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Abstract
Background: With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from
progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal.
Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown
to correlate with anaplasia and unfavorable prognosis. In neuroblastoma – an embryonal tumor with biological
similarities to MB – the quassinoid NBT-272 has been demonstrated to inhibit cellular proliferation and to down-
regulate c-MYC protein expression.

Methods: To study MB cell responses to NBT-272 and their dependence on the level of c-MYC expression,
DAOY (wild-type, empty vector transfected or c-MYC transfected), D341 (c-MYC amplification) and D425 (c-
MYC amplification) human MB cells were used. The cells were treated with different concentrations of NBT-272
and the impact on cell proliferation, apoptosis and c-MYC expression was analyzed.

Results: NBT-272 treatment resulted in a dose-dependent inhibition of cellular proliferation (IC50 in the range
of 1.7 – 9.6 ng/ml) and in a dose-dependent increase in apoptotic cell death in all human MB cell lines tested.
Treatment with NBT-272 resulted in up to 90% down-regulation of c-MYC protein, as demonstrated by Western
blot analysis, and in a significant inhibition of c-MYC binding activity. Anti-proliferative effects were slightly more
prominent in D341 and D425 human MB cells with c-MYC amplification and slightly more pronounced in c-MYC
over-expressing DAOY cells compared to DAOY wild-type cells. Moreover, treatment of synchronized cells by
NBT-272 induced a marked cell arrest at the G1/S boundary.

Conclusion: In human MB cells, NBT-272 treatment inhibits cellular proliferation at nanomolar concentrations,
blocks cell cycle progression, induces apoptosis, and down-regulates the expression of the oncogene c-MYC.
Thus, NBT-272 may represent a novel drug candidate to inhibit proliferation of human MB cells in vivo.
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Background
Medulloblastomas (MB) are the most common malignant
brain tumors in children and constitute 20% of all pediat-
ric brain tumors [1]. With current treatment strategies,
nearly half of all patients die from progressive tumors.
Accordingly, the identification of novel therapeutic strate-
gies remains a major goal.

The c-MYC oncoprotein plays a pivotal role as a regulator
of tumorigenesis in numerous human cancers of diverse
origin [2-5]. In childhood MB, c-MYC gene amplification
has been demonstrated in ~8% of primary tumors [6-11].
Disparity between c-MYC gene copy number and c-MYC
mRNA expression level in primary MB tumors and MB cell
lines indicates the presence of alternative mechanisms to
gene amplification in up-regulating c-MYC expression
[12,13]. High c-MYC mRNA expression and c-MYC gene
amplification have been suggested to be indicators of
poor prognosis in MB [6,9,11-18]. Furthermore, high c-
MYC mRNA expression was demonstrated to be signifi-
cantly associated with tumor anaplasia [19,20].

Quassinoid analogues, such as bruceantin, are capable of
inducing an array of biological responses [21,22], includ-
ing inhibition of protein synthesis [23]. Such an inhibi-
tion has been shown to occur via interference at the
peptidyltransferase site, thus preventing peptide bond for-
mation [24]. It has been shown in two independent stud-
ies that bruceantin is able to down-regulate c-MYC protein
expression in a panel of leukemia, lymphoma, and mye-
loma cell lines [25,26]. Cell lines expressing high levels of
c-MYC oncoprotein were most sensitive to bruceantin-
mediated effects [25]. Bruceantin has been evaluated in
three separate phase I clinical trials with various types of
solid tumors [27-29]. Side effects were relatively few and
included hypotension, nausea, vomiting, and moderate
hematological toxicity. However, in two phase II clinical
trials bruceantin failed to prove effective in metastatic
breast carcinoma [30] and in advanced malignant
melanoma [31].

Based on the studies with bruceantin, proprietary quassi-
noid analogues have been designed and their in vitro cyto-
toxic activities have been compared with bruceantin by
using the MTT assay in a panel of cell lines. The lipophilic
small molecule NBT-272 was found to be 2–10 fold more
potent than bruceantin in a variety of cancer cell lines
[32]. In neuroblastoma – an embryonal tumor with bio-
logical similarities to MB – the quassinoid NBT-272 has
been demonstrated not only to inhibit cellular prolifera-
tion but also to down-regulate c-MYC protein expression
[32]. In the current study, we examined the effects of NBT-
272 in human MB cell lines expressing different levels of
c-MYC.

Methods
Human MB cell lines
DAOY (wild-type), DAOY V11 (empty vector transfected)
and DAOY M2 (c-MYC vector transfected) human MB
cells have been described previously [20]. D341 and D425
human MB cells were the kind gift of Dr Henry Friedman,
Duke University, Durham, NC, USA. All MB cells were
cultured in Richter's zinc option medium/10% fetal
bovine serum (non-essential amino acids were added to
the medium of D341 and D425 cells to a final concentra-
tion of 1%, and G418 was added to the medium of DAOY
V11 and DAOY M2 to a concentration of 500 µg/ml). All
cell cultures were maintained at 37°C in a humidified
atmosphere with 5% CO2.

Real-time quantitative polymerase chain reaction
106 cells growing in their mid-log phase were treated with
NBT-272 at concentrations indicated and harvested after
24 h. Total RNA isolation, reverse transcription reactions,
and RT-PCR were performed as described previously
[12,33]. Kinetic real-time PCR quantification of c-MYC
mRNA was performed using the ABI Prism 7700 Sequence
Detection System (Applied Biosystems, Rotkreuz, Switzer-
land), as described previously [34]. Primers and probes
for c-MYC and the endogenous control 18S rRNA were
purchased from Applied Biosystems (Rotkreuz, Switzer-
land). For each PCR run, a master mix was prepared con-
taining 200 nM of each primer, 400 nM probe, and 500 ng
cDNA in a final volume of 25 µl. The thermal cycling con-
ditions comprised an initial denaturation step at 95°C for
10 min, and 50 cycles at 95°C for 15 s and 60°C for 1
min. Experiments were performed in triplicate for each
data point. Relative expression of c-MYC mRNA was cal-
culated by using the comparative CT method [35].

Western blot analysis
The expression of c-MYC protein was assessed by Western
blot analysis. Briefly, 106 cells growing in their mid-log
phase were treated with NBT-272 at concentrations indi-
cated and harvested after 24 h and whole-cell pellets were
lysed with lysis buffer (1 ml/107 cells, 50 mM Tris-HCl
buffer [pH 8.0], 150 mM NaCl, 1% (w/v) Nonidet P40,
0.1% (w/v) sodium deoxycholate, 0.1% (v/w) sodium
dodecylsulfate, 1 mM EDTA, and 1 mM EGTA) containing
protease inhibitors (Complete, Roche; Basel, Switzerland)
and incubated on ice for 30 min. After measuring the pro-
tein concentration by the BCA method (Pierce; Rockford,
USA), 12 µg total protein lysate was separated by 10 %
SDS polyacrylamide gels and the gels were subjected to
immunoblotting. Nonspecific binding sites were blocked
by 3 h incubation in TBST (10 mM Tris pH 8.0, 150 mM
NaCl, 0.05% (w/v) Tween 20) supplemented with 5% (w/
v) nonfat milk powder. Membranes were incubated over-
night at 4°C with a 1:2000 dilution of c-MYC polyclonal
primary antibody (Santa Cruz Biotechnology; Heidelberg,
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Germany). Membranes were then washed three times at
room temperature in TBST for 30 min each time, and
bound Ig was detected using anti-isotype monoclonal sec-
ondary antibody coupled to horseradish peroxidase
(Santa Cruz Biotechnology; Heidelberg, Germany). The
signal was visualized by enhanced chemiluminescence
ECL (Amersham Biosciences; Dübendorf, Switzerland)
and autoradiography. Then, immunoblotting with a
1:5000 dilution of a monoclonal primary β-actin anti-
body (Sigma; Basel, Switzerland) was performed, to verify
equivalent amounts of loaded protein. For densitometry,
the zymographic profiles of the gels were scanned. Rela-
tive band intensities were determined using Quantity One
analysis software (Bio-Rad).

c-MYC transcription factor binding activation assay
Nuclear protein extracts were obtained from human MB
cells by using the BD™ TransFactor Extraction Kit (BD
Clontech, Basel, Switzerland) according to the manufac-
turer's instructions. Aliquots of nuclear protein extracts
were stored at -80°C. The activation of c-MYC was meas-
ured by using the Mercury TransFactor assay (BD Clon-
tech, Basel, Switzerland), an enzyme-linked
immunosorbent assay (ELISA)-based assay [36], accord-
ing to the manufacturer's instructions. Briefly, 5 µg of
nuclear protein samples were incubated for 1 h in a 96-
well plate coated with an oligonucleotide which codes for
the c-MYC consensus binding site sequence and to which
c-MYC contained in nuclear extracts specifically binds.
After washing, antibody directed against c-MYC DNA
complex (1:1000 dilution) was added to these wells and
incubated for 1 h. Following incubation for 1 h with a sec-
ondary horseradish peroxidase-conjugated antibody
(1:1000 dilution), specific binding was detected by color-
imetric estimation at 450 nm using either mutant DNA or
no protein addition controlled for nonspecific binding.

Cytotoxicity assay
Exponentially growing human MB cells (5 × 103 cells/
well) were cultured in 96-well plates in the presence of dif-
ferent concentrations of NBT-272 for 24 h. Untreated cells
were used as controls. A colorimetric 3-(4,5-dimethylthia-
zol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-
nyl)-2H-tetrazolium inner salt (MTS) assay (Promega;
Wallisellen, Switzerland) was used to quantitate cell via-
bility as previously described [37]. Briefly, 100 µl of target
cell suspension was added to each well of 96-well micro-
titer plates, and each plate was incubated at 37°C in a
humidified 5% CO2 atmosphere. Following incubation,
10 µl of MTS working solution was added to each culture
well, and the cultures were incubated for 4 h at 37°C in a
humidified 5% CO2 atmosphere. Each experiment was
performed in triplicate. The absorbance values of each
well were measured with a microplate spectrophotometer
(Molecular Devices; Sunnyvale, CA, USA) at 490 nm.

IC50 values were calculated by using the GraphPad Prism
software.

Apoptosis assay
Exponentially growing human MB cells were exposed to
different concentrations of NBT-272 for 24 h. Untreated
cells were used as controls. A photometric enzyme-immu-
noassay (Cell Death Detection ELISA; Roche Diagnostics,
Basel, Switzerland) was used for the quantitative determi-
nation of cytoplasmic histone-associated DNA fragments,
as described previously [37]. In brief, cell lysates of con-
trol and NBT-272-treated cells were placed in a StreptAvi-
din-coated microtiter plate. A mixture of biotin-labeled
monoclonal histone antibody and peroxidase-conjugated
monoclonal DNA antibody was then added, followed by
incubation for 2 h. After washing to remove unbound
antibodies, the amount of nucleosomes was quantified
photometrically. The cell death nucleosomes enrichment
factor was calculated by dividing the absorbance of treated
cells by the absorbance of untreated control cells.

Cell cycle analysis
The percentages of cells in the different phases of the cell
cycle were determined by evaluating DNA content accord-
ing to methods described [38]. To arrest cells at the G1/S
border, DAOY, D341, and D425 MB cells were synchro-
nized in a medium containing 2 mM hydroxyurea
(Sigma) for 14 h as described previously [39]. Cells were
then transferred into fresh, hydroxyurea-free medium, or
medium containing 0.4 µg/ml NBT-272. Control
untreated or NBT-272 treated cells were harvested 0, 8, 16,
and 24 h after release from hydroxyurea. After washing
twice in PBS 1×, the cells were stained with a solution con-
taining 50 µg/ml propidium iodide (Becton-Dickinson;
Allschwil, Switzerland) and 100 U/ml RNase A (Qiagen;
Hombrechtikon, Switzerland) in PBS 1× for 30 min at
room temperature. A total of 30'000 events per sample
were acquired. Flow cytometric analysis was performed
on a FACSCalibur flow cytometer (BD Biosciences; Alls-
chwil, Switzerland) with CELLQuest software (BD Bio-
sciences). The percentages of the cells in the different
phases of the cell cycle were calculated on linear PI histo-
grams using the mathematical software ModFit LT 2.0
(Verity Software House; Topsham, ME, USA).

Statistical analysis
All data are expressed as mean ± SD. Student's t-test and
one-way ANOVA were used to test statistical significance.
P < 0.05 was considered to be significant. GraphPad Prism
4 software (San Diego, CA, USA) was used to calculate
IC50 concentrations and to compare the fitted midpoints
(log IC50) statistically.
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Results
c-MYC expression in human MB cell lines
To test the effects of NBT-272 on human MB cells, we
selected three human MB cell lines with different levels of
c-MYC expression [12,13]. DAOY human MB cells harbor
a single copy of c-MYC and display low c-MYC mRNA and
protein expression. In contrast, D341 and D425 human
MB cells are c-MYC amplified and express high c-MYC
mRNA and protein. To study a potential influence of c-
MYC expression on cell responses to NBT-272 more spe-
cifically, we included DAOY human MB cells transfected
to express different levels of c-MYC (DAOY wild-type,
DAOY transfected with empty vector, and DAOY trans-
fected with c-MYC) [20]. By using RT-PCR analysis, the c-
MYC mRNA expression level was found to be ~20-fold
higher in DAOY M2 compared to DAOY wt, or DAOY V11
(Figure 1A). D341 and D425 displayed even higher c-
MYC mRNA expression levels (Figure 1A). Using Western
blot analysis, c-MYC protein expression was found to be
4-fold higher in DAOY M2 compared to DAOY wt, or
DAOY V11. D341 had similar c-MYC protein expression
to DAOY M2, whereas D425 had higher c-MYC protein
expression (Figure 1B).

NBT-272 treatment results in dose-dependent suppression 
of MB cell proliferation
To test whether treatment with NBT-272 alters prolifera-
tion of MB cells, we incubated the five human MB cell
lines (DAOY wt, DAOY V11, DAOY M2, D341, and
D425) with various concentrations of NBT-272 for 24 h
and assessed cell viability by using the MTS assay (Figure
2). Treatment with NBT-272 resulted in a dose-dependent
cytotoxic response in all MB cell lines tested with an IC50
at NBT-272 concentration of 1.7 – 9.6 ng/ml (D341, 1.7
ng/ml; D425, 4.3 ng/ml; DAOY wt, 8.7 ng/ml; DAOY
V11, 9.6 ng/ml; DAOY M2, 4.7 ng/ml) (Figure 2). All MB
cells were sensitive to NBT-272 treatment, and their IC50
values were in the low nanomolar range. c-MYC over-
expressing DAOY M2 cells, were slightly more sensitive to
NBT-272 treatment compared to DAOY wt or DAOY V11
respectively (DAOY M2, IC50: 4.7 ng/ml vs. DAOY V11,
IC50: 9.6 ng/ml, p = 0.15). However, these differences
were statistically not significant.

NBT-272 treatment of human MB cells results in down-
regulation of c-MYC protein expression
We then determined whether NBT-272 treatment down-
regulates c-MYC expression. NBT-272 (0.04 or 0.4 µg/ml)
treatment for 24 h resulted in no consistent down-regula-
tion of c-MYC mRNA expression as determined by real
time RT-PCR (Figure 3A). However, at the protein level,
the effects of NBT-272 were clearly detectable. NBT-272
(0.4 µg/ml) treatment for 24 h resulted in a decrease in c-
MYC protein level to 47% in DAOY wt, 11% in DAOY
V11, 21% in DAOY M2, 13% in D341, and 9% in D425

(Figure 3A, B). These results indicate that NBT-272 has
only minor effects on the c-MYC mRNA levels, but mainly
acts at the level of c-MYC protein expression.

NBT-272 treatment results in a reduction of c-MYC 
binding activity
To examine whether treatment with NBT-272 alters c-
MYC binding activity, we incubated the five human MB
cell lines with NBT-272 at various concentrations (0, 0.04,
and 0.4 µg/ml) for 24 h and measured binding activity.

c-MYC mRNA (A) and protein (B) expression of the MB cell lines determined by quantitative RT-PCR and Western blot analysisFigure 1
c-MYC mRNA (A) and protein (B) expression of the 
MB cell lines determined by quantitative RT-PCR 
and Western blot analysis. Values represent the fold-
increase of c-MYC mRNA (n = 3; ± SD) and c-MYC protein 
expression (representative of two to three independent 
experiments) relative to the DAOY wt cells.
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NBT-272 (0.4 µg/ml) treatment for 24 h reduced c-MYC
binding activity significantly in all MB cells tested (Figure
4).

Induction of apoptosis by NBT-272 in MB cells
The induction of apoptotic cell death upon treatment
with NBT-272 was next assessed. In all MB cell lines
tested, NBT-272 treatment (0.04 and 0.4 µg/ml for 24 h)
induced apoptosis (Figure 5). Compared with untreated
controls, the NBT-272 mediated increase in apoptosis was
significant in DAOY wt (425% and 603%), DAOY V11
(443% and 613%), DAOY M2 (343% and 375%), D341
(147% and 162%), and in D425 human MB cells (124%
and 178%). DAOY M2 cells were characterized by a higher
basal apoptotic activity, when compared to DAOY wt and
DAOY V11 cells. Interestingly, the apoptosis-inducing
effects of NBT-272 were most prominent in MB cells dis-
playing low c-MYC expression (DAOY wt, DAOY V11). In
summary, apoptotic cell death does not appear to contrib-

ute equally to the reduction in viability in the MB cell lines
under study.

Effects of NBT-272 on the cell cycle in MB cells
To determine possible effects of NBT-272 on cell cycle reg-
ulation, the cellular DNA content was assessed using flow
cytometry. Under conditions where induction of apopto-
sis was observed (Figure 5), NBT-272 treatment (0.04 and
0.4 µg/ml for 24 h) resulted in no significant cell cycle
alterations (data not shown). To examine whether MB
cells are capable of transiting through the cell cycle in the
presence of NBT-272, cultures were synchronized at the
G1/S boundary by using hydroxyurea treatment. The frac-
tions of MB cells in G1, S, and G2/M at different times (0,
8, 16, and 24 h after release) were analyzed (Figure 6).
After the hydroxyurea block most of the cells were found
to accumulate in the G1 phase (Figure 6). In each case, the
untreated control cells transited through S into G2/M
phase by 8–16 h (DAOY by 8 h, D341 by 16 h). In con-

NBT-272 mediated inhibition of cellular proliferation as determined by the MTS assayFigure 2
NBT-272 mediated inhibition of cellular proliferation as determined by the MTS assay. Cells were incubated for 
24 h with various concentrations of NBT-272 or with solvent only. Values represent the mean percentage of viability (repre-
sentative from two independent experiments) compared with solvent only treated cells ± SD (n = 3; ± SD).
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NBT-272 treatment of human MB cells results in down-regulation of c-MYC proteinFigure 3
NBT-272 treatment of human MB cells results in down-regulation of c-MYC protein. NBT-272 treatment (24 h) of 
MB cells resulted in no consistent changes of c-MYC mRNA expression as determined by quantitative RT-PCR (A), but in a 
decrease of c-MYC protein expression as determined by Western blot analysis (A, B). Values represent the percentage of c-
MYC mRNA (n = 3; ± SD) and c-MYC protein expression (representative from two independent experiments) compared with 
solvent only treated cells.

0.00 0.04 0.4 

DAOY wt

NBT-272 (µg/ml)

0.00 0.04 0.4

DAOY  V11

NBT-272 (µg/ml)

0.00 0.04 0.4 

DAOY M2

NBT-272 (µg/ml)

0.00 0.04 0.4

D341

NBT-272 (µg/ml)

0.00 0.04 0.4 

D425 

NBT-272 (µg/ml)

c-MYC (67 kDa)

β-Actin (42 kDa)

c-MYC (67 kDa)

β-Actin (42 kDa)

c-MYC (67 kDa)
β-Actin (42 kDa)

c-MYC (67 kDa)

β-Actin (42 kDa)

c-MYC (67 kDa)
β-Actin (42 kDa)

%
 c

on
tr

ol

0

25

50

75

100

125

0.00 0.04 0.4 

DAOY wt

NBT-272 (µg/ml)

0

25

50

75

100

125

0.00 0.04 0.4 

DAOY  V11

%
 c

on
tr

ol

NBT-272 (µg/ml)

0

25

50

75

100

125

0.00 0.04 0.4 

DAOY M2

%
 c

on
tr

ol

NBT-272 (µg/ml)

0

25

50

75

100

125

0.00 0.04 0.4 

D341

%
 c

on
tr

ol

NBT-272 (µg/ml)

0

25

50

75

100

125

0.00 0.04 0.4 

D425 
%

 c
on

tr
ol

NBT-272 (µg/ml)

c-MYC mRNA expression 

c-MYC protein expression 

A

B



BMC Cancer 2007, 7:19 http://www.biomedcentral.com/1471-2407/7/19
trast, flow cytometric analysis of synchronized MB cells
treated with 0.4 µg/ml NBT-272 demonstrated arrest in
G1 or S.

Discussion
The present study shows for the first time that NBT-272
has anti-proliferative effects on human MB cell lines at
nanomolar concentrations. DAOY cells with low c-MYC
expression were slightly less sensitive to NBT-272 than
D425 and D341 MB cells that are c-MYC amplified and
express high levels of c-MYC. However, DAOY cells engi-
neered to express increased levels of c-MYC showed only
slightly enhanced sensitivity to NBT-272 when compared
to parental DAOY cells. This indicates that the expression
of c-MYC is not the only factor regulating the cellular sen-
sitivity towards NBT-272. In an earlier study using leuke-
mia and lymphoma cells, tumor cells expressing wild-type

p53 and high c-MYC levels were most sensitive to
bruceantin [22,25]. The results of the current study are in
accordance with these observations. The slightly more
sensitive MB cell lines D341 and D425 express wild-type
p53 and high c-MYC levels, whereas DAOY cells harbor
mutant p53 [40].

Our results also demonstrate that NBT-272 induces apop-
tosis in MB cells at submicromolar concentrations. The
induction of apoptosis by NBT-272 was more prominent
in MB cells expressing low c-MYC levels (DAOY wt, DAOY
V11), giving no indication that c-MYC down-regulation is
related to the susceptibility of MB cells to NBT-272
induced apoptosis. D341 and D425 human MB cells do
not express caspase-8 [37] and DAOY cells harbor mutant
p53 [40]. Neither caspase-8, nor p53 appear to be essen-
tial for NBT-272 induced apoptosis. Induction of apopto-

NBT-272 treatment of human MB cells results in reduced c-MYC binding activityFigure 4
NBT-272 treatment of human MB cells results in reduced c-MYC binding activity. NBT-272 treatment (24 h) of MB 
cells resulted in a reduction of c-MYC binding activity as determined by the ELISA-based TransAM-c-MYC activity assay. Data 
show the mean absorbance ± SD (n = 3; ± SD). *Significantly different from controls (solvent only treated cells), determined by 
one-way ANOVA (**:P < 0.005, *:P < 0.05).
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sis by quassinoids has been reported before [25,26,41].
Rosati et al. [40] have demonstrated that quassinoids can
induce mitochondrial depolarization and caspase-3 acti-
vation. The results of the current study are in accordance
with these findings. However, further studies are needed
to elucidate the exact mechanisms of NBT-272-induced
apoptosis in MB cells.

NBT-272 treatment of synchronized MB cells resulted in a
block in cell cycle progression in MB cells, which may
explain its anti-proliferative effects. The data presented in
this report support the existence of quassinoid mediated
effects on the cell cycle regulation. Bruceantin treatment
of leukemia and lymphoma cells induced a G1 arrest in
most cell lines tested [22,25]. It has been postulated that
quassinoids inhibit c-MYC protein expression [25,26],

which is confirmed in the present study. The ability of c-
MYC to activate and repress target genes involved in cell-
cycle progression has been investigated intensively [42-
44]. Down-regulation of c-MYC expression by antisense
prevented S-phase entry [45,46], indicating the important
role of c-MYC in cell cycle progression. It has been sug-
gested that quassinoids inhibit the purine synthesis path-
way and inhibit DNA/RNA synthesis [47], and that
inhibition of nucleotide synthesis may also contribute to
the prolonged G1/S arrest. The exact mechanism by which
NBT-272 inhibits cell cycle progression remains to be
investigated.

The anti-proliferative effect of NBT-272 on MB cells was
associated with c-MYC protein down-regulation and
reduced c-MYC activity. The effect on c-MYC expression

NBT-272 treatment (24 h) of human MB cells results in an increase of apoptotic cell deathFigure 5
NBT-272 treatment (24 h) of human MB cells results in an increase of apoptotic cell death. Values represent the 
mean absorbance of cytoplasmatic histone-associated-DNA fragments (representative from two independent experiments) 
compared with solvent only treated cells ± SD (n = 3; ± SD). *Significantly different from control values, determined by one-
way ANOVA (***:P < 0.001, **:P < 0.005, *:P < 0.05).
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Block of the cell cycle progression in synchronized MB treated with NBT-272Figure 6
Block of the cell cycle progression in synchronized MB treated with NBT-272. MB cells were synchronized by 
hydroxyurea treatment as described in Methods and treated with NBT-272 or the same volume of medium as control. FACS 
analysis of NBT-272 and control cells carried out 0, 8, 16, and 24 h posttreatment. Results are presented as the mean percent-
ages of cells in G1, S, and G2/M ± SD (n = 2; ± SD).
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occurred at the post-transcriptional level, since the drug
did not significantly affect c-MYC mRNA levels in MB cell
lines. In MB, c-MYC gene amplification, aberrant signal
transduction of the wingless (WNT) signalling pathway
[48], or constitutive activation of STAT3 [49] are known
mechanisms for c-MYC deregulation. In order to elucidate
whether NBT-272 could influence these pathways, STAT3
activity was measured in cell lysates of cells treated with
NBT-272. Our analysis revealed relatively low STAT3
activity in all MB cells and minor changes after NBT-272
treatment (data not shown). The NBT-272-mediated
effect on c-MYC levels appears to be independent of
STAT3 activity.

Conclusion
In human MB cells, NBT-272 treatment inhibits cellular
proliferation at nanomolar concentrations, induces apop-
tosis, and down-regulates the expression of the oncogene
c-MYC. Thus, NBT-272 represents a novel candidate drug
to inhibit proliferation of human MB cells in vivo.
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