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Abstract

The vertebral endplate forms a structural boundary between intervertebral disc and the tra-

becular bone of the vertebral body. As a mechanical interface between the stiff bone and

resilient disc, the endplate is the weakest portion of the vertebral-disc complex and is predis-

posed to mechanical failure. However, the literature concerning the bone mineral density

(BMD) distribution within the spinal endplate is comparatively sparse. The objective of this

study is to investigate the three-dimensional (3D) distribution of computed tomography (CT)

attenuation across the lumbosacral endplate measured in Hounsfield Units (HU). A total of

308 endplates from 28 cadaveric fresh-frozen lumbosacral spines were used in this study.

Each spine was CT-scanned and the resulting DICOM data was used to obtain HU values

of the bone endplate. Each individual endplate surface was subdivided into five clinically-rel-

evant topographic zones. Attenuation was analyzed by spinal levels, sites (superior or infe-

rior endplate) and endplate region. The highest HU values were found at the S1 endplate.

Comparisons between the superior and inferior endplates showed the HU values in inferior

endplates were significantly higher than those in the superior endplates within the same ver-

tebra and the HU values in endplates cranial to the disc were significantly higher than those

in the endplates caudal to the disc within the same disc. Attenuation in the peripheral region

was significantly higher than in the central region by 32.5%. Regional comparison within the

peripheral region showed the HU values in the posterior region were significantly higher

than those in the anterior region and the HU values in the left region were significantly higher

than those in the right region. This study provided detailed data on the regional HU distribu-

tion across the lumbosacral endplate, which can be useful to understand causes of some

endplate lesions, such as fracture, and also to design interbody instrumentation.

Introduction

The vertebral endplate forms a structural boundary between the intervertebral disc and the tra-

becular bone in the vertebral body. Comprised of a thin layer of semi-porous subchondral
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bone, approximately 0.5–1.5 mm thick [1], the principal functions of the endplate are to

behave as a physical shield separating the disc from the vertebra [2], to evenly distribute com-

pressive loads to the vertebral body [3], and to constitute the main gateway of nutrient supply

from the central endplate to the disc [4, 5]. The dense subchondral bone located at the periph-

eral region of the endplate, called “ring apophysis” or “epiphyseal ring”, provides secure

anchorage for the collagen network of the annulus fibrosus outer layers [6]. As a mechanical

interface between the stiff bone and resilient disc, the endplate is the weakest portion of the

vertebral-disc complex [7] and is predisposed to mechanical failure [8].

While interbody devices have been increasingly used for lumbar anterior fusion, complica-

tions associated with the use of interbody devices have been reported [9–17]. One of the major

complications is subsidence of the interbody device into the vertebral body [12–19]. Insuffi-

cient strength of the bony endplate has been considered as an important factor for the subsi-

dence; therefore, many investigators have focused on the mechanical strength of lumbar

endplate and its relationship with the endplate architecture [1, 9, 20–26].

The mechanical role of the ring apophysis has been acknowledged as support structure for

the interbody device. Clinical data supports that the lack of support from the stronger periph-

eral endplate ring apophysis is a leading cause for artificial disc subsidence [27, 28]. A recent

study by Briski et al. [29] investigated the mechanical effects of spanning a lateral lumbar inter-

body cage across the ring apophysis using osteoporotic cadaveric lumbar spines. The authors

found that spanning the ring apophysis increased the load to failure by 40% with intact end-

plate and by 30% with decorticated endplate [29]. These studies demonstrate the importance

of endplate strength, especially in the ring apophysis, at the “footprint” of an interbody device.

Because endplate strength cannot be measured directly preoperatively, many investigators

have attempted to establish noninvasive methods to estimate the endplate strength using imag-

ing modalities [1, 20–22, 30]. Bone mineral density (BMD) has been considered as a candidate

predictor of endplate strength which can be measured by radiographic imaging techniques

[21, 30]. Several studies measured trabecular bone BMD in the lumbar vertebral body using

dual energy x-ray absorptiometry (DEXA) and/or CT scanning while mechanical testing had

been performed on the same specimens [31–33]. Although these studies have shown positive

correlations between the endplate strength and the BMD, Hasegawa et al. [32] demonstrated

that local BMD of subchondral cancellous bone at 5 mm underneath the lumbar endplate

determined by a peripheral quantitative CT was better correlated with the mechanical proper-

ties as compared with the BMD of the whole lumbar vertebral body measured by DEXA.

Noshchenko et al. [25] further compared lumbar endplate indentation strength and stiffness

with the localized Hounsfield Units (HU) values of the endplate at the same location where the

indentation test was performed and showed high correlations between the mechanical proper-

ties and the HU values of the lumbar endplate. This study indicates the importance of record-

ing the attenuation values within and underneath the endplate for a better prediction of

mechanical properties of the endplate.

Defining the distribution of HU values within the three-dimensionally curved thin endplate

is technically demanding using currently available clinical imaging modalities, even though

various reformatting procedures are available these days. As a method to measure HU distri-

bution of the subchondral bone under the curved joint surface, Müller-Gerbl and colleagues

first demonstrated the use of CT osteoabsorptiometry [34]. Using this method, the HU distri-

bution of the cervical endplate itself was first successfully measured using CT osteoabsorptio-

metry based on clinical CT images, inferring BMD patterns in the cervical endplate [35].

However, to the best of our knowledge, HU distribution within the lumbar endplate across the

endplate surface has not been investigated in the literature. Therefore, the purpose of the pres-

ent study was to investigate the HU distribution obtained from clinical CT across the lumbar
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endplate. In order to compare published endplate structural properties such as endplate thick-

ness and indentation strength, the HU distribution was analyzed by spinal level, site (superior

or inferior endplate) and relevant anatomical regions within an endplate.

Materials and methods

Specimens

A total of 308 endplates of 28 fresh-frozen lumbar spines (L1-S1) from deceased donors (19

females and 9 males; mean age 62.7 years old; range of ages, 31–76 years old) were used in this

study. Each lumbar spine was screened by plain X-rays first to exclude the specimen with

deformity, tumors, severe osteoporosis and endplate compression fracture. After the screen-

ing, the specimens were wrapped in moist towels and placed into a labeled, plastic bags before

being stored frozen at -20˚C. This study was exempted by the IRB at Rush University Medical

Center since it only included cadaveric specimens.

Creation of endplate surface model

Each spine was CT-scanned (BrightSpeed, GE Healthcare, Waukesha, WI, tube voltage: 120

kV, tube current: 250 mAs, field of view: approximately 200 mm, image matrix: 512×512, slice

thickness: 0.625 mm, no spacing). Raw imaging data of axial slices were exported in the

DICOM format. The CT images were imported into a 3D reconstruction software package

(Mimics 22 Research, Materialise Inc., Leuven, Belgium), and 3D surface mesh models from

L1 to S1 were created using a preset bone threshold level of 250 HU. Both superior and inferior

endplate mesh models were further segmented from each vertebral 3D model excluding

remarkable osteophytes and converted to a point-cloud model using custom-written Visual

C++ with MFC environment software.

Determination of attenuation in HU across the endplate

In order to obtain the attenuation distribution measured in HU within and underneath the

endplate, the endplate point-cloud surface was virtually moved perpendicular to the endplate

surface towards the vertebral body in increments of 0.5 mm up to 2.0 mm. This was done con-

sidering partial volume effects and the lumbar endplate thickness of approximately 0.5–1.5

mm as described in the literature [1] to obtain a HU value at each depth. To determine the

moving direction of the endplate, the normal vector of the endplate surface was calculated

based on the individual eigenvectors of the endplate surface mesh model (Fig 1A). Each point

of the endplate point-cloud model was moved in a direction opposite to the normal vector. At

each point-cloud point, the corresponding HU value was calculated by trilinear interpolation

of HU values at 8 adjacent volumes in 2 axial CT slices adjacent to each point (Fig 1B) [36, 37].

A mean value of the HUs of the all points in the endplate point-cloud model was calculated at

each depth (Fig 2). The mean HU value within its range (0.5–2.0 mm) was defined as the HU

value for the endplate.

Determination of endplate topographic zones

An endplate-based local coordinate system was used to establish a zone system on the endplate

(Figs 1A and 3). The centroid and a normal vector of the entire endplate surface were calcu-

lated [31]. Mesh elements at the edge of the endplate were automatically excluded when the

angle between their normal vector and the endplate normal vector was over 45˚, in order to

exclude osteophytes. The position of each mesh element, initially described in Cartesian coor-

dinates was translated into spherical coordinates with the centroid of the endplate as its origin.
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Fig 1. Endplate point-cloud surface model and determination of attenuation in Hounsfield Units (HU) at individual point of the model. A:

point-cloud model (red points), endplate-based coordinate system (red arrows) and CT coordinate system (white arrows). B: 3D spatial relationship

between an arbitrary point of the endplate point-cloud model (red point) and 8 adjacent points in the 2 adjacent CT images (white points). White

arrows; CT coordinate system.

https://doi.org/10.1371/journal.pone.0259001.g001

Fig 2. Measurement of Hounsfield Units (HU) across the endplate. A: screenshot of custom-written software for measurement to

determine HU values at individual points consisting of a 3D endplate point-cloud model determined by a DICOM dataset. a; an

axial CT slice (note; only one slice is shown on the screen although multiple slices are involved in the measurement). Red dots

indicate location of the endplate point-cloud model. b; HU distribution on the endplate point-cloud model. Position and orientation

of the point-cloud model can be changed in any increment. B: An example of changes in HU distribution and mean HU values at the

surface and at depths 0.5–2.5 mm underneath the endplate surface.

https://doi.org/10.1371/journal.pone.0259001.g002
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The mesh elements at the edge of the endplate were detected (red dots in Fig 3) and radius of

each mesh element was normalized by the largest radius for each angle. Mesh elements with

over 95% of the largest radius were not included for analysis in order to exclude osteophytes

and the cortical wall of the vertebral body underneath the endplate edge. Based on the radius

of the quasi-elliptical footprint of the endplate, two concentric zones were defined: i) a radial

range between 95% and 50% of the radius outlined the peripheral zone, and ii) when the radius

was less than 50%, it provided a contour containing the central zone (Figs 3 and 4). The

peripheral zone was further divided into four anatomically-relevant zones: posterior, left, ante-

rior and right zones, based on angles from a base axis oriented towards the most posterior

point of the endplate (Fig 4) [38, 39]. The actual distances for the 50% and 90% radii for each

zone are shown in Table 1.

Statistical analyses

ANOVA with Tukey’s post hoc test was used to evaluate differences between zones and spinal

levels. Differences between superior and inferior endplates in the same vertebrae or same

intervertebral disc were carried out with a paired Student’s t-test. Results were presented as

mean ± SD. Significance was set at p< 0.05.

Results

Endplate attenuation compared by gender

A comparison of the HU values of both superior and inferior endplates between females and

males showed no significant differences from L1 to S1 (Table 2).

Fig 3. Determination of central and peripheral zones based on endplate-based spherical coordinate system. a:

centroid of the endplate and origin of the endplate-based polar coordinate system used to define the endplate zones (0˚

coincides with posterior direction and positive angle values are clockwise). b: endplate normal vector. c: vector

pointing towards the most posterior point of the endplate. (note: penetrating arrowhead demonstrates the 3D nature of

the endplate surface) d: a vector with a length of 95% of the maximum radius. e: a vector with a length of 50% of the

maximum radius. θ: angular parameter. Red dots: outermost margin. Dark blue dots: concentric margin contracted to

95% of the outer margin. Light blue dots; concentric margin contracted to 50% of the outer margin.

https://doi.org/10.1371/journal.pone.0259001.g003

PLOS ONE CT attenuation across the lumbosacral endplate

PLOS ONE | https://doi.org/10.1371/journal.pone.0259001 October 27, 2021 5 / 14

https://doi.org/10.1371/journal.pone.0259001.g003
https://doi.org/10.1371/journal.pone.0259001


Attenuation values across different spinal levels

HU values of superior endplates at the different spinal levels showed no significant differences

from L1 to L5. However, attenuation at the superior endplate at S1 was significantly higher

than the HU values at L1 through L5 (p< 0.0001 at L1, L2, L3 and L4 superior endplate;

p< 0.0005 at L5 superior endplate) (Fig 5). The HU values of the inferior endplate at L1 were

significantly lower than those at L3 (p< 0.009), L4 (p< 0.005) and L5 (p< 0.003). The HU

Fig 4. Definition of the five topographic zones, superimposed on a vertebra surface model. Note that osteophytes

mesh elements with over 45˚ tilt angle and the most outer margin of the endplate where the cortical wall of the

vertebral body exists underneath the endplate are not included in the peripheral zones.

https://doi.org/10.1371/journal.pone.0259001.g004

Table 1. Actual distance for 50% and 95% radii by anatomical zone.

Level Site Post 50% Left 50% Ant 50% Right 50% Post 95% Left 95% Ant 95% Right 95%

Radius SD Radius SD Radius SD Radius SD Radius SD Radius SD Radius SD Radius SD

L1 Sup 9.29 1.00 11.00 1.01 9.35 0.77 11.12 0.86 17.64 1.92 20.91 1.90 17.76 1.46 17.76 1.46

Inf 9.60 1.08 11.53 1.02 9.76 1.05 11.37 0.98 18.22 2.03 21.90 1.90 18.55 2.01 18.55 2.01

L2 Sup 9.76 1.36 11.43 1.02 9.81 0.85 11.76 0.99 18.53 2.57 21.72 1.94 18.65 1.62 18.65 1.62

Inf 9.82 1.01 12.00 1.03 10.18 0.99 12.03 1.13 18.67 1.92 22.81 1.94 19.34 1.88 19.34 1.88

L3 Sup 10.20 1.37 12.03 1.15 10.07 0.87 12.21 0.99 19.38 2.61 22.86 2.20 19.17 1.67 19.17 1.67

Inf 9.76 0.99 12.38 1.03 10.14 1.17 12.48 1.23 18.57 1.89 23.50 1.98 19.27 2.23 19.27 2.23

L4 Sup 10.40 1.26 12.50 1.29 10.08 0.91 12.56 1.07 19.75 2.40 23.76 2.45 19.16 1.74 19.16 1.74

Inf 9.72 0.97 12.66 1.26 10.06 1.22 12.74 1.51 18.48 1.86 24.06 2.38 19.13 2.30 19.13 2.30

L5 Sup 10.51 1.43 13.10 1.26 9.93 1.18 13.04 1.51 19.97 2.74 24.89 2.39 18.87 2.24 18.87 2.24

Inf 9.57 1.07 12.88 1.36 9.89 1.27 13.05 1.42 18.19 2.03 24.48 2.59 18.79 2.43 18.79 2.43

S1 Sup 10.15 1.44 12.93 1.33 8.56 1.11 13.09 1.45 19.27 2.73 24.56 2.52 16.28 2.12 16.28 2.12

Note: Post 50%: Distance for 50% radius for posterior zone, Left 50%: Distance for 50% radius for left zone, Ant 50%: Distance for 50% radius for anterior zone, Right
50%: Distance for 50% radius for right zone, Post 95%: Distance for 95% radius for posterior zone, Left 95%: Distance for 95% radius for left zone, Ant 95%: Distance for

95% radius for anterior zone, Right 95%: Distance for 95% radius for right zone, Sup: superior endplate, Inf: inferior endplate,

https://doi.org/10.1371/journal.pone.0259001.t001
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values of the inferior endplate at L2 were significantly lower than those at L3 (p< 0.03)

(Fig 5).

Attenuation compared between the superior and inferior endplates within

the same vertebra or same intervertebral disc

Within the same vertebra, the HU values of inferior endplates were significantly higher than

those of superior endplates in all lumbar spinal levels (p< 0.008 at L1; p< 0.0005 at L2;

p< 0.0001 at L3, L4 and L5) (Fig 5). Within the same intervertebral disc, the HU values of

endplates cranial to disc were also significantly higher than those of endplates caudal to disc in

all spinal levels (p< 0.0004 at L1/2; p< 0.0001 at L2/3 and L3/4; p< 0.0002 at L4/5) except

L5/S1 (p = 0.24) (Fig 5).

Table 2. Comparison by gender.

Superior endplate Inferior endplate

Female Male Mean SD Female Male Mean SD

L1 303.6 302.7 303.3 98.8 333.4 364.3 343.3 84.4

L2 288.7 306.1 294.3 114.7 345.9 399.7 363.2 100.4

L3 287.8 301.2 292.1 109.0 372.5 411.5 385.0 111.0

L4 301.8 313.2 305.5 110.4 404.1 409.2 405.7 106.0

L5 342.3 317.6 334.3 110.9 402.3 390.2 398.4 88.7

S1 429.3 384.0 414.8 115.2

https://doi.org/10.1371/journal.pone.0259001.t002

Fig 5. Comparison of the endplate BMD among different spinal levels and between the superior and inferior

endplates within the same vertebra or same intervertebral disc. a: p<0.0001 compared with superior endplates at

L1, L2, L3 and L4. p<0.0005 compared with superior endplates at L5. compared with inferior endplate at L1

(p<0.0007) and L2 (p<0.05). b: compared with inferior endplates at L3 (p<0.009), L4 (p<0.005) and L5 (p<0.003). c:

p<0.03 compared with inferior endplate at L3. �: p<0.008 between superior vs. inferior endplates in the same vertebra.
��: p<0.0005 between superior vs. inferior endplates in the same vertebra. ���: p<0.0001 between superior vs. inferior

endplates in the same vertebra. †: p<0.0004 between superior vs. inferior endplates in the same disc. ††: p<0.0001

between superior vs. inferior endplates in the same disc. †††: p<0.0002 between superior vs. inferior endplates in the

same disc.

https://doi.org/10.1371/journal.pone.0259001.g005
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Attenuation within an endplate

Overall, the HU values in the peripheral zones (including anterior, right, posterior and left)

were significantly higher than those in the central zone by 32.5% in average (Fig 6A and 6B).

Analyzing by peripheral zones, the HU values in the posterior zone were significantly higher

than those of anterior zone at all levels (p< 0.002 at L1 superior and inferior endplate,

p< 0.02 at L2 superior endplate, p< 0.006 at L3 superior endplate, p< 0.0001 at S1 superior

endplate and L4 inferior endplate, p< 0.0008 at L2 inferior endplate, p< 0.007 at L3 inferior

endplate, p < 0.05 at L5 inferior endplate) except L4 and L5 superior endplate (p = 0.16 and

0.26, respectively) (Fig 7A and 7B). The HU values of the left zone were significantly higher

than those of the right zone at all levels (p< 0.04 at L2, L3 superior endplate and L5 inferior

endplate; p < 0.008 at S1 superior endplate; p< 0.0004 at L1 inferior endplate; p< 0.002 at L2

inferior endplate; p< 0.02 at L3 inferior endplate; P = 0.0644 at L4 inferior endplate) except

L1, L4 and L5 superior endplate (p = 0.16, 0.23 and 0.28, respectively) (Fig 7A and 7B). The

HU values from the anterior to the right zone were lower, whereas HU values were higher

from the posterior to the left zone (Fig 7A and 7B).

Discussion

The present study demonstrated considerable regional variation within each endplate with

lower attenuation recorded in the central zone and higher HU values found in the peripheral

regions. Similar findings have been reported by other authors regarding thickness distribution

of the lumbar endplates, showing the thickness of the endplate was greater at the margins than

in the central regions (Table 3) [1, 20–22]. Previous biomechanical studies on the lumbar end-

plate also showed indentation strength and stiffness were higher at peripheral, especially

Fig 6. A. Comparison of the BMD in the central and peripheral zones of the superior endplate among different spinal levels and within the superior

endplate. a: p<0.009 compared with central region of the superior endplates at L4. p<0.05 compared with central region of the superior endplates at L5.

b: p<0.009 compared with peripheral region of the superior endplates at L4. p<0.05 compared with peripheral region of the superior endplates at L5. �:

p<0.007 between central vs. peripheral regions in the same spinal level. ��: p<0.02 between central vs. peripheral regions in the same spinal level. ���:

p<0.002 between central vs. peripheral regions in the same spinal level. ����: p<0.0001 between central vs. peripheral regions in the same spinal level. B.

Comparison of the BMD in the central and peripheral zones of the inferior endplate among different spinal levels and within the inferior endplate. a:

p<0.03 compared with central region at L3. b: compared with peripheral region at L1 (p<0.02), L2 (p<0.05) and L4 (p<0.003). �: p<0.003 between

central vs. peripheral regions in the same spinal level. ��: p<0.0001 between central vs. peripheral regions in the same spinal level. ���: p<0.002 between

central vs. peripheral regions in the same spinal level. ����: p<0.0007 between central vs. peripheral regions in the same spinal level.

https://doi.org/10.1371/journal.pone.0259001.g006

PLOS ONE CT attenuation across the lumbosacral endplate

PLOS ONE | https://doi.org/10.1371/journal.pone.0259001 October 27, 2021 8 / 14

https://doi.org/10.1371/journal.pone.0259001.g006
https://doi.org/10.1371/journal.pone.0259001


posterolateral, and lower in the center of the lumbar endplates (Table 3) [9, 23, 24]. The higher

HU values in the peripheral region may be explained by existence of a ring apophysis in this

region.

Our results show that attenuation in the posterior region was always higher than in the

anterior region in all levels. Hulme et al. [22], evaluated regional variation in vertebral bone

morphology using micro-CT and found that posterior regions of the vertebrae had greater

bone volume, more connections, reduced trabecular separation and more plate-like isotropic

structures than their corresponding anterior regions. Trabecular tracts running obliquely from

the superior process downward to the inferior endplate and from the inferior process upward

to the superior endplate through the pedicle were illustrated in the literature as early in 1925

by Gallois and Japoit [40]. Dense trabecular tracts extending from the pedicles were also

shown by soft x-ray images [41]. The trabecular bones from the pedicles may contribute to

increase attenuation in the posterior endplate.

Unexpectedly, significant differences were found between the right and left peripheral

regions with higher HU values in left side than those in the right side by about 24%. Asymme-

try of the vertebral shape has been reported by Masharawi et al. [42] They investigated the ver-

tebral body shape of 240 normal adult thoracolumbar spines in the Hamann-Todd Human

Osteological Collection and reported that 92% of all women and 86% of all men had vertebral

bodies which showed greater lateral height in the right side than in the left, in a phenomenon

termed by the authors wedging towards the left. However, this research team also measured

dimensions of the epiphyseal ring of the same specimens and reported no significant differ-

ences between the right ring diameter normalized by vertebral body width and that in the left

Fig 7. A. Comparison of the regional BMD in the superior endplate. Central: central zone, anterior: anterior zone, posterior: posterior zone, right: right zone, left: left

zone. a: compared with Pos (p<0.02) and Left (p<0.009) at L1. b: compared with Pos (p<0.002) and Left (p<0.004) at L1. c: compared with Right (p<0.01) at L1. d:

compared with Pos (p<0.03) at L2. e: compared with Pos (p<0.02) at L2. f: compared with Right (p<0.005) at L2. g: compared with Left (p<0.04) at L2. h: compared

with Pos (p<0.002) and Left (p<0.02) at L3. i: compared with Pos (p<0.006) at L3. j: compared with Right (p<0.005) at L3. k: compared with Left (p<0.04) at L3. l:

compared with Ant (p<0.006), Pos (p<0.0003), Right (p<0.008) and Left (p<0.0001) at L4. m: compared with Ant (p<0.006), Pos (p<0.0004), Right (p<0.02) and Left

(p<0.0003) at L5. n: compared with Pos (p<0.0001) and Left (p<0.0004) at S1. o: compared with Pos (p<0.0001) and Left (p<0.003) at S1. p: compared with Right

(p<0.0002) and Left (p<0.0004) at S1.q: compared with Left (p<0.008) at S1. B. Comparison of the regional BMD in the inferior endplate. Central: central zone,

anterior: anterior zone, posterior: posterior zone, right: right zone, left: left zone. a: p<0.0001 compared with Pos and Left at L1. b: compared with Pos (p<0.002) and

Left (p<0.0009) at L1. c: compared with Right (p<0.0001) at L1. d: compared with Left (p<0.0004) at L1. e: p<0.0001 compared with Pos and Left at L2. f: compared

with Pos (p<0.0008), Right(p<0.04) and Left (p<0.006) at L2. g: compared with Right (p<0.0003) at L2. h: compared with Left (p<0.002) at L2. i: compared with Ant

(p<0.009), Pos (p<0.0001) and Left (p<0.005) at L3. j: compared with Pos (p<0.007) and Right(p<0.02) at L3. k: compared with Right (p<0.0001) at L3. l: compared

with Left (p<0.02) at L3. m: compared with Pos (p<0.0001) and Left (p<0.0004) at L4. n: compared with Pos (p<0.0001) and Left (p<0.001) at L4. o: compared with

Right (p<0.0004) at L4. p: compared with Left (p = 0.0644) at L4. q: compared with Ant (p<0.009), Pos (p<0.002), Right(p<0.0001) and Left (p<0.0001) at L5. r:

compared with Pos (p<0.05), Right(p<0.0001) and Left (p<0.0001) at L5. s: compared with Left (p<0.006) at L5. t: compared with Left (p<0.04) at L5.

https://doi.org/10.1371/journal.pone.0259001.g007
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ring [6]. Since attenuation distribution in joints and the endplate has been thought to represent

loading history, the higher HU values in the left side of the lumbar endplate may indicate that

higher load is applied to the left side of the endplate with the same epiphyseal ring area. Since

the present study used cadaveric lumbar spines; therefore, future in vivo studies will be needed

to investigate relationships between 3D lumbar curvature and asymmetrical HU distribution

to prove this hypothesis.

In the comparison of the attenuation between the superior and inferior endplates within

the same vertebral body, the HU values of inferior endplates were always significantly higher

than those of superior endplates. When the endplate attenuation was compared within the

same intervertebral disc, the HU values in the endplate cranial to the disc were higher than

those in the endplate caudal to the disc except in the L5/S1 disc level. These results agree with

the previous studies on other structural properties of the lumbar endplate such as thickness

and strength of the endplate (Table 3). These findings may explain higher incidence of com-

pression and burst fractures and interbody subsidence in the superior endplate (endplate cau-

dal to the disc) as compared with the inferior endplate (endplate cranial to the disc) [12, 43].

In the present study, while the HU values of the superior endplate did not show statistically

significant differences from L1 to L5, a significant increase was found from L5 to S1. Gradual

increase in loading is expected with each successive lower spinal level; in fact, several studies

showed vertebral compression strength gradually increases from C3 to L5 [44, 45]. Similarly,

Table 3. Studies on lumbar endplate thickness, strength and bone mineral density (BMD).

Authors Spinal level Method Level effect Peri vs. Cent Ant vs. Post Sup vs. Inf a Cranial to disc vs. caudal to disc b

Thickness
Roberts [20] L1-S1 Radiograph NA Peri > Cent NA NA Cranial > Caudal

Zhao [21] T8-L5 Micro-radiograph Lower > Upper c Peri > Cent NA Inf > Sup NA

Edwards [1] T1, T5, L1, L5 Macroscopic Lower > Upper Peri > Cent NA NA NA

Hulme [22] T9-L5 Micro-CT NA Peri > Cent Post > Ant NA Cranial > Caudal d

Wang [26] L1-L5 Micro-CT Lower > Upper c NA NA NA Cranial > Caudal

Strength
Grant [23] L3-S1 Indentation S1 > Lumbar sup PL > Cent Post > Ant Inf > Sup NA

Lowe [9] T1-L5 Indentation NA PL> Cent NA NA NA

Oxland [24] L3-L5 Indentation NA PL> Cent Post > Ant NA NA

Noshchenko [25] L1-L5 Indentation Lower > Upper NA Post > Ant Inf > Sup NA

BMD
Lu [30] L1-S1 QCT e S1 > L3,4,5 > L1,2 NA NA NA NA

Zhao [21] T8-L5 Micro-radiograph f NA Peri > Cent NA NA NA

Noshchenko [25] L1-L5 Micro-CT, CT g NA NA NA NA NA

Wang [26] L1-L5 Micro-CT NA NA NA NA Cranial > Caudal

NOTES Peri: peripheral zones, Cent: central zone, Ant: anterior zone, Post: posterior zone, Sup: superior endplate, Inf: inferior endplate, NA: data not available, Cranial:
endplate cranial to disc, Caudal: endplate caudal to disc, Lower: lower lumbar levels, Upper: upper lumbar levels, PL: posterolateral zones.
a within the same vertebra.
b within the same vertebral disc.
c only inferior endplate.
d except the anterior ring apophysis.
e BMD in transverse layers adjacent to the endplate.
f optical density, surrogate for BMD.
g HU was translated into density units (mg/mm3).

https://doi.org/10.1371/journal.pone.0259001.t003
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endplate surface area has also been reported to increase with more caudal spinal levels [39, 41].

Since attenuation reflects bone mineral density (i.e., bone mineral content per unit volume),

an increase in endplate area provides an increase in total mineral content per endplate, which

may constitute functional adaptation to the increased load in the lower lumbar levels. In com-

parable results to our study, Weaver and Chalmers showed approximately the same BMD

determined by ash weight in L3, L4 and L5 vertebral trabecular bones [46]. They speculated

that vertebral strength variations with the spinal level were attributable to vertebral size, rather

than BMD changes. These two theses may be further supported by significant increases in

BMD and decreases in endplate area at the sacrum endplate [39], in which the increased BMD

may compensate for the reduced endplate surface area in S1. Further experimental studies

comparing stress (load per unit area) and BMD distribution in the endplate will be required to

prove this theory.

The main limitation of the present study was the use of a small number of rather old age

(average age: 62.7) and mostly female cadaveric spines. Some degrees of spinal degeneration

present in our spines and as such our dataset may not represent healthy lumbar spine BMD.

Other inherent limitations stemming from the use of cadaveric specimens, are the absence of

data on low back pain symptoms and spinal alignment.

The zone system in the present study set a border line between the central and peripheral

regions at 50% of the radius (25% of outer dimensions). The width of the epiphyseal ring was

reported as less than 20% of the outer dimensions of the endplate [6]; therefore, the peripheral

zone in our zone system should include the epiphyseal ring. However, if the peripheral region

was set more peripherally, the HU values in the peripheral regions would be higher than the

results presented here. Since our zoning system uses the spherical coordinate system, any

radius and angular parameters can be selected for determination of the zones. Furthermore,

the border of the epiphyseal ring could be determined by referring the HU distribution if an

appropriate threshold value is identified. Future studies will investigate relationships between

HU distribution and surface 3D geometry of the endplate to identify the epiphyseal ring area

in the HU distribution map.

The present study used the 3D endplate model segmented from the 3D CT vertebral models

as a template of the endplate surface to obtain endplate surface HU values. Considering clinical

application of our technique to obtain the HU values at the footprint of the interbody device,

the endplate model can be replaced by a 3D model of the device as shown by Chahla et al. [36]

who used 3D device models to obtain HU values on the surface and adjacent area of the device

for postoperative evaluation of device fixation. Current progress on preoperative planning and

simulation techniques would allow virtual placement of the device directly into the CT 3D

space without the 3D vertebra surface model. Given a 3D model of the interbody device is pro-

vided by a manufacturer and position and orientation of the device are determined in the

DICOM dataset, HU distribution of the device surface and any location around the device sur-

face could be measured preoperatively and postoperatively using a conventional clinical CT

machine by using the technique described in the present study.

Conclusions

Three-dimensional distribution of CT attenuation expressed in Hounsfield Units (HU) across

the lumbar endplate measured by clinical CT revealed the most significant regional difference

between the peripheral and central regions of the endplate with 32.5% higher HU values in the

peripheral region, demonstrating the importance of the peripheral region in mechanical sup-

port for the interbody device.
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