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Abstract

Changes in protein and gene expression levels are often used as features in predictive

modeling such as survival prediction. A common strategy to aggregate information con-

tained in individual proteins is to integrate the expression levels with the biological networks.

In this work, we propose a novel patient representation where we integrate proteins’ expres-

sion levels with the protein-protein interaction (PPI) networks: Patient representation with

PRER (Pairwise Relative Expressions with Random walks). PRER captures the dysregula-

tion patterns of proteins based on the neighborhood of a protein in the PPI network. Specifi-

cally, PRER computes a feature vector for a patient by comparing the source protein’s

expression level with other proteins’ levels that are within its neighborhood. The neighbor-

hood of the source protein is derived by biased random-walk strategy on the network. We

test PRER’s performance in survival prediction task in 10 different cancers using random

forest survival models. PRER yields a statistically significant predictive performance in 9 out

of 10 cancers when compared to the same model trained with features based on individual

protein expressions. Furthermore, we identified the pairs of proteins that their interactions

are predictive of patient survival but their individual expression levels are not. The set of

identified relations provides a valuable collection of protein biomarkers with high prognostic

value. PRER can be used for other complex diseases and prediction tasks that use molecu-

lar expression profiles as input. PRER is freely available at: https://github.com/hikuru/

PRER.

Author summary

Cancer remains to be one of the most prevalent and challenging diseases to treat. Cancer

is a complex disease with several disrupted molecular mechanisms at play. The protein

expression level is a fundamental indicator of how the molecular mechanisms are altered

in each tumor. Predicting patient survival based on the changes is essential for under-

standing the cancer mechanisms and arriving at patient-specific treatment plans. For this
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task, existing machine learning models are used, such as random survival forest, which

requires a feature-based representation of each patient based on her tumors. Most of these

models use the individual molecular quantities of the tumors. However, cancer is a com-

plex disease in which molecular mechanisms are dysregulated in various ways. In this

work, we present a new patient representation scheme in which we integrate each tumor’s

protein expression levels with their neighboring proteins’ expression levels in a protein-

protein interaction network to capture patient-specific dysregulation patterns. Our results

suggest that proteins’ relative expressions are more predictive than their individual

expressions. We also analyze which of the protein interactions are more predictive of

patient survival. The identified set of important protein interactions can be potentially

used for cancer prognosis.

This is a PLOS Computational BiologyMethods paper.

Introduction

With the advances in sequencing technologies, large-scale molecular profiling of patients has

become possible. The comprehensive profiling of cancer patients, along with their clinical

data, presents an opportunity to gain deeper insights into cancer and develop prediction tools

for disease outcome. Machine learning has been an instrumental tool in various studies to real-

ize this aim. In these studies, patients are often represented with their molecular profiles, such

as protein or gene expressions. For example, Yuan et al. [1] assess the utility of different types

of molecular data for survival prediction where miRNA, protein, or mRNA expressions were

considered.. Similar approaches are followed by others for different clinical outcomes [2–4].

Genes and proteins interact to carry out their functional roles in the cell. Phenotypes arise

from these functional interactions. Based on this basic principle, alternative approaches where

the patient molecular data are integrated with cataloged molecular interactions, based on prior

research, have been proposed (reviewed in [5] and [6]). Incorporating prior knowledge as the

network of interactions helps to aggregate the information contained in each protein or gene

in a biologically principled way. Integration of the expression levels of genes/proteins and their

interactions are used in multiple studies [7–11]. Chuang et al. [8] are among the first to use

this approach. They identify discriminant and highly altered subnetworks of interactions using

gene expressions and use these subnetworks for metastasis prediction. By assessing the associa-

tion of pathways and transcription factors with overall survival, Crijns et al. [10] identify sig-

naling pathways and transcription factors that contribute to the outcome of ovarian cancer.

Taylor et al. [9] integrate a PPI network with a co-expression network and report that the

genes with dysregulated neighbors in the network are potential prognostic markers. NetBank

[12] uses gene expressions and prior knowledge network to rank genes according to their rele-

vance to the outcome of pancreatic cancer. In an alternative approach, Wang and Liu [13] use

the topological importance of the proteins in the network to reweight them in random survival

forest sampling. Some methods have used this idea for other types of omic profiles [6]. For

example, Hofree et al. [7] integrates mutation data with PPI network for patient stratification

through network propagation that diffuses gene-level mutations over the PPI network. These

studies integrate molecular data with the network by summation or diffusion of the signal;

however, do not consider relative expressions of proteins or genes with respect to each other.
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Few studies use the pairwise comparisons of molecular measurements instead of the aggre-

gation of expression levels. Geman et al. [14] proposes pairwise ranks of mRNA expression lev-

els for tumor identification and prediction of treatment response. Magen et al. [15] use

pairwise combinations of expression levels to predict survival and report related gene pairs.

These methods, however, do not make use of the prior knowledge available in the biological

networks.

In this work, we explore a method that combines the two aspects discussed above; network

integration and pairwise comparison of expression levels. Pairwise Rank Expressions with

Random walks (PRER) is a novel molecular representation method that considers the relative

expression of a protein within its neighborhood on the PPI network. A given protein’s neigh-

borhood is defined based on the biased random walk search on the PPI network. Pairwise rela-

tions within the known neighborhood of molecules offer a direct interpretation of molecular

dysregulation patterns in the context of known protein interactions. Additionally, we present a

method to analyze pairs that are predictive because of their pairwise comparisons.

We compute PRER representation using protein expression data obtained from patient

tumors and used it for survival prediction in ten cancers cataloged in the Cancer Genome

Atlas (TCGA) project [16]. When compared to the standard model that individual protein

expressions are used, PRER yields a statistically significant improvement in 9 of the 10 cancer

types. PRER is also shown to perform better against two network-based competitive methods.

Additionally, PRER unveils predictive proteins and their interactions concerning the known

PPIs. We also investigate proteins that are deemed significant solely based on their

interactions.

Methods

PRER feature representation

PRER constructs a vector-based patient representation by integrating the patients’ molecular

expression profiles and the PPI network. In this work, we use protein expression data to calcu-

late PRER.

Let G = (V, E) be a given PPI network, where V is the set of vertices representing the pro-

teins, and E is the set of edges that exist between proteins if they are known to interact. Let U
� V be the proteins that are measured in the data set. The nodes with the protein expression

data, U, represent the source proteins. Given G, U, and patient expression data over U, the out-

put of PRER for a patient k is a feature vector, x(k) 2 Rs, that contains the pairwise comparisons

encoded as 1 and -1’s. Here, s denotes the size of the pairwise comparisons, which will be clari-

fied in the following sections. Below we detail the steps of PRER.

Step 1. Obtaining a protein’s neighborhood on the protein interaction network. For

each source protein in U, we first define a neighborhood, Nu, which is the set of proteins proxi-

mal to the source protein u on G. To obtain the neighborhood of a node in the graph, a set of

random walks is generated. For every source node u 2 U, we sample neighbors of the source

node with a strategy similar to the one in the node2vec [17] algorithm. A random walk with a

fixed length of l starting at source node u is generated based on the following distribution:

Pðci ¼ x j ci� 1 ¼ vÞ ¼
pvx
Z

if ðv; xÞ � E

0 otherwise

(

ð1Þ

Here, ci denotes the i-th node in the walk and c0 = u. Z is the normalization constant. P(ci
= xjci−1 = v) is the transition probability on edge (v, x), where the current node is v, the next
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node to visit is x. The transition probability depends on the function π, and it is defined as:

pvx ¼ apqðt; xÞ � wvx; ð2Þ

where wvx is the edge weight between nodes v and x; t is the previous node visited. In this

work, we use an unweighted PPI network and, thus, we set wvx = 1. αpq(t, x) is the random

walk bias which is defined by Eq 3 based on the parameters p and q and the shortest path dis-

tance between nodes t and x, dtx:

apqðt; xÞ ¼

1

p
if dtx ¼ 0

1 if dtx ¼ 1

1

q
if dtx ¼ 2

8
>>>>><

>>>>>:

ð3Þ

This bias controls the different search strategies to sample the next visited nodes. We use

two different search methods: depth-first sampling (DFS) and breadth-first sampling (BFS), as

in [17]. BFS samples the nodes from the nearby nodes, whereas DFS samples the nodes

sequentially by gradually increasing the distance from a source node. Parameters p and q
adjust random-walk strategy between BFS and DFS. With a high q value, sampled nodes in the

random walk are aligned with BFS and get a local view over the source node. A small q value

aligns random walk with DFS to explore a global view of the network. p controls the chance of

revisiting the nodes. A high value of p decreases the probability of revisiting the already visited

nodes, whereas a small value of p steers the random walk towards the source node.

This biased random walk strategy has two additional parameters: (i) walk length l and (ii)

the number of random walks r. We select these parameters based on the parameter sensitivity

analysis at node2vec [17]. The parameters p and q are used as p = 0.25, q = 0.25 in our random

walk generation. p = 1, q = 1 leads uniform random walks are generated without any bias as

stated in [17]. A small q value is used to bias the random walks to capture the network’s global

view, while a small p value is used to capture the community around the source node u. With

these given values, random walks are inclined to capture the communities inside the network.

By using fixed-length (l = 100) random walks, we sample a neighborhood for a given source

node, u. Multiple random walks per source node are generated so that different neighborhoods

are sampled for each node. We sampled random walks 18 times, and these are stored inWB

(see Fig 1). The frequency of nodes in the multiple neighborhoods is calculated, and the nodes

that are involved in more than one random walk are selected as the neighborhood genes.

Later, we analyzed how the choice of these parameter assignments affects the results.

Step 2. Feature representation based on pairwise rank of neighborhood genes. At the

end of step one, we arrive at the neighborhood of the protein i, which we denote as Ni. Some

neighbors lack measurements, and we define the subset of neighbor proteins with accompa-

nying measurements asMi 2 Ni \ U. Next, for a protein i, we generate pairwise rank features

with every protein i 2Mi as follows.

Let xðkÞi and xðkÞj denote the expression quantities for protein i and j for patient k. Protein i is

the source protein, and protein j is a protein in the neighborhood of i. The pairwise rank

expression representations (PRER) for this patient is defined as:

xðkÞi;j ¼

(
1 if xðkÞi > xðkÞj
� 1 otherwise

ð4Þ
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xðkÞi;j ¼ 1 indicates that the molecule i is more upregulated with respect to molecule j for this

patient, whereas xðkÞi;j ¼ � 1 indicates otherwise. For every i in U and every j inMi, we define a

pairwise rank order for the protein pair. If the protein i’s phosphorylated state or states are

measured, their comparison with i is also included. Since the current PPIs do not account for

the phosphorylated state (e.g., STATPY705) when we create features for the phosphorylated

state of the protein, we use the neighbors of the unphosphorylated (e.g., STAT3) node in the

PPI network.

This representation constitutes a nonlinear interaction feature mapping among original

features that capture expression dysregulations among interacting proteins. This representa-

tion is a nonparametric rank statistics. The rank-based statistics are widely used to obtain a

robust statistical analysis. For example, Kendall tau is a robust correlation measure based on

pairwise orderings [18]. Since the proposed representation is based on comparisons, it does

not require scaling or normalization and will work expression measurements obtained with

different experimental technologies.

Survival prediction

Problem description and the survival model. We apply the PRER representation to the

survival prediction problem. For each cancer type, the data is of the form,

D ¼ fxðiÞ; SðiÞ; dðiÞg
n

i¼1
; n is the number of patients. For each patient, x is the derived feature vec-

tor from protein expression data, S is the overall survival time, and δ denotes censoring. We

Fig 1. Illustration to show how the PRER representation is obtained for a single source node, node B. The nodes in the graph are proteins, edges

exist if they interact in the PPI network. First, several random walks are generated that starts at node B as in [17]. These random walks are stored inWB
and used to define the neighborhood of B,NB. Only the most frequently visited nodes are included in the set of neighbors of B. Then, the pairwise

comparison of the neighborhood proteins in terms of their protein expression quantities is used to form a representation of the patient for node B and

its neighborhood. The figure shows the features generated for a single protein. This procedure is repeated for all source proteins, and the resulting

vectors are concatenated.

https://doi.org/10.1371/journal.pcbi.1008998.g001
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use random survival forests for the problem. Random Survival Forest(RSF) [19] is a non-

parametric method and is one of the state-of-the-art techniques in survival prediction. It is an

ensemble method wherein the base learner is a tree, and each tree is grown on a randomly

drawn bootstrap sample. Furthermore, in growing a tree, a randomly selected subset of fea-

tures is chosen as the candidate features for splitting at each node of the tree. The node is split

with the feature among the candidate features that maximize survival difference between child

nodes. We used the default values for the rfsrc package [19], where the number of trees is

1000, the number of random splits to consider for each candidate splitting variable is set to 10,

and the default splitting rule is log-rank statistics [20, 21].

Molecular and clinical data. We test PRER on ten different cancer types in TCGA: ovar-

ian adenocarcinoma (OV), breast invasive carcinoma (BRCA), glioblastoma multiforme

(GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma

(KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), bladder

urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), uterine corpus endometrial

carcinoma (UCEC). The number of patients for each cancer type ranges from 112 to 841, in

total, it is 3253. Details for each cancer are provided in S1 Table. For each cancer type, the

number of patients is given at Table A in S1 Text. We obtained TCGA protein expression data

and patient survival data from UCSC Cancer Browser (https://genome-cancer.ucsc.edu)

(April 11, 2017). The protein expressions are quantified by reverse-phase protein array

(RPPA) with a panel of 131 proteins some of which are phosphorylated. For example, RPPA

data include STAT3 and STAT3PY705, where STAT3 is Signal Transducer And Activator Of

Transcription 3 protein, and STAT3PY705 is the phosphorylation of STAT3 at tyrosine 705

residue. We are able to map all proteins to the PPI network. The obtained RPPA data was

already normalized with the replicate-based normalization method [22]. Since PPIs do not

represent phosphorylated forms separately, we use the unphosphorylated node when obtaining

the neighborhood for the phosphorylated protein.

Protein-protein interaction network. We obtained the protein-protein interaction (PPI)

network from the InBioMap platform (April 11, 2017). InBioMap specifies a confidence score

for each edge, representing the support of the interaction in the literature. Interactions that

their confidence scores are lower than 0.1 are filtered out, leading a final network that consists

of 17,653 proteins and 625,641 interactions.

Results and discussion

To assess if PRER representation captures the molecular expression profiles better than the

individual protein expression values, we use these representations for survival prediction. We

first build two sets of survival prediction models for the 10 cancer types. In building these two

sets of models, only the feature representations differ. In the first one, we use the protein

expression values as input, which is the typical approach taken in survival prediction. In con-

trast, in the second one, we use the proposed PRER representation.

Next, we compare our model with two network-based competitor methods from the litera-

ture. The first model is by Hofree et al. [7], which uses network propagation to diffuse infor-

mation on each node over a network. In this paper, Hofree et al. [7] use mutation data for

patient stratification. Here, we used the protein expression data, use the same network propa-

gation approach to diffuse the expression values over the network. We input the feature vector

that contains the diffused feature values after propagation into the model to predict survival.

We implemented this algorithm in R and set network propagation parameter α to 0.5 and run

the RSF model with default parameters. As the second method, we compare PRER with

Reweighted RSF (RRSF) method, proposed by Wang and Liu [13]. RRSF weights the features

PLOS COMPUTATIONAL BIOLOGY PRER—A patient representation with pairwise relative expressions
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in random sampling step of RSF model with their topological importance in the PPI network.

For RRSF, we use the authors’ implementation.

For all the models trained, we randomly split the samples into 80% of samples as the train-

ing set and 20% as the test set. We repeat this process 100 times leading to 100 different train-

test splits and 100 different models. In training each model, we perform a univariate feature

selection based on the hazard ratio of the Cox model [23] except for the RRSF model. Features

with p-value�0.05 are retained for model training. With given random walk parameters in

Section 2, and the InBioMap PPI, using 131 proteins in RPPA, PRER produces 1909 dimen-

sional feature vectors for each patient. After applying univariate prefiltering with Cox model

[23] to these 1909 dimensional features, we obtained the set of features that go into training,

see Table B in S1 Text. Finally, the models’ predictive performances are measured with the

Concordance Index (C-index) [24] on the test data. The pipeline of the model training and

evaluation is summarized in Fig 2.

Survival prediction performance of PRER

We first compare PRER with the reference models trained with individual features. Fig 3 com-

pares the distribution of C-indices for 100 models trained with the two different feature repre-

sentations for 10 different cancer types. In 9 of 10 cancer types, PRER representation yields

statistically significant improvements (Wilcoxon signed-rank test, BH adjusted p-value

<0.05). The C-index quantiles of 100 bootstrap results and corresponding p-values are listed

in Table C in S1 Text. The best improvements are found in UCEC, BRCA, KIRC and OV.

Next, we compare PRER with two other competitive, network propagation by Hofree et al.

[7] and RRSF by Wang and Liu [13]. Fig A in S1 Text and Table C in S1 Text detail the result

of performance comparisons between the models. To summarize the performance of PRER

against the two competitor methods, we present a win/tie/loss table (Table 1). In this table, a

win count corresponds to the number of cancer types on which PRER achieves statistically sig-

nificant performance improvement over its competitor. In contrast, the loss count denotes the

number of cancer types on which the compared method achieves statistically significant

improvements. If none of the methods can achieve a significant improvement compared to the

other, we mark it as a tie. We observe that PRER outperforms both network-based methods in

5 of the cancers, ties with them in 4 cancer types and underperforms only in one cancer. The

cancer type where PRER underperforms is LUAD, which we do not observe any improvement

with PRER representation (Fig 3).

Effect of different parameter choices on PRER performance

Effect of choice of protein-protein interaction network. To understand the effect of PPI

network used, we repeat the experiments on 10 cancers using another network: a PPI network

by the IntAct database [25]. This time, we observe statistically significant improvements in 6

out of 10 cancer types. We provide C-index quantiles and Wilcoxon signed-rank test adjusted

p-values in Table E in S1 Text. The difference between the two sets of results could be due to

the edge density differences of the networks. The InBioMap network contains 17, 653 nodes

and 625, 641 edges whereas IntAct database contain 583, 756 edges and 29, 629 nodes.

Although the number of nodes is higher in the IntAct PPI, the edge density of InBioMap is

four times higher than that of IntAct’s (0.004 vs. 0.001). The edge density is calculated as the

number of edges divided by the possible number of edges. This illustrates that PRER perfor-

mance, as expected, is dependent on the PPI network used.

Effect of random walk parameters. In PRER, we define the neighborhood of a protein

using random walks. There are several input parameters for the random walk technique which
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Fig 2. The pipeline for survival prediction. The step that involves generating PRER is skipped when the experiment is

run with the alternative method of individual expression values.

https://doi.org/10.1371/journal.pcbi.1008998.g002

PLOS COMPUTATIONAL BIOLOGY PRER—A patient representation with pairwise relative expressions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008998 May 26, 2021 8 / 20

https://doi.org/10.1371/journal.pcbi.1008998.g002
https://doi.org/10.1371/journal.pcbi.1008998


we use: the number of walks, walk length, p and q. To see their influence on the output of

PRER, we conduct runs with various choices of these parameters. Figs C-L in S1 Text contains

these parameter sensitivity results. For each cancer, the effect of a parameter is different. For

example, as the number of walks or the length of the walk increases, the prediction perfor-

mance slightly increases for BRCA and the GBM. However, we observe the opposite effect for

BLCA and UCEC. For the other cancers, there is no such appreciable effect. In conclusion, the

change in p and q does not drastically change the performance. These hyperparameters can be

Fig 3. Comparison of RSF model performances that are trained with individual proteins and pairwise ranking representations for different

cancer types. The distribution is over 100 models trained that have different random train and test splits. The performances of the models that use the

individual expression values as features (Individual) and PRER representation as features (PRER) are compared in each case.

https://doi.org/10.1371/journal.pcbi.1008998.g003

Table 1. Win/Tie/Loss counts of PRER against competing methods. PRER is compared against each model over 100

trained models, where each model is trained on a different train/test split. The comparisons are based on one-sided

Wilcoxon signed rank test with BH multiple hypothesis test correction at the significance level of 0.05. The Hofree

et al. method is the network propagation algorithm [7]. RRSF stands for reweighted random survival algorithm by

Wang and Liu [13].

vs. Individual vs. Hofree et al. vs. RRSF

PRER 9 / 0 / 1 5 / 4 / 1 5 / 4 / 1

https://doi.org/10.1371/journal.pcbi.1008998.t001
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tuned for each cancer separately for larger patient cohorts. We provide an analysis of each

parameter for different cancers in Figs C-L in S1 Text.

Effect of the amount of difference between the protein expression levels. PRER repre-

sentation assigns a binary value to a specific protein pair, either 1 or −1 based on pairwise com-

parison of the protein expression levels. We experiment with an alternative representation, for

which we assign the feature value 0 if the difference between the expression values is less than

10% of the compared neighbor. Otherwise, we assign 1 and -1 based on the comparison. We

call this representation as ternary PRER. We compare this ternary feature representation

model against the binary feature representation model. We observe no improvements in eight

cancer types, but we observe improvement in GBM (p-value = 0.01) and UCEC (p-

value = 0.02). The detailed results are presented in Table D in S1 Text and Fig B in S1 Text.

What to consider as a meaningful expression difference between pairs of protein probably

depends on both the tissue and the protein pairs question. When measurements from matched

normal tissue samples are available, the difference threshold could be decided per protein pair

and per cancer type. Since we did not have it here, we choose the method with the least

assumption and rely on the RSF model to pick up the meaningful features. In future work with

richer datasets, this step could be improved.

Predictive PRER features

We seek to determine the features ranked as significant in the RSF models trained with PRER

features. Note that in these models, pairs of proteins constitute the features. A particular fea-

ture’s importance is quantified by the performance difference between the models trained with

the original feature vector and the case where the feature vector values are permuted [26]. A

significant difference indicates a feature whose absence degrades the model performance. As

there are 100 models trained on the repeatedly split data, we calculate the overall feature

importance scores over these models as the sum of the scores. We show the normalized feature

importance scores for ovarian cancer (OV) in Fig 4. The feature importance scores for other

cancer types are available in Figs M-U in S1 Text.

As shown in Fig 4, some proteins repeatedly show up as partners in the list of important

genes. To analyze these relationships, we form a network where the nodes represent proteins

that participate in the top 50 PRER features. Edges are formed when a given protein pair is

found to be partners in a PRER feature. Fig 5 demonstrates that some proteins emerge as

important in many pairs. Several studies support these genes’ association with ovarian cancer.

Epidermal growth factor receptor protein (EGFR) and its phosphorylated state EGFRPY1173

are among the top PRER features. EGFR is a receptor protein that receives and transmits sig-

nals from the environment to the cell and is the target of drugs in therapies for many cancer

types, including ovarian cancer [27, 28]. Marozkina et al. [29] provide results that changes in

expression of EGFR may lead to ovarian carcinoma. Others [30–32] also claim that up-regula-

tion of EGFR expression promotes ovarian cancer. Interestingly, Li et al. [33] and Ilekis et al.

[31] demonstrate that the levels of EGFR and androgen receptor (AR), which constitute the

top feature of PRER in Fig 4, are interacted in ovarian cancer.

Another important protein that participates in important features is Caveolin-1 (CAV1).

CAV1 takes on critical roles in cell survival, cell proliferation, cell migration and programmed

cell death [34]. An earlier study by Wiechen et al. [35] report that CAV1 is dysregulated

among ovarian cancer patients based on microarray expression data. Others also report that

CAV1 is dysregulated in different cancer types and its role in chemotherapy resistance [36,

37].
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Fig 4. The variable importance of significant pairwise ranking representations for ovarian cancer.

https://doi.org/10.1371/journal.pcbi.1008998.g004
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Fig 5. PRER Network for ovarian adenocarcinoma. Nodes represent proteins that appear in the top 50 pairwise ranking

representations for ovarian cancer; each edge indicates that two proteins participate in a pairwise rank order feature together. For

cases where the expression value pertains to the protein’s phosphorylated state, the ids include the phosphosite’s residue position and

the amino acid type.

https://doi.org/10.1371/journal.pcbi.1008998.g005
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We list the top-ranked PRER pairs for each cancer in Table 2. We provide the Kaplan-

Meier (KM) plots of the top feature for KIRC and BLCA based on overall survival in Fig 6.

Based on only one feature, the patients can be grouped into groups that differ significantly in

their survival distributions. We provide the KM plots of top-ranked features for the other can-

cers in Fig AE in S1 Text. The confounding factors such as the age and sex of the patient may

influence protein expressions. Therefore, we adjust survival curves for the confounding effects.

We also apply log-rank tests to adjusted curves and see that age and sex adjustment gives the

same p-values of top PRERs.

We should note that many of the proteins reported in the RPPA assay in the TCGA study

are selected due to their relevance to cancer. Thus, these important genes are likely to exhibit

Table 2. The top PRER feature in each cancer type. The relative expression level of this feature is found to be impor-

tant in the RSF model. The gene symbols of the corresponding gene are listed. The letter P after the gene symbol indi-

cates that this is the phosphorylated version of the protein. The type of phosphosite and its residue number is provided.

Cancer Top Rank PRER Protein Pair

BLCA NCADHERIN-SRCPY416

BRCA DVL3-P38MAPK

COAD MRE11-HER3PY1298

GBM NF2-EGFR

HNSC ECADHERIN-PAXILLIN

KIRC 4EBP1T37T46-AR

LUAD XRCC1-CYCLINB1

LUSC PAXILLIN-YAP

OV EGFR-AR

UCEC EIF4E-AKT

https://doi.org/10.1371/journal.pcbi.1008998.t002

Fig 6. Age and sex adjusted Kaplan-Meier plots for a) KIRC and b) BLCA based on overall survival. Number at risk denotes the number of patients

at risk at a given time, and p-value is calculated with the log-rank test.

https://doi.org/10.1371/journal.pcbi.1008998.g006
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the individual importance of PRER partners. Therefore, we suggest an alternative way to exclu-

sively analyze those features which emerge as important in the next section.

Proteins that emerge as important only in the PRER representation

Since many of the proteins that are in the protein expression data are cancer-related, it is not

surprising that they are found to be relevant to cancer. However, proteins that emerge as

important in the PRER representation but are not highly ranked in the models trained with

individual protein expression values would be interesting. These sets of proteins will reveal

proteins whose relative expression states to their neighbors are important as opposed to the

expression level being up or down-regulated. To identify these proteins, we first assign a fea-

ture importance score to each protein in the PRER representation. As the features are pairs of

proteins in the PRER, we calculate the feature importance of a protein by averaging the impor-

tance of all corresponding PRER feature importance in which this protein contributes. Let fi,j
denotes the features’ importance score of the protein pair i and j. We calculate the individual

feature importance score for molecule i as follows:

si ¼
1

k Ni k

X

j�Ni

fi;j ð5Þ

where Ni is the set of all pairwise ranking representations that include molecule i. si represents

the average importance of molecule i concerning the expression levels of other proteins in its

neighborhood. We get the each protein’s rank order based on si, and a lower rank indicates

that the protein is important. Let rp be the protein’s rank in the models with PRER representa-

tion and let rq be the rank order in the models trained with individual protein expressions. To

find the proteins whose ranks are low in the models trained with protein expression but are

highly ranked in the PRER models, we measure the differences of feature ranks, rq − rp. Table 3

lists the top 10 proteins in each cancer based on this rq − rp difference. We provide the full list

of the ranks and differences in S1 Table. A large positive difference points to those proteins for

which the relative expression relations of this protein to other proteins in its neighborhood

carry prognostic value as opposed to its expression value.

We analyze a subset of the proteins in Table 3. The relevance of the relative expressions of

proteins for survival is not reported. Some proteins known to be cancer drivers and perturbed

in cancers such as PTEN or EGFR do not rank high in the model wherein the protein expres-

sion data is used as input, but in PRER models, they emerge as important. For example, EGFR

is ranked as the 16th most important feature for ovarian cancer in the models trained with

PRER, while it is ranked as the least significant one in the models trained with individual

expressions only. Similarly, for GBM, EGFR is ranked as the least significant protein in individ-

ual expression models, while it is ranked as the 13th most significant feature in PRER. Thus, the

PRER models actually highlight that the dysregulation of EGFR expression with respect to its

neighbors is an important feature. Below we mention other interesting observations in Table 3.

STAT3PY705 (STAT3 phosphorylation at tyrosine 705), phosphorylated state of STAT3

(Signal Transducer and Activator of Transcription 3) protein, and STAT5ALPHA (Signal

Transducer And Activator Of Transcription 5A) also appear in multiple cancer types. While we

observe STAT3PY705 as significant in LUAD, STAT5ALPHA appears in BRCA and COAD in

Table 3. Activation in the STAT family is reported, especially for STAT3 and STAT5, in several

cancer cell lines including head and neck, breast, kidney, ovarian and colorectal [38–41].

YAPPS127 and YAP proteins, which are encoded with the YAP1 (Yes-associated protein 1)

gene, are found important in BRCA, HNSC, LUAD, and LUSC cancer types in Table 3. YAP1

is involved in the Hippo signaling pathway that is associated with the growth, development
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and repair of the cells, and influences the survival of multiple cancers [42]. Poma et al. [43]

reports that 17 genes (out of 32) in the Hippo pathway have effects on survival in more than 20

different cancer types and conclude that YAP1 is relevant to the survival of head and neck car-

cinoma, hepatocellular, lung adenocarcinoma, gastric, pancreatic and colorectal cancers. Fur-

ther, other studies also suggest that survival for different cancer types is associated with the

expression level of YAP1 and its differential expression is considered as a biomarker for blad-

der urothelial carcinoma (BLCA) [44], breast invasive carcinoma (BRCA) [45–48], ovarian

serous cystadenocarcinoma (OV) [49, 50].

The upregulation of STATHMIN is linked with poor survival for primary HNSC [51], and

Kouzu et al. [52] suggest that it may be used for the prognosis and a therapeutic target for oral

squamous-cell carcinoma, which is the most common type of HNSC. Likewise, the upregula-

tion of STATHMIN is significantly correlated with several cancer types such as LUAD [53],

gastric cancer [54, 55], UCEC [56], OV [57] and BRCA [58–60].

YB1 and its phosphorylated state YB1PS102 show correlation with many genes that have

functions such as resistance to drugs, transcription and translation of cancerous cells [61].

Although the down-regulation of YB1 is found to be correlated with the reduction in progres-

sion, development of cell and programmed cell death at various cancer cells such as breast,

colon, lung, prostate and pediatric glioblastoma by some studies [62, 63], there are studies

[64–68] showing the association between overexpression of YB1 and different cancer types

such as breast, colorectal, glioblastoma, lung, liver, ovarian cancers.

Conclusion and future work

Predicting patient survival using omics profiles still remains to be a challenge for cancer. If

achieved, it can guide the decision-making process for choosing optimal treatment and

Table 3. Top-10 rank differentiated features in each cancer with PRER.

BLCA BRCA COAD GBM HNSC

YB1 YB1PS102 RAD50 EGFR YAP

SRCPY416 STAT5ALPHA MTORPS2448 PI3KP110ALPHA STATHMIN

JNKPT183Y185 CKIT MRE11 PDK1PS241 SMAD4

YB1PS102 CHK2PT68 NF2 PTEN LKB1

RAD51 PTEN TUBERIN PRAS40PT246 NCADHERIN

NCADHERIN YB1 NCADHERIN MRE11 PKCDELTAPS664

STATHMIN CYCLINB1 MIG6 NFKBP65PS536 P27

XRCC1 EEF2 STAT5ALPHA P38PT180Y182 PDK1PS241

NF2 YAPPS127 HER3PY1298 SRCPY416 P38MAPK

TUBERIN P53 PI3KP110ALPHA NOTCH1 PKCALPHAPS657

KIRC LUAD LUSC OV UCEC

SMAD1 XRCC1 YAP EGFR ASNS

DJ1 YB1 P38PT180Y182 PRAS40PT246 PRAS40PT246

NF2 ASNS LKB1 YB1 STATHMIN

KU80 STAT3PY705 P70S6K PCADHERIN P27PT157

GSK3ALPHABETA PTEN RAD50 RAD51 RAD51

4EBP1PS65 YAPPS127 MTOR SMAD3 SMAD4

PR YAP XRCC1 HER3 MIG6

EEF2K RAD50 SMAD4 PKCALPHAPS657 P90RSKPT359S363

STATHMIN STATHMIN BIM CIAP PCADHERIN

CIAP EGFR ERALPHAPS118 CHK2PT68 YB1PS102

https://doi.org/10.1371/journal.pcbi.1008998.t003
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surveillance strategies among alternative options. Typically, clinical or pathological features

such as the patient’s age, tumor stage or grade are employed to predict the clinical outcomes.

With the advent of high-throughput technologies, molecular descriptions of the tumors for a

large number of patients across many cancer types have become available. However, it remains

a significant challenge to use this data due to the high level of genomic heterogeneity among

patients. This study proposes a novel patient representation method, PRER. PRER is based on

a pairwise comparison of a protein’s expression values with the other proteins in its neighbor-

hood on the PPI network. In this way, the relative expression level patterns with respect to the

proteins in their neighborhood can be captured.

We showcase PRER in survival prediction for ten different cancer types. PRER with Ran-

dom Survival Forest (RSF) model achieves significant improvements compared to the models

with individual expression values in 9 of the 10 cancers. The only cancer type that PRER

underperforms is LUAD. It is the only cancer type for which the number of patients available

is small and the ratio of the censored patient to deceased patient is high (See Table A in S1

Text), which might have resulted in the performance degradation of PRER.

We also suggest ways to delineate the importance of proteins not through their individual

up or down-regulation patterns but their relative expressions compared to their neighbors.

Such an analysis can provide fundamental mechanistic insights into the studied diseases. The

identified pairwise relations could also help design therapies to regulate the pairwise interac-

tion as opposed to regulating the expression level of one protein.

One limitation of the current study is that we use a generic protein-protein interaction net-

work, disregarding whether the protein is expressed in the tissue of a given cancer type. As tis-

sue specific reliable PPI networks become available, we can improve the survival models by

incorporating these. A second limitation is that in PRER, we compare the protein expression

levels and assign the feature value 1 or -1 based on this difference. We also experiment with a

ternary representation where we require this difference to be 10% of the expression level of

the protein neighbor compared. These are, of course, ad-hoc choices. What constitutes a large

enough difference depends on the tissue type and the protein pair in question. For certain

pairs, large differences could be tolerated due to regulatory feedback mechanisms among

genes or proteins performing similar functions, while for certain pairs of proteins, minuscule

differences can have a large impact on the cellular processes. The ideal scenario would be to

decide this threshold based on expression values of the same protein pair in matched normal

samples. Since we do not have data for matched normal tissue, here we choose the method

with the least number of assumptions and rely on the RSF model to pick up the predictive fea-

tures. In future work, with the increasing availability of richer datasets, this step can be

improved.

In this work, since we aim to assess the PRER representation power, we only use features

related to expression. The survival model can be further improved with other clinical features

such as age, duration of the follow-up, and cancer stage. PRER representation can be used with

other data types, such as mRNA expression and DNA methylation. However, we should note

that the number of features increases quadratically with the size of the original features as each

feature is compared with its neighboring proteins. In this case, a more stringent feature filter-

ing step, reducing the number of neighbors or a regularized prediction model will be helpful.

Supporting information

S1 Text. Supplementary file for PRER. All supporting tables and figures mentioned in the

manuscript.
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