplied with the kit. Final products were assessed with the
help of a BLBIO spectrophotometer (ELICO), and the eluted product was stored at −80 ◦C
until use.

2.7. RNA Isolation

The total RNA was extracted from the imidacloprid- and thiamethoxam-treated white-
flies using an Insect RNA Isolation Kit (Thermo Fisher Scientific), following the manufac-
turer’s protocol. For each treatment, the RNA template consisted of 20 individual whiteflies
that were eluted in 30 µL of molecular-grade water. RNA quality was evaluated using
the InvitrogenTM QubitTM 4 Fluorometer (Thermo Fisher Scientific, Waltham, USA) to
determine the quality and quantity with high precision per microliter of RNA, and eluted
templates were stored at −80 ◦C until use.

2.8. cDNA Synthesis

Synthesis of complementary DNA was performed by using the GeneSure H-Minus
First-Strand cDNA Synthesis Kit (Genetix Biotech Asia Pvt. Ltd., New Delhi, India) by
mixing 2.5 µL of total RNA with 1 µL of oligo dT, 1 µL of 10 mMdNTPs, and DEPC-
treated water to a volume of 12 µL. The solution was incubated at 65 ◦C for 5 min, and the
following reagents were added; 4 µL of 5X first-strand buffer, 1 µL of ribonuclease inhibitor
(40 units/µL), and 4 µL of DEPC-treated water. This mixture was placed at 25 ◦C for 5 min
before adding 1 µL of M-MLV RT. A final incubation at 42 ◦C for 60 min, followed by 70 ◦C
for 15 min, was performed to terminate the reaction.

2.9. Quantitative PCR (qPCR) and Quantitative RT-PCR (qRT-PCR) Analysis

The expression of insecticide-resistant genes and the relative abundance of endosym-
bionts (Portiera, Rickettsia, Arsenophonus, and Wolbachia) were determined after exposure to
xenobiotic stress at different time intervals using qPCR and qRT-PCR protocols, respectively.
Then, 2X SYBR Green qPCR Master Mix (Applied Biosystems, Foster City, USA) was used.
Primer names, their sequences, and annealing temperatures are mentioned in Table 1. The
DNA samples were run in triplicate to ensure the validity of the data using the Agilent
Technologies Stratagene Mx3000P Sequence Detection System. Amplification was carried
out in a 10 µL reaction containing 5 µL of 2X SYBR Green PCR Master Mix, 0.5 µL of each
primer (10 µM each), 1 µL of template DNA, 0.2 µL of ROX, and 2.8 µL of molecular-grade
water. The following PCR cycling conditions were used: 3 min activation at 95 ◦C, followed
by 40 cycles of 40 s at 95 ◦C, 40 s at 60 ◦C, and 45 s at 72 ◦C. All primers produced a single
melt peak. An insect actin gene used as an internal control for normalization was run in
parallel. The relative expression of each target was calculated by the 2–∆∆Ctn method [39].

2.10. Statistical Analysis

To determine the LC values, the observations recorded on mortality were corrected
using Abbott’s formula [40]. The data were subjected to probit analysis [41] using Microsoft
Excel spreadsheets. The differences in the relative expression of insecticide-resistant genes
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and the relative amount of symbionts at different durations after insecticidal spray were
analyzed using a one-way analysis of variance (ANOVA). The statistical significance of the
difference between the means were compared by Tukey’s test at p < 0.05 and performed
using SPSS 14.0 (SPSS Inc., Chicago, USA). The error bars present in the graphs represent
standard error.

3. Results
3.1. Concentration Mortality Response of Imidacloprid and Thiamethoxam against Whiteflies

Upon feeding of whitefly adults on insecticide-treated leaves for several hours, it
was recorded that the adults were more susceptible to thiamethoxam than imidaclo-
prid (Table 2). The median lethal dose showed that thiamethoxam (LC50 = 12.28 mg/L)
was 7.29 times more toxic than imidacloprid (89.64 mg/L) at 24 h after exposure (HAE).
Similarly, on increasing the duration of exposure, the toxicity at the median lethal dose
for thiamethoxam was higher than imidacloprid; thiamethoxam (LC50 = 5.28, 2.34, and
1.73 mg/L) was 4.95, 5.44, and 4.15 times more toxic than imidacloprid (LC50 = 26.16, 12.73,
and 7.18 mg/L) at 48, 72, and 96 HAE, respectively. The toxicity at the LC30 and LC90
levels also showed a similar trend. Slopes (b) at various hours varied from 0.813 to 1.094
for imidacloprid and from 0.708 to 0.961 for thiamethoxam at various intervals of exposure
(Figures 1 and 2).
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Figure 1. Concentration mortality response of imidacloprid against whitefly adults. The straight line represents the best
fitting probit regression line between insecticide log dose and mortality probits (working probits) for adult B. tabaci at
different intervals of time after the insecticide exposure, slopes of the lines are given in the Table 2. The arched line represents
the standard error (SE) for the slope of straight regression line.
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Table 2. Toxicity of imidacloprid and thiamethoxam against whitefly.

Insecticide HAE
LC Values (mg/L)

χ2 Slope ± SE 95% CL at LC50
(mg/L)LC30 LC50 LC90

Imidacloprid

24 20.3 89.64 3379.55 0.528 0.813 ± 0.178 48.09–250.28
48 7.11 26.16 630.61 0.843 0.927 ± 0.179 14.39–45.61
72 4.19 12.73 192.04 0.801 1.087 ± 0.194 6.73–20.46
96 2.382 7.18 106.46 0.215 1.094 ± 0.206 3.14–12.06

Thiamethoxam

24 2.23 12.28 794.76 3.012 0.708 ± 0.156 5.72–26.03
48 0.872 5.28 430.35 1.239 0.671 ± 0.155 1.76–10.89
72 0.631 2.34 57.53 0.622 0.921 ± 0.175 0.86–4.33
96 0.492 1.73 37.21 2.616 0.961 ± 0.183 0.58–3.27

HAE = hours after exposure; df = 3, number of individuals treated = 30. The confidence limit (CL) for lethal concentration (LC) values
was 95%.

3.2. Relative Change in Primary Endosymbiont (Portiera) after Application of Two Neonicotinoids

A comparative study involving changes in symbiont titers in whitefly populations
after application of the two neonicotinoids measured at different time intervals revealed
varying patterns in their quantitative analysis. The relative abundance of Portiera differed
significantly after exposure to both the insecticides at different time intervals.

When whitefly adults were exposed to imidacloprid, the relative quantity of Portiera
reduced (F2,6 = 21.30, p = 0.002) significantly after 2 days (4.9- to 3.02-fold), followed by a
further decline in quantity (2.62-fold) after 3 days when compared with that of the control.
However, changes in the relative amount of Portiera after 2 days and 3 days did not attain
any statistical significance. By contrast, the relative amount of Portiera was always higher
in the thiamethoxam-treated population compared to the imidacloprid-treated population.
The relative titer of Portiera after 1 day was recorded to be higher (7.31-fold) and reduced
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significantly (F2,6 = 26.796, p = 0.001) after 2 days (5.53-fold) compared to that of the control
and continued to decline as the duration increased (Figure 3).
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3.3. Relative Change in Secondary Symbionts after Application of Two Neonicotinoids

The three secondary endosymbionts Arsenophonus, Wolbachia, and Rickettsia responded
differently to insecticide treatment. In both imidacloprid- and thiamethoxam-treated
whiteflies, the relative titer of Arsenophonus at different time intervals declined significantly
(F2,6 = 71.335, p = 0.0001; F2,6 = 74.504, p = 0.0001).

Upon exposure to imidacloprid, the relative quantity of Arsenophonus reduced dramat-
ically after 2 days (6.41- to 1.25-fold), followed by a moderate decline in quantity (1.15-fold)
after 3 days when compared with that of the control. Similarly, the relative abundance of
Arsenophonus followed a similar pattern when the whitefly population was treated with
thiamethoxam, i.e., an initial decline in quantity from 4.23- to 1.46-fold after 2 days with a
further reduction after 3 days (1.43-fold) (Figure 4).

The relative abundance of Wolbachia varied significantly (F2,6 = 24.591, p = 0.001;
F2,6 = 5.73, p = 0.041) in both the imidacloprid- and thiamethoxam-treated populations,
respectively. After exposure to imidacloprid, the relative quantity of Wolbachia reduced
(5.96- to 3.45-fold) after 2 days, followed by a dramatic decline in quantity (1.12-fold) after
3 days when compared with that of the control. Similarly, the relative abundance of
Wolbachia followed a similar pattern over the course of time when the whitefly populations
were treated with thiamethoxam, i.e., an initial decline in quantity from 4.65- to 3.13-fold
after 2 days with a further reduction after 3 days (2.10-fold) (Figure 5).
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The relative amount of Rickettsia showed significant variation across different time
intervals (F2,6 = 43.18, p = 0.0001; F2,6 = 5.53, p = 0.044) in both the imidacloprid- and
thiamethoxam-treated populations, respectively. The relative titer of Rickettsia decreased
over the course of different time intervals in the imidacloprid-treated population, i.e., 4.34-
to 2.7-fold, after 2 days and continued decline up to 3 days of exposure. However, the
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reduction in the titer level of Rickettsia in the case of the thiamethoxam-treated population
was relatively gradual, i.e., 2.4- to 1.74-fold, after 2 days, with a moderate reduction after
3 days of exposure (1.75-fold) (Figure 6).
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3.4. Expression Pattern of Two Cytochrome P450 Genes after Exposure to Chemical Stress

The two cytochrome P450 genes, CYP6CM1 and CYP6CX1, showed varying expression
patterns when whitefly adults were subjected to imidacloprid and thiamethoxam treatment.
The ratios of imidacloprid- to thiamethoxam-treated whiteflies in terms of transcript levels
of CYP6CM1 were 1.3 at 1 DAE, 2.9 at 2 DAE, and 1.6 at 3 DAE (F2,6 = 11.06, p = 0.010;
F2,6 = 16.95, p = 0.003). Similarly, insecticide treatment resulted in a higher expression of
the CYP6CX1 gene in the imidacloprid-treated population in comparison to thiamethoxam
treatment. The ratios of imidacloprid- to thiamethoxam-treated whiteflies in terms of
transcript levels of CYP6CX1 were noted to be 2.4 at 1 DAE, 1.2 at 2 DAE, and 1.3 at 3 DAE
(F2,6 = 144.66, p = 0.0001; F2,6 = 31.69, p = 0.001) (Figures 7 and 8).
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4. Discussion

Insects have evolved through lineages and established themselves successfully as
eukaryotic life forms on planet Earth. They are classified depending on their nature, as
some insects play a beneficial role by pollinating crops, while others have a detrimental
effect on them and are a threat to food security worldwide [42]. Managing these insect pests
is a massive task, and over the years, people have relied on the use of toxic molecules for
checking pest incidence. As a result, insecticide resistance is a common phenomenon that
has resulted in serious pest outbreaks and, consequently, even more losses [43,44]. Hence,
insecticide resistance and subsequent management strategies are garnering much attention
worldwide. As already mentioned, whitefly, known for causing serious damage to field
and horticulture crops, is a difficult pest to manage that has also developed resistance
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against nearly 40 active ingredients of toxic compounds [45]. A shift from organophos-
phates and organochlorines to pyrethroids to neonicotinoids and other novel compounds
has been ongoing over several years [46]. However, the failure of such insecticides against
B. tabaci in India continues [8]. Naveen et al. [10] reported the insecticide resistance level
of neonicotinoids for various genetic groups of whitefly in the Indian subcontinent by
evaluating the median lethal doses of imidacloprid and thiamethoxam 96 HAE. The LC50
values for the various populations in the Indian subcontinent were reported to vary from 52
to 956 mg/L for imidacloprid and 26 to 194 mg/L for thiamethoxam, indicating the higher
susceptibility of various population groups of B. tabaci to thiamethoxam compared to
imidacloprid. Similarly, in the present study, the population was found to be more suscep-
tible to thiamethoxam. The toxicity of imidacloprid was reported to be high compared to
thiamethoxam against sucking pests, especially whitefly [47]. The factors, which demand
more consideration in this regard, are insecticide-resistant gene expression, symbiont-
mediated detoxification, or the role of gut symbionts, which might be accountable for
differences in response against chemical stress [48].

We are aware of the different host–microbe interactions and their role in meeting their
partners’ nutritional requirements and helping in ecological adaptation [49]. In recent times,
there is growing awareness regarding the role of microbes in protecting their host partners
from insecticides or different chemical compounds [50]. On exposure to insecticide stress,
symbionts exert substantial effects on their hosts, which vary depending on the species of
the host and symbiont, as well as the class or type of the toxic molecule [51–55]. Studies
reveal infection with symbionts increased susceptibility of the hosts to insecticides [56–58]. To shed
light on this facet, we elucidated the change in the relative amount of four endosymbionts
in a lab population of whitefly upon the subjection of two neonicotinoid compounds at
different time intervals. Recent findings reveal the involvement of primary symbionts in
the defensive function of stinkbugs and psyllids [59,60]. On the other hand, the association
of secondary symbionts with insecticide resistance has already been mentioned [56,61].
However, in the case of whitefly, the relationship between symbionts and insecticide
resistance has been inconsistent.

Our findings reveal varying changes in the relative amount of primary and secondary
symbionts upon spray of two different neonicotinoid compounds. In particular, the effect of
two neonicotinoids on the titer level of the P-symbiont Portiera varied with the time interval.
The relative abundance of Portiera was comparatively higher in the thiamethoxam-treated
population in contrast with the imidacloprid-treated population, indicating that a higher
amount of Portiera might be responsible for increased susceptibility of whitefly towards
thiamethoxam. Another notable fact is that with increased duration of exposure to insec-
ticides, the relative amount of Portiera gradually declined, suggesting that the increased
uptake of toxic molecules by whiteflies might have deleterious effects on Portiera. On the
contrary, the amount of Rickettsia was higher in the imidacloprid-treated population in
comparison to the thiamethoxam-treated population. Our results showed good congruence
with the findings of Pan et al. [62], who reported a higher amount of Portiera and a lower
amount of Rickettsia in thiamethoxam-susceptible populations of whitefly. Nonetheless,
previous studies also mention the association of Rickettsia with increased susceptibility of
whitefly towards thiamethoxam and other such compounds [32,56]. Such incongruities
are confusing but raise some vital questions that call for further attention. A possible
explanation for such acrimonious results could be the different interactions between the
symbiotic populations or the differences in host plants used in the studies.

On the contrary, the effect of imidacloprid and thiamethoxam on the relative amount
of both Wolbachia and Arsenophonus was quite drastic within 1 day after exposure to
both the toxicants. A possible reason behind such a steep fall might be their localization
pattern. Arsenophonus is reported to be located in the salivary glands and midgut of B.
tabaci, whereas Wolbachia displays a dual-localization pattern both inside and outside
the bacteriosome [63,64], which might result in increased interaction between the xeno-
biotic compounds and these symbionts. The titer levels of Arsenophonus and Wolbachia
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were higher in the imidacloprid-treated whiteflies in comparison to those treated with thi-
amethoxam within 1 day after exposure; however, after 3 days, the thiamethoxam-treated
populations harbored a higher amount of the symbionts, further suggesting that the rela-
tionship between symbionts and insecticides is highly variable. Not many studies in the
literature mention the association of symbionts such as Arsenophonus and Wolbachia with
insecticide resistance. However, few reports suggest the indirect involvement of Wolbachia
in developing the susceptibility of insects to toxic compounds, as its density increases
the physiological cost of resistance [65]. A clear understanding of the intricate relation-
ship between symbionts and insecticide resistance is instrumental for the development of
resistance management strategies.

Earlier studies have demonstrated that increased cytochrome P450 gene expression
resulting in the enhancement of metabolic detoxification leads to resistance development
against neonicotinoid compounds in whitefly [24]. Yang et al. found a positive correlation
between expression of the CYP6CM1 gene and imidacloprid resistance in field populations
of whitefly in China [25]. Our studies also revealed a higher expression of the CYP6CM1 and
CYP6CX1 genes in imidacloprid-treated whitefly compared to that of the thiamethoxam-
treated population. A higher expression of insecticide-resistant genes might have resulted
in increased resistance of whitefly towards imidacloprid. In other insects such as Musca
domestica, overexpression of P450 genes such as CYP6A1 and CYP6D1 was associated with
resistance to organophosphates, pyrethroids, DDT, and other juvenile hormone analogs [66].
Zhuang et al. also reported a positive correlation between the expression of CYP6CX1 and
imidacloprid resistance in a field population of whitefly [67]. Our results indicate a much
stronger association between imidacloprid and the two P450 gene expressions in B. tabaci,
but this also calls for functional studies of the protein encoded by the genes in order to
ratify its role in detoxifying imidacloprid.

5. Conclusions

In summary, this paper provides a deeper insight into the role of symbionts in de-
veloping insecticide resistance. By synergizing our understanding of the insect–bacteria
interactions with the urgent need to control pest populations, there is a possibility of devel-
oping symbiont-targeted pesticides in the near future. This could be a better substitute for
the disposal of harmful antibiotics into the environment. We also gain an understanding
of the two P450 genes and their direct positive correlation with imidacloprid resistance
in whitefly populations. This understanding can be used for deploying RNA-silencing
techniques to silence the target gene and increase the efficacy of the insecticides used.
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