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Abstract

Background: Reversible protein phosphorylation is relatively unexplored in the intracellular
protozoa of the Apicomplexa family that includes the genus Plasmodium, to which belong the
causative agents of malaria. Members of the PP family represent the most highly conserved protein
phosphatase sequences in phylogeny and play essential regulatory roles in various cellular pathways.
Previous evidence suggested a PP|-like activity in Plasmodium falciparum, not yet identified at the
molecular level.

Results: We have identified a PP| catalytic subunit from P. falciparum and named it PfPPI. The
predicted primary structure of the 304-amino acid long protein was highly similar to PP| sequences
of other species, and showed conservation of all the signature motifs. The purified recombinant
protein exhibited potent phosphatase activity in vitro. Its sensitivity to specific phosphatase
inhibitors was characteristic of the PPI class. The authenticity of the PfPP1 ¢cDNA was further
confirmed by mutational analysis of strategic amino acid residues important in catalysis. The protein
was expressed in all erythrocytic stages of the parasite. Abrogation of PP| expression by synthetic
short interfering RNA (siRNA) led to inhibition of parasite DNA synthesis.

Conclusions: The high sequence similarity of PfPPl with other PPl members suggests
conservation of function. Phenotypic gene knockdown studies using siRNA confirmed its essential
role in the parasite. Detailed studies of PfPP| and its regulation may unravel the role of reversible
protein phosphorylation in the signalling pathways of the parasite, including glucose metabolism and
parasitic cell division. The use of siRNA could be an important tool in the functional analysis of
Apicomplexan genes.
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Background

Reversible protein phosphorylation is gaining recognition
as a potentially important mechanism of post-translation-
al regulation in protozoan parasites, especially those be-
longing to  the  Apicomplexan  family.  The
dephosphorylation of phosphoproteins is universally cat-
alyzed by protein phosphatases that are classified into two
major functional groups, protein tyrosine phosphatase
(PTP) and protein serine/threonine phosphatase (PP) al-
though enzymes with various degrees of dual-specificity
are also encountered [1-5]. The majority of Ser/Thr phos-
phatases belong to three classical groups, namely PP1,
PP2A, and PP2B (calcineurin), and possess similar prima-
1y structures in their catalytic cores [2,3,6]. PP1, in partic-
ular, exhibits an extremely high degree of sequence
conservation through evolution, and its orthologs and
isoforms are found in all eukaryotic cells [6,7]. In various
organisms, PP1 regulates such diverse cellular processes as
cell cycle progression, protein synthesis, carbohydrate me-
tabolism, transcription, and neuronal signaling [3,7], un-
derscoring its profound importance in biology. The PP1
and PP2A phosphatases are differentially affected by nat-
ural toxins such as okadaic acid (OA) and microcystin-LR.
For example, the characteristic ICs5, values for OA fall in
the range: PP2A, 1-5 nM, PP1, 20-80 nM, whereas PP2B
is highly resistant to both [2,3,7]. In contrast, tautomycin
affects PP1 and PP2A nearly equally, but fails to inhibit
other phosphatases [8].

In the past few years, a number of phosphatase activities
and putative sequences have been reported in P. falci-
parum[9]. These include a PP2A [10], a PP2B-like activity
[10], a unique chimeric PP2C [11], two putative sexual-
stage phosphatases - PPa [12] and PP [13], and a tetratr-
icopeptide repeat-containing phosphatase, PP5 [14]. Pre-
liminary studies revealed the presence of a protein
phosphatase activity in crude extracts of RBC-grown P. fal-
ciparum that exhibited toxin-sensitivity resembling that of
PP1 [15]. Uninfected RBC, in contrast, possessed mainly a
PP2A-like activity. Because of its potential importance in
a variety of signalling pathways of the parasite, we have
turned our attention to defining the PP1 phosphatase and
its regulation in P. falciparum.

In this communication, we report the exact sequence of a
PP1 ¢DNA in P. falciparum, the corresponding gene se-
quence in P. falciparum chromosome 14, the enzymatic
properties of the recombinant enzyme, and its inhibition
by mammalian physiological PP1-inhibitors, namely, in-
hibitor-1 (I-1) and inhibitor-2 (I-2). Post-transcriptional
gene silencing using synthetic short interfering RNA (siR-
NA) molecules has been recently used to ablate specific
mRNAs and thus, produce phenotypic mutations in spe-
cific genes [16,17]. We have adopted this technology to
knockdown specific gene products in RNA viruses that are
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obligatory intracellular parasites [18]. In the present
study, we have successfully used a similar strategy to gen-
erate phenotypic PP1-deficient P. falciparum parasites.

Results and Discussion

Identification of the PfPPl cDNA sequence

Various pairs of oligodeoxynucleotide primers were de-
signed on the basis of the PlasmoDB-predicted mRNA se-
quence (Gene chrl4_1.phat_133), and employed in
reverse transcription-PCR (RT-PCR) amplification using
Pf3D7 total mRNA as template. Based on the prediction,
primers > ATGGCATTAGAAATAGATATAGATAATG 3
(primer A in Fig. 1, the start codon in bold) and 5 TTATT-
TCCGACAAAAAGAAATATATGG 3’ were first tested, but
no product was obtained. Since there was no other ATG
within a reasonable distance upstream that was in the
same reading frame, we proceeded on the assumption
that the 3'-end of the mRNA might be different. Thus, the
second primer was replaced by a series of nested primers
(based on the genomic sequence), each of which was
paired with primer A in RT-PCR. The combination of
primer A and the primer 5 TTTITTAATITGCTGCIT-
TCTTTITITCC 3' (Fig. 1) eventually produced a RT-PCR
product that was cloned into pGEM-T vector and se-
quenced. The cDNA sequence contained a 915-nucleotide
long open reading frame corresponding to a polypeptide
304 amino acid in length and ending with a TAA stop co-
don.

Comparison of the cDNA sequence with the genomic se-
quence (in Chromosome 14 at TIGR) revealed that the
coding sequence is divided into five exons, of which the
first two are the largest and contain most of the catalytic
core of the phosphatase (Fig. 1 and 2). The intron se-
quences are pronouncedly more AT-rich than exons, and
contained homopolymeric repeats, a feature which, in our
experience, is common in Plasmodium genes.

BLAST analysis of the predicted primary structure of the
protein revealed its clear identity with the PP1 class (Fig.
2). It is to be mentioned that among all the Ser/Thr phos-
phatases, PP1 has been subjected to the most extensive
structure-function analysis [19-26]. In fact, it was one of
the first phosphatases for which the three-dimensional
structure was solved [26,27]. A representative alignment
in Fig. 2 demonstrates the high sequence conservation be-
tween the human and Plasmodium PP1 sequences. The cat-
alytic core of all members of the PP1 and PP2 families are
very conserved, and roughly corresponds to residues 5-
260 of PfPP1 (Fig. 2). This region contains all the signa-
ture motifs and conserved residues that have been shown
to be important for the fundamental steps of catalysis, in-
cluding substrate binding, metal ion coordination, and
interaction with the phosphate group [19,26-28]. It is to
be noted that at 304 amino acid residues, PfPP1 is the
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Primer A
ATGGCATTAGAAATAGATATAGATAAT GTAATATCAAAACT AATAGAAGT TCGT GGAACT AGACCAGGAAAAAATGT TAATTT
M AL EI DI DNWVI SKULI EVRGTIRPUGIKNVNIL
GACAGAAAATGAAATAAAAATATTATGT TTATCAAGT AGGGAAATATTTTTAAACCAACCAATTTTATTAGAATTAGAAGCAC
T ENEI KI1 L CL SSREI FL NQWPI L L EL E A
CAATAAAAATATGT GGAGATATCCATGGACAGT TTTATGATTTGT TAAGGT TATTTGAATATGGT GGATTTCCACCCGATGCA
Pl KI € G6GDI HGOQVFYDULLRLUFEYGGTFUPUPDA
AATTATCTATTTTTACGQt t aaaat aaaagaaaaaaaaaaaaaat at at at at at at at at at at at aagt t ggcatatatatc
N Y L F L
tttttatacatgtacatattttttgttcctttttat agGTGATTATGTGGATAGAGGAAAACAAAGTTTAGAAACCATTTGTT
G DY VDRGKQSULETI C
TATTATTAGCATATAAAATAAAATATCCTGAAAATTTTTTTTTATTAAGAGGTAACCACGAATGCGCTTCAATAAATAGAATA
L LL AYKI KYPENZFUZFULILIRGNMHETCASI NR R/
TACGGATTCTATGACGAATGTAAAAGAAGATATAGT GTGAAATTATGGAAAACAT TTATTGATTGCTTTAATTGCTTACCTGT
Y GF Y DEUCKIRRY SV KLWKTFI DCFNTZCL PV
GGCAGCTATTATTGACGAAAAAATTTTTTGTATGCATGGTGGT TTATCACCT GAATTAAATAATATGGAACAAAT AAGGAAAA
AAAI I DEIKI FCMHG GG GL SPEILNINNMMEU QI RK
TAACTAGGCCTACTGATGTTCCTGATAAT(gt at t t t gacaaat gat at gaat aaat agaat gaggaaaat att aagt at at a
I T R P T DV P D N
taatgtgtgtgaatatgttttttttttettttttttttttttttcattatattatatgccccattaaacaat atat atat ata
tat at at at at aaaagtatatgtatatgtgtttatttatttatttgttatatttattttttttttttgatagGITTATTATGT
G L L C
GATTTATTGTGGTCTGATCCAGAAAAAGAAAT TAAT GGGT GGGGAGAAAAT GATCGAGGAGT TTCTTTTACCTTTGGTCAAGA
DLL WSDWPEI KIEI NGWGENUDIRGVSUZFTUZFGAOQD
TGTTGITCATAACTTTTTAAGAAAACACGAATTAGATTTAATATGCAGGGCACATCAGGt aat at at t aaat aaatgtttttt
V VAN FL RKHETLDIL LI CRAWHDQ
ttttttttttttttattctatatgactactaatatgtgtttgttaatatgtgattgtttgtaaattaaattgtatatttttat
aagaaatatatatatatatatatatatatatatatatatgtatatattcttattataacatttgtgtaattttttttttctaa
at agGTCGT GGAGGATGGATATGAATTTTTTGCAAAGCGCCAATTAGT TACATTATTTTCTGCTCCTAATTATTGT GGAGAGT
VVEDG GYEFVFAKROQQLVTLUFSAPNYZCGE
TTGATAATGCCGGT GCAATGATGAGTGT TGACGAGACATTAATGTGT TCGT TTCAAgt at gat at aagaaaat gaat att aaa
F DNAGAMMSYVYDETILMCSF Q
t aaat aaat aaat aaat at at at at at at at at agacaagaatgtattttaatatttacatattttatatatttttatatttt
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cacgtttacatttatttctttctttagATTTTAAAACCAGT GGAAAAAAAGAAAGCAGCAAATTAAAAAAAAA
I L K PV EKKKAAN -

Figure |

PfPP| gene structure. The exon and intron sequences of PfPP| gene are shown in capital and small letters, respectively. Under-
lined primers were used in RT-PCR to amplify the PPI ORF, and have been described under Results. The amino acid sequence

of PfPPI is in single-letter codes below the coding sequence.

shortest PP1 known to date, and lacks a short proline-rich
stretch at the C-terminal end (Fig. 2).

Expression and catalytic properties of PfPPI

In order to characterize the PfPP1 cDNA we subcloned it
into pET-15b such that the protein is expressed with an N-
terminal (His)s-tag. As shown in Fig. 3, a protein band of
approximately 37,000 Mr was produced from the pET-
15b-PfPP1 clone, which is in agreement with the predict-
ed molecular weight of 34,904 of PfPP1 and roughly an-
other 2,000 added for the (His)s region of pET-15b
(Novagen: Madison, WI). The protein specifically reacted
with a monoclonal anti-His antibody and also with a pol-

yclonal antibody against full-length human PP1 (Trans-
duction Laboratories: Lexington, KY). The recombinant
protein was purified through nickel-chelation chromatog-
raphy and tested for phosphatase activity. It dephosphor-
ylated the small substrate pNPP, as well as histone,
labelled at Ser residues. Interestingly, it also showed de-
cent activity on a Tyr-phosphorylated synthetic peptide.
The V.« values (umol Pi liberated / mg enzyme/ min)
against these three substrates (pNPP, phosphoserine-his-
tone, phosphotyrosine peptide) were, respectively: 12 +2,
8 +1,and 2 +0.5. An equivalent protein fraction, obtained
from E. coli containing vector alone (without insert),
showed no activity against any of these substrates. It has
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Pl asrmodi um - - MALEI DI DNVI SKLI EVRGTRPGKNVNLTENEI KI LCLSSREI FLNQPI LLELEAPI K 58
Human NBDSEKLNLDSI | GRLLEVQGSRPGKNVQLTENEI RALCLKSREI FLSQPI LLELEAPLK 60
s ._* :* ** * ****** ****** *** ****** ********** *
Pl asmodi um | CGDI HGQFYDLLRLFEYGGFPPDANYLFLGDYVDRGKQSLET! CLLLAYKI KYPENFFL 118
Human | CGDI HEQYYDLLRLFEYGGFPPESNYLFLGDYVDRGKQSLET! CLLLAYKI KYPENFFL 120
********: **************: EIE R R S S I R S I R S I I O S
Pl asrmodi um LRGNHECASI NRI YGFYDECKRRYSVKLWKTFI DCFNCLPVAAI | DEKI FCVHGGLSPEL 178
Human LRGNHECASI NRI YGFYDECKRRYNI KLWKTFTDCFNCLPI AAI VDEKI FCCHGGELSPDL 180
************************.:****** *******:***:****** ******:*
Pl asrmodi um NNMVEQ RKI TRPTDVPDNGL L CDL LWSDPEKEI NGWGENDRGVSFTFGQDVVHNFLRKHE 238
Human QSVEQ RRI MRPTDVPDQGL L CDL L WSDPDKDVQGWEENDRGVSFTFGAEVVAKFLHKHD 240
.*****:* *******:***********:*: kkkkkkhkkkhkkkkhkkkk :** :**:**:
B12 | oop B13
Pl asnmodi um LDLI CRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMVBVDETLMCSFQ LKPVE 298
Human LDLI CRAHQVVEDGYEFFAKRQLVTLFSAPNYCGEFDNAGAMMSVDETLMCSFQ LKPAD 300

EE R IR I S ok O I S S I S I I S S I I O O I I O I S R

Pl asnodi um
Human

Figure 2

KNKCKYGQFSGLNPGGRPI TPPR- - NSAKAKK- - - -
* %

330

PfPP| sequence comparison. The predicted sequences of Plasmodium PP1 (this study) and human PPl alpha (P0O8129) catalytic
subunits were aligned using the CLUSTALW program at the European Bioinformatics Institute (EMBL) server, and later refined
by visual inspection. The amino acid residue numbers are shown on the right. Residues are marked as: non-conservative
replacement (.); conservative replacement (:), and identical (*). Residues important in |-2 interaction are highlighted in gray:

E52, E54; D164, E165, and K166.

been recently shown that rabbit PP1, expressed in E. coli,
also possessed Tyr phosphatase activity. In contrast, native
PP1 isolated from rabbit muscle or expressed in Sf9 insect
cells contained only Ser/Thr phosphatase activity but no
Tyr phosphatase activity [24]. It was concluded that this
apparent difference might be due to subtle changes in pro-
tein folding in eukaryotic versus prokaryotic cellular envi-
ronments. It remains to be seen whether this is a general
feature of all PP1.

To obtain biochemical evidence for the identity of the re-
combinant PfPP1, we tested the effect of specific phos-
phatase inhibitors and selected mutations on the
phosphatase activity. Mutation of Asn122 to Asp by site-
directed mutagenesis destroyed the phosphatase activity,
confirming the essential role of this residue of PP1 in ca-
talysis [19]. PfPP1 was inhibited by NaF, inorganic ortho-
phosphate, and pyrophosphate at respective ICs values
of 2.5 mM, 10 mM, and 90 uM (data not shown). Similar

values were recently obtained for Arabidopsis PP1 [8].
PfPP1 was also inhibited by tautomycin, I-1, I-2, and OA
with ICs values of 0.8, 400, 7, and 100 nM, respectively
(Fig. 4). These values are comparable to those obtained
with various PP1 isoforms recombinantly expressed in E.
coli[25,29]. The sensitivity of PfPP1 to these natural toxins
is consistent with the fact that the loop sequence between
the B12 and P13 regions plays a direct role in binding
these toxins [23,26], and this sequence is entirely con-
served in PfPP1 (Fig. 2). Recently, a few additional resi-
dues that are closer to the N-terminus in the PP1 sequence
have also been shown to be important in the interaction
with [-2 [24]; in PfPP1 numbers, these residues are: E52,
E54, and D164, E165, K166 (Fig. 2). In yeast PP1 (Glc7p),
the double mutant E52A/E54A and the triple mutant
D164A/E165A/K166A showed ICs, values for I-2 that
were respectively 8 and 300 times the wild type enzyme
values [24]. As shown in Fig. 4, a similar loss of inhibition
by I-2 was also observed when the corresponding muta-
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Recombinant expression of PfPPI in bacteria. The following
proteins / extracts were analyzed by SDS-PAGE followed by
staining with Coomassie Brilliant Blue R250: approximately
30 pg (protein) of total extract [14] of IPTG-induced E. coli
BL2I(DE3) containing the RIG plasmid and pET-15-PfPPI
(lane 2) or pET-I5 without insert (lane |); 4 Hg of the puri-
fied recombinant (His)g-tagged PfPP| (lane 3). Lane 4 shows
an immunoblot in which 80 pg of 100,000 x g extract of Pf
[10] was probed using a PP| antibody described under Mate-
rials and Methods. Parasitic PfPP| and the recombinant His-
tagged PfPP| bands are indicated by open and closed arrow-
heads, respectively. Protein markers (lane M) are indicated
by Mr in thousands.

tions were introduced into PfPP1, although they did not
affect the catalytic activity (specific activity) (data not
shown). Together, these results provide experimental con-
firmation of the catalytic identity of PfPP1.

Expression of native PfPPI

As mentioned earlier, inhibition studies using OA and cal-
yculin A suggested the existence of a PP1-like activity in P.
falciparum extracts [15]. However, our attempts to purify
the native PfPP1 enzyme by chromatographic procedures
resulted in only small amounts of activity, probably due
to rapid inactivation during fractionation. To determine if
PfPP1 is expressed in Plasmodium, we have, therefore, tak-
en an immunological approach. First, cell-free extracts of
different erythrocytic stages of P. falciparum were subjected
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Figure 4

PfPPl dose response to inhibitors. Inhibition assays for
recombinant PfPP| were performed using 32P-phosphorylase
a as substrate essentially as described [14]. The inhibitors
and the symbols are: tautomycin (square), inhibitor-2 (dia-
mond), OA (triangle), and I-1 (circle). The half-closed and
fully closed diamonds represent |-2 against the double
mutant (E52A/E54A) and triple mutant (DI164A/EI165A/
K166A) enzymes, respectively. Activities are expressed as
percentage of the inhibitor-free reaction. As shown, the X-
axis represents negative logarithm of molar concentration of
the inhibitors.

to Western blot using a monoclonal antibody that was
raised against nearly full-length human PP1 and showed
a broad species specificity (see Materials and Methods). As
shown in Fig. 5A, a major band of the expected size of 35
k was observed in all stages including gametes. A peptide
antibody, specific for human PP1 (Materials and Meth-
ods), did not detect the band. The gametogenesis was con-
firmed by the appearance of Pfg27, an early gamete-
specific protein [30]. Having demonstrated that the mon-
oclonal antibody was specific for PP1, we used it in an at-
tempt to inhibit PfPP1 activity in wvitro. At optimal
concentrations, the antibody almost completely inhibited
(90% inhibition) recombinant PfPP1 (including its Tyr
phosphatase activity), and also inhibited the phosphatase
activity of the P. falciparum extract by about 70% (data not
shown). Under the same conditions, the human-specific
antibody had no effect. Finally, it has been shown that af-
finity resins containing immobilized microcystin specifi-
cally bind toxin-sensitive phosphatases such as PP1 and
PP2A [31]. Thus, we passed soluble cytosolic Pf extract
through microcystin-Sepharose, and the bound proteins
were analyzed on SDS-PAGE followed by immunoblot us-
ing the anti-PP1 antibody. The blot revealed that the 35
kDa PfPP1 polypeptide indeed specifically bound to mi-
crocystin (Fig. 5B), correlating the antigenic reactivity of
PfPP1 with its affinity for the toxin. Pre-incubation of the
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Figure 5

C§nstitutive expression of parasitic PfPP|. (A) Western blot: Total protein (80 Lig) from the ring (R), Trophozoite (T), sch-
izont (S), and early (G1) and late (G2) sexual stages of Pf were probed with a mixture of anti-PP| and anti-Pfg27 antibodies as
described [14]. (B) Microcystin-sepharose chromatography: About 500 Ug of the following extracts was subjected to microcys-
tin affinity chromatography and the bound proteins analyzed by Western blot using PP antibody: extract of uninfected RBC
processed identically (lane 1); Pf extract (lane 2); Pf extract pre-incubated with | UM microcystin-LR at room temperature for
5 min (lane 3); unbound fraction (a double-pass flow-through from the column) (lane 4). Recombinant His-tagged PfPPI is dis-
played in lane 5 for comparison. The native and recombinant PP| bands are marked by open and closed arrows, respectively.
Sizes of protein standards are indicated on the left. Two non-PP| proteins are also seen in the blot in panel B. The ~25 kDa
band (common in lanes I, 2, and 3) is evidently a RBC protein. The ~40 kDa band (lanes 2, 3), on the other hand, is a Plasmo-
dium protein, since it is absent in the RBC fraction. We speculate that these proteins non-specifically bound to the Sepharose
matrix, since they could not be competed out by microcystin (lane 3).
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extract with microcystin specifically prevented binding of
PfPP1 to the column.

Generation of phenotypic PfPPl mutants by PTGS using
RNAi

RNA interference (RNAi), mediated by short interfering
double-stranded RNA molecules (siRNA or dsRNA), is
now recognized as a major mechanism of post-transcrip-
tional gene silencing (PTGS) in essentially all eukaryotes
[16]. Recently, the technique has been successfully ap-
plied to cultured mammalian cells, whereby introduction
of 21-nucleotide long synthetic dsSRNA molecules corre-
sponding to specific mRNA sequences effectively and spe-
cifically degraded the cognate mRNAs and abrogated the
expression of the corresponding proteins [17,18]. This
prompted us to test a similar approach to knockdown
PfPP1 function in the erythrocytic P. falciparum stages.
Our initial attempts with standardized transfection proce-
dures using OligofectAMINE (Life Technologies: Bethes-
da, MD) with the dsRNA did not produce an appreciable
loss of PfPP1. We then resorted to the electroporation pro-
cedure originally developed for DNA transfection in Plas-
modium by Wellems and co-workers [32], as detailed
under Materials and Methods. A representative set of re-
sults shown in Fig. 6 clearly demonstrates loss of PfPP1 by
the RNAI procedure, while the control PP2A was not sig-
nificantly affected. Loss of PfPP1 resulted in concomitant
inhibition of parasite growth as evidenced by the drastic
reduction in 3H-hypoxanthine incorporation. These re-
sults suggest that PfPP1 plays an essential role in Plasmo-
dium replication. The facts that the parasite culture was
asynchronous, i.e., contained all three major stages (ring,
trophozoite, and schizont) (data not shown) and that the
effect of dsSRNA was severe, suggest that PfPP1 is required
for cell cycle progression at all stages of the parasite. This
is further supported by the expression of PP1 protein in all
the parasitic stages (Fig. 5). Taken together, this is consist-
ent with the established role of PP1 in eukaryotic DNA
synthesis and cell cycle progression, as discussed below.

PP1 is one of the major protein phosphatases found in all
eukaryotic cells. The activity of the catalytic subunit of PP1
is controlled by its interaction with a large number of reg-
ulatory subunits, many of which also target it to specific
subcellular compartments [7,24,33]. The major ones in-
clude the glycogen-targeting subunits (Gy, G1) [34], my-
ofibrillar-targeting subunit (M;() [34], nuclear inhibitor
of PP1 (NIPP-1) [35], PP1 nuclear targeting subunit
(PNUTS) [36,37], mitosis-regulating subunit Sds22 [38-
40], ribosomal protein L5 [41] and small cytosolic inhib-
itory proteins, I-1, 1-2, and DARRP-32 (Dopamine and
cAMP-regulated phosphoprotein, Mr 32,000) [7,23,25].
The physiological role of many of these interactions has
been revealed in recent studies. A temperature-sensitive
mutant of the yeast PP1 (Glc7), for example, exhibits a
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Figure 6

Inhibition of parasite growth and abrogation of PfPP| expres-
sion by interfering dsSRNA. The dsRNA sequences, and elec-
troporation procedure have been described under Materials
and Methods. Infected RBC were transfected with dsRNA
against PfPP1 (R) or luciferase (C). Western blot (A) shows
loss of PfPPl by the dsRNA, but no effect on the control
PfPP2A. The PPl monoclonal and PP2A peptide antibodies
have been described in Materials and Methods. Hypoxanthine
incorporation assay (B) shows an approximately 70% inhibi-
tion of parasitic DNA synthesis in PPI-depleted cells, com-
pared to the luciferase antisense-treated control.
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block in the M phase of the cell division cycle, and elevat-
ed expression of Sds22 suppresses this defect [38]. Struc-
ture-function analysis of recombinant mammalian PP1
has recently begun to map specific residues involved in in-
teraction with other molecules. Interestingly, all these res-
idues are conserved in PfPP1, and a few examples are
presented here. Co-crystal structure of PP1 and a Gy, pep-
tide [42], as well as mutagenesis studies [43] of the yeast
PP1 ortholog, Glc7, have demonstrated a role of specific
PP1 residues in PP1-Gy, interaction. In the PfPP1 se-
quence, these residues are: 1167, L.241, F255, L264, C289,
and F291 (Fig. 2). As mentioned, the B12-loop-B13 re-
gion, important in interaction with natural toxins [23], is
fully conserved in PfPP1 (Fig. 2). Two residues, recently
shown to be important for interaction with DARPP-32
[22], are also conserved in PfPP1; these are: Met288 and
Cys289 (Fig. 2). We have provided experimental evidence
of an important role of a number of invariant residues of
PfPP1 in the interaction with I-2 (Fig. 2 and 4). Based on
such overwhelming conservation of functionally impor-
tant residues, we propose that orthologs of many of these
PP1-interacting proteins may also exist in Plasmodium and
function in similar roles. The use of recombinant PfPP1
and protein-protein interaction techniques should aid in
characterizing these physiological regulatory subunits of
PfPP1. Our ability to generate PP1-deficient P. falciparum
parasites will allow us to study the "mutant" phenotype in
further detail and understand the role of this highly con-
served phosphatase in malarial biochemistry and patho-
physiology. These studies are in progress.

As mentioned earlier, Li and Baker [12] described a puta-
tive phosphatase DNA sequence in Plasmodium, the
mRNA of which was detected in the sexual stages of the
parasite. The predicted protein, named PPa, was 889 ami-
no acid long, and contained a unique N-terminal exten-
sion of about 500 amino acids. The C-terminal 345 amino
acids, containing the putative catalytic domain, had 5
unique peptide stretches that were called "inserts". When
these inserts were omitted from the alignment, the rest of
the sequence showed significant similarity with PP1 phos-
phatases [12]. Clearly, further studies are needed to iden-
tify the PPa protein and characterize its potentially
interesting identity.

While our manuscript was being written, McRobert and
McConkey [44] achieved similar success in using the RNAi
strategy to ablate dihydroorotate dehydrogenase
(DHODH) of P. falciparum. Although the protein level
was not directly monitored, the loss of DHODH mRNA
was confirmed by RT-PCR. This resulted in inhibition of
parasite growth, consistent with the role of DHODH in
pyrimidine biosynthesis, essential for parasite DNA repli-
cation. These authors introduced the double-stranded
RNA by electroporation also, using conditions very simi-
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lar to ours. Thus, although the exact mechanism of the
RNA uptake remains to be elucidated, the electroporation
procedure must have allowed the dsRNA to traverse the
various erythrocytic and parasitic membranes to enter the
parasitic cells.

The success in ablating PfPP1 is particularly gratifying to
us on a number of accounts. As mentioned, PP1 is a high-
ly conserved enzyme, and toxin-sensitive Ser/Thr phos-
phatase activities are also found in erythrocytes [15].
Thus, use of PP1 inhibitors, such as okadaic acid or tauto-
mycin (Fig. 4) would affect the parasite as well as the host,
making conclusions difficult. The dsRNA, in contrast, is
known to be extremely specific for its intended target,
such that a single nucleotide mismatch prevents its action
[17]. This has allowed us to create specific phenotypic loss
of PfPP1. Moreover, RNAi will permit the ablation of es-
sential gene products, at any time point in infection, or on
a desired parasitic stage following synchronization. Lastly,
traditional genetic manipulation in eukaryotes, including
the Apicomplexa, is a relatively difficult and elaborate pro-
cedure [45,46]. Thus, we believe that the RNAI strategy
will become a powerful and convenient tool in Plasmodi-
um functional genomics, particularly in the studies of phy-
logenetically conserved signalling molecules.

Conclusion

P. falciparum contains a PP1 protein phosphatase that is
virtually identical to its orthologs in other species in both
sequence and biochemical properties. Based on the estab-
lished physiological role of PP1 in other organisms such
as mammals and yeast, PfPP1 may regulate a variety of
parasitic pathways, including glycogen metabolism, glu-
cose repression, and cell cycle progression. Indeed, the
successful use of RNA interference to ablate PfPP1 con-
firms its essential role on parasitic growth. The catalytic
subunit of PfPP1 is expressed in all the erythrocytic stages
of the parasite and is specifically inhibited by mammalian
physiological inhibitors, inhibitor-1 and inhibitor-2.
Thus, an in-depth study of PfPP1 and its interacting subu-
nits may shed light on the regulation of the relevant path-
ways in this clinically important family of parasites.

Materials and methods

Materials

Histone and the catalytic subunit of PKA were purchased
from Sigma (St. Louis, MO), and rabbit I-2, the v-abl pro-
tein tyrosine kinase, and its peptide substrate EAIYAAP-
FAKKK were from New England Biolabs (Bedford, MA).
Okadaic acid (OA) and recombinant I-1 [22] were kind
gifts from R. Honkanen and S. Shenolikar (Duke Univer-
sity), respectively. The monoclonal anti-PP1 antibody was
raised against a 25.6 kDa fragment of human PP1a (resi-
due 5-226), and was purchased from Transduction Labo-
ratories (Lexington, KY). This antibody reacts with all
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mammalian and avian PP1 tested, but does not react with
other PP classes. The other PP1 antibody (a kind gift from
R. Honkanen) was specific for human PP1, and was raised
in rabbit against a synthetic peptide corresponding to the
last 13 residues of human PP1 (PITPPRNSAKAKK; Fig. 2).
The anti-PfPP2A antibody was raised in rabbit against the
peptide MLIFKDTPDSRNSIKN, corresponding to residue
285-300 of the previously described PfPP2A [10]. The
RIG plasmid was kindly provided by W. Hol (University
of Washington, Howard Hughes Medical Institute) [47].
Monoclonal antibody against the early sexual-stage P. fal-
ciparum antigen Pfg27 [30] was a generous gift from N.
Kumar (Johns Hopkins University, Baltimore, MD). Mi-
crocystin-coupled sepharose was purchased from Upstate
Biotechnology, Inc. (Lake Placid, NY).

Amplification, cloning, and mutagenesis of PfPP1 cDNA
Total RNA was isolated from asynchronous P. falciparum
3D7 cells grown in human A-positive erythrocytes essen-
tially as before [48,49]. Various pairs of primers were de-
signed on the basis of the relevant sequences of
chromosome 14. T, values of the primers were in the
range of 65-72°C in order to achieve high specificity in re-
verse transcription (RT) as well as PCR. RT reaction was
carried out at 60°C for 1.5 hrs using the C. therm.
polymerase kit (Roche Molecular Biochemicals, Cat. No.
2016311). The RT reaction was incorporated into PCR,
carried out using a mixture of Taq (Roche) and Pfu (Strat-
agene) polymerases (20:1) to ensure high fidelity [50].
Elongation in PCR was performed at 62°C. The various
products were gel-purified and cloned in pGEM-T by "TA
cloning" (Promega, WI). The clones were initially
screened by restriction analysis and finally confirmed by
sequencing.

All site-directed mutagenesis were performed using the
megaprimer procedure [51], and the mutations were con-
firmed by sequencing. DNA sequencing was carried out by
cycle sequencing using the PRISM Big Dye Terminator se-
quencing kit and AmpliTaq DNA polymerase (Perkin-
Elmer, Division of PE/ABI).

Expression and assay of recombinant PfPPI phosphatase

Growth and induction of E. coli BL21(DE3) containing
pET-15b-PfPP1 and the RIG plasmid were carried out us-
ing procedures described earlier [14,48], except that the
culture was grown at 18°C in the presence of 2 mM
MnCl,, and IPTG concentration was lowered to 0.4 mM.
The (His)s-tagged PfPP1 expressed from pET-15b-PfPP1
was purified through Ni+2-chelation chromatography
[14] as described by the manufacturer (Novagen), with 1
mM MnCl, being present in all the buffers. The imida-
zole-eluted His-tagged PfPP1 was dialyzed against 50 mM
Tris-Cl (pH 7.5), 100 mM NacCl, 25% glycerol, 1 mM DTT
(buffer A), and stored in small portions at -80°C.

http://www.malariajournal.com/content/1/1/5

Phosphatase activities were assayed essentially as de-
scribed [14,19,52]. Unless otherwise mentioned, 80 pl re-
actions contained 2 mM of MnCl, and requisite amount
of recombinant enzyme in buffer A. Where mentioned,
OA was directly added to the reaction. When 1-2 was used,
it was pre-incubated with PfPP1 at 32°C for 30 min. I-1
was prephosphorylated by PKA in a standard kinase reac-
tion containing 200 uM y-thiophosphorylated ATP. 32P-
labelled histone was prepared by phosphorylation with
PKA in the presence of y-32P [ATP]| essentially as de-
scribed, followed by removal of the free ATP by gel filtra-
tion [19,52]. The resultant phosphohistone is exclusively
phosphorylated at Ser residues [53]. 32P-labeled peptide
EAI(Yp)AAPFAKKK, phosphorylated at the single Tyr resi-
due by pp43v-abl kinase, was prepared essentially as de-
scribed [19,52]. Phosphatase reactions were initiated by
the addition of the substrate. The liberated 32P was quan-
titated by a phosphomolybdate extraction assay as de-
scribed previously [14]. Reactions were followed with
time, and results were corrected by subtraction of the cor-
responding values from an enzyme-free reaction.

Analysis of native PfPPI

P. falciparum 3D7 was grown on A-positive human eryth-
rocytes in the presence of homologous serum as described
earlier [48,49]. When needed, cultures were synchronized
in two steps [49,54]: (i) schizonts were purified by flotta-
tion over 65% (v/v) Percoll (Pharmacia) followed by in-
cubation with fresh erythrocytes (5% haematocrit); (ii)
the cultures were then left to mature into rings and treated
with 5% D-sorbitol for 15 min at 37°C. The purity of in-
dividual stages was greater than 95% as confirmed by mi-
croscopic observation of a stained thin smear of the
culture. Sexual stage parasite was generated as described
[30].

Transfection by inhibitory dsRNA

The following 21-mer RNA molecules, corresponding to
the underlined sequence in Fig. 1, were synthesized as de-
scribed [18] and deprotected according to the manufac-
turer's protocol (Dharmacon Research, Lafayette, CO):

Sense: (5') GAGGUAACCACGAAUGCGCATAT (3")
Antisense: (5') GCGCAUUCGUGGUUACCUCATJT (3")

The negative control luciferase RNA was the same as the
double-stranded GL3 RNA described previously [17]. The
RNAs were annealed in vitro to form double-stranded RNA
(dsRNA) [18] and electroporation was carried out essen-
tially as described [32]. In brief, 3 pg dsRNA in 800 pl of
incomplete cytomix [32] was added to infected RBC (at
10-15% parasitemia), and electroporation was per-
formed using a Bio-Rad Gene Pulsar unit at settings of 200
Q, 2 kV, and 25 PF. Control cells were identically electro-
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porated without RNA. The cells were then grown in 12-
well plates in triplicate wells, and measurement of 3H-hy-
poxanthine incorporation was carried out at 24 hr post-
electroporation using standard procedures [49], except
that parasites were liberated with saponin, pelleted, and
counts in the pellet measured following solubilization.
Parasites from unlabelled but otherwise identical cultures
were analyzed in Western blot using a mixture of anti-PP1
and anti-PfPP2A antibodies (see Materials and Methods).
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