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Abstract We investigate the in vivo patterns of stem cell divisions in the human hematopoietic

system throughout life. In particular, we analyze the shape of telomere length distributions

underlying stem cell behavior within individuals. Our mathematical model shows that these

distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric

cell proliferations. Our predictions are tested against measured telomere length distributions in

humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of

356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an

increasing stem cell pool during childhood and adolescence and an approximately maintained stem

cell population in adults. Furthermore, our method is able to detect individual differences from a

single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell

proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of

stem cell related diseases.

DOI: 10.7554/eLife.08687.001

Introduction
Homeostasis is in most mammalian tissues maintained by the occasional differentiation of infre-

quently dividing multi-potent stem cells (Li and Clevers, 2010; Busch et al., 2015). These cells are

involved in the formation, maintenance, renewal, and aging of tissues (Reya et al., 2001;

Morrison and Kimble, 2006). Their longevity imposes the risk of the accumulation of multiple muta-

tions that potentially induce aberrant stem cell proliferation and can ultimately cause the emergence

of cancer (Hanahan and Weinberg, 2011). The quantification of aberrant stem cell properties in can-

cer is impeded by the lack of detailed information about the expected patterns of cell replication in

healthy human tissues (Rossi et al., 2008; Vermeulen et al., 2013). Dynamic properties of stem cell

populations in vivo are predominantly obtained from sequential experiments in animal models

(Morrison and Spradling, 2008; Orford and Scadden, 2008). Unfortunately, these methods are

mostly inapplicable to humans and to infer in vivo properties of human stem cell populations remains

a challenge. Indirect methods, i.e. biomarkers that reflect the proliferation history of a tissue, may

overcome these limitations (Greaves et al., 2006; Graham et al., 2011; Kozar et al., 2013). In the
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following, we combine data of telomere length distributions and mathematical modelling of the

underlying dynamical processes to deduce proliferation properties of human hematopoietic stem

cells in vivo.

Telomeres are noncoding repetitive DNA sequences at the ends of all eukaryotic chromosomes.

In vertebrates, these sequences consist of hundreds to thousands of repeats of the nucleobase

blocks TTAGGG (Griffith et al., 1999). Telomere repeats are progressively lost in most somatic cells

with age, as the conventional DNA polymerase is unable to fully copy the lagging DNA strand of

chromosomes during cell replication (Olovnikov, 1973). Short telomeres are associated with genetic

instability (Hande, 1999; Feldser et al., 2003). They trigger DNA-damage checkpoint pathways and

enforce permanent cell cycle arrest ( d’Adda di Fagagna et al., 2003). Thus, telomere length limits

the replication capacity of somatic cells (Hayflick and Moorhead, 1961) and can indirectly act as a

tumor suppressor (Kinzler and Vogelstein, 1997; Campisi, 2005). This effect can be attenuated by

the enzyme telomerase, which tags additional TTAGGG repeats to the end of chromosomes by uti-

lizing single stranded RNA templates (Greider and Blackburn, 1989). Telomerase is primarily

expressed in compartments of stem and germ line cells, as well as in numerous tumors (Kim et al.,

1994). However, telomerase expression levels are insufficient to prevent the progressive loss of telo-

mere repeats in most healthy human tissues with age (Harley et al., 1990; Rufer et al., 1999). This

net loss of telomere repeats during cell replication leads to a characteristic telomere length distribu-

tion that reflects the replication history of cells. Since telomere length dynamics is important for a

number of genetic and acquired disorders (Hastie et al., 1990; Blasco, 2005; Calado and Young,

2009), it is critical to understand the underlying mechanisms of this fundamental process. We have

developed a mathematical model that allows us to interpret data of telomere length shortening in

hematopoietic cells obtained from 356 healthy humans. Most importantly, we can infer the patterns

of stem cell behavior from the underlying telomere dynamics within individuals from a single tissue

sample, i.e. a single snapshot.

Modelling telomere length dynamics
Our mathematical model recovers the temporal change of telomere length distributions in human

hematopoietic cells with a minimal number of required model parameters. Since hematopoietic cells

proliferate in a hierarchical organised tissue with slowly dividing stem cells at its root, such a model

eLife digest Human cells die off regularly due to normal wear and tear, aging or injury. To

replace these cells, humans maintain pockets of tissue specific stem cells that can develop into one

of several different types of specialized cell. For example, stem cells in the bone marrow can

develop into red blood cells, white blood cells or any of the other blood cell types. Unavoidably,

over the course of a lifetime stem cells accumulate mutations that may cause them to become

cancerous.

Researchers have learned a lot about stem cells by studying them under laboratory conditions.

However, these studies cannot answer all the questions we have about human stem cells. As a

result, human studies are needed; but frequently taking samples of stem cells from humans to assess

them is impossible for numerous reasons, most importantly it is invasive and potentially harmful.

Instead, researchers are looking for indirect ways to measure how stem cells grow.

Each time a cell divides, the protective ends of a chromosome – known as telomeres – get

shorter. Now, Werner, Beier et al. have developed a mathematical model to assess human stem cell

growth based on the length of the cells’ telomeres. This model can gauge the growth patterns of

the stem cell populations in an individual based on a sample taken from a single tissue.

Werner, Beier et al. tested the model using telomere measurements from blood and bone

marrow samples taken from 356 healthy people of different ages. The results suggest that the stem

cell population that gives rise to blood cells (the hematopoietic stem cells) increases in size during

childhood and adolescence, but levels off during adulthood. The model also revealed that patterns

of stem cell growth vary among individuals. Further studies of telomere length differences may help

scientists identify the abnormal (stem cell-like) growth patterns associated with diseases like cancer.

DOI: 10.7554/eLife.08687.002
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needs to connect properties of cell proliferation and telomere shortening. Telomere length can be

assessed on three different levels of resolution, (i) the level of single telomeres, (ii) the level of single

cells and (iii) the level of the tissue. Of course these levels are not independent, for example the

knowledge of telomere length in all cells allows to obtain the (average) telomere length of a tissue.

The processes that drive telomere length dynamics differ at these levels of resolution. Single telo-

meres are prone to stochastic events such as oxidative stress or recombination and thus may also

shorten by effects independent of proliferation associated attrition (von Zglinicki, 2002;

Antal et al., 2007). Healthy human cells contain 184 telomeres, four on each of the 46 chromo-

somes. Thus, the noise on the level of single telomeres becomes much smaller on the cell level. We

capitalise on this and consider telomere length on the cell level in the following. Thus, the average

telomere length of a cell shortens by a constant factor during each division. Such an approach might

underestimate the number of senescent cells once telomeres become critically short, since it is the

length of the shortest telomere rather then the average telomere length that triggers cell cycle

arrest (Hemann et al., 2001). Our model is sensitive to the accumulation of cells in the state of cell

cycle arrest and we can infer this effect experimentally from population wide telomere length distri-

butions. However, this effect can likely be neglected during adolescence and adulthood, but might

have important implications in some tumors, at old age or in conditions associated with abnormal

telomere maintenance.

We further need to consider properties of a hierarchical tissue organization, where few slowly

dividing stem cells give rise to shorter lived progeny. Although some of the progeny, particularly

primitive progenitor cells, can be long lived and are able to maintain homeostasis without stem cell

turnover for intermediate time intervals, eventually all non hematopoietic stem cells will be depleted

without continuous stem cell turn over (Busch et al., 2015; Sun et al., 2014). Age dependent differ-

ences in telomere shortening across different lineages of hematopoiesis can only persist in the

hematopoietic system if they occur on the level of the maintained self-renewing cell population.

Cells leaving the stem cell pool have an approximately constant number of cell divisions before they

reach maturation (Takano, 2004; Werner et al., 2011). This shifts the distribution to shorter values

of telomere length and consequently, the distribution of telomere lengths of mature cells is a good

proxy for the distribution of telomere lengths in stem cells (Rodriguez-Brenes et al., 2013). We

measured telomere length distributions in lymphocytes, granulocytes and bone marrow sections

separately. This allows us to investigate the myeloid and lymphoid lineage of hematopoiesis

independently.

In our model, we assume a population of initially N0 stem cells. In the simplest case, each stem

cell would proliferate with the same rate r and the cell cycle time would follow an exponential distri-

bution. However, tissue homeostasis requires continuous stem cell turn over in intermediate time

intervals, therefore the proliferation rate of the population of stem cells is adjusted, such that a

required constant output of differentiated cells per unit of time is maintained. In the simplest case of

a constant stem cell population, the effective proliferation rate becomes r=N0. However, in more

complex scenarios, the number of stem cells could differ with age and the effective proliferation rate

of stem cells r=N tð Þ also becomes age dependent (Rozhok and DeGregori, 2015; Bowie et al.,

2006). This resembles a feedback mechanism and results in an approximately Log-normal distribu-

tion of cell cycles, see also Equation S26 in Materials and methods for details. In addition, each

stem cell clone is characterised by a certain telomere length (Antal et al., 2007; Simon and Derrida,

2008). This telomere length shortens with each stem cell division by a constant length Dc and conse-

quently the remaining proliferation potential is reduced in both daughter cells (Rufer et al., 1999;

Allsopp et al., 1992). If the telomeres of a cell reach a critically short length, this cell enters cell cycle

arrest and stops proliferation, reflecting a cell’s Hayflick limit (Hayflick and Moorhead, 1961). This

can be modelled by collecting cells with the same proliferation potential in states i. A cell enters the

next downstream state i ! iþ 1 after a cell division, see also Figure 1, as well as Equations S1,S14

in Materials and methods. Since the next cell to proliferate is chosen at random from the reservoir,

cells progressively distribute over all accessible states with time (Olofsson and Kimmel, 1999). This

corresponds to the problem of how many cells are expected in a state i at any given time, which we

denote by N ið Þ tð Þ in the following.
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Results

The model predicts characteristic telomere length distributions for
different ratios of symmetric and asymmetric stem cell divisions
The shape of the distribution of cells across cell cycles depends on the patterns of stem cell prolifer-

ation, for example the ratio of symmetric versus asymmetric divisions. An asymmetric stem cell divi-

sion produces one stem and one non-stem cell (for example a progenitor cell that leaves the stem

cell compartment). If we restrict the stem cells dynamics to only asymmetric divisions, the process

results in a stem cell population of constant size and the number of cells in each state i follows a

Poisson distribution

NðiÞ tð Þ ¼ N0

i!

rt

N0

� �i

e
� rt

N0 : (1)

A typical example of this distribution is shown in Figure 1—figure supplement 1 and details on

the derivation can be found in Materials and methods, see Equation S1. Cells with maximum prolif-

eration capacity (cells in state 0 in our model) are progressively lost and cells accumulate in the final

state of cell cycle arrest by passing through all intermediate states.

Inferring the dynamics of distribution (1) from in vivo measurements requires sequential sampling

and complicated cell sorting, which seems challenging in realistic clinical settings. On the other

hand, the measured (observed) telomere length distribution corresponds to a single sample of the

Figure 1. The combination of telomere length data and mathematical modeling allows to infer individualized stem cell proliferation patterns. (a–c)

Blood or bone marrow samples were taken from healthy persons with ages between 0 and 85. Telomere length was measured with Flow-FISH and Q-

FISH techniques, resulting in individualized telomere length distributions. (d–g) Mathematical framework: Stem cells divide either symmetrically or

asymmetrically. Each cell is characterized by an average telomere length. Cells with the same state are collected in compartments. The average of the

underlying stochastic process is captured by a system of differential equations. The solution of this equation is a generalised truncated Poisson

distribution that gives rise to a traveling wave, see Equation S15. (h, i) The combination of modeling and telomere length distribution measurements

allows dynamic predictions for individuals, see Figure 6. These predictions can be tested on population wide data of telomere length, for example see

Figure 3.

DOI: 10.7554/eLife.08687.003

The following figure supplement is available for figure 1:

Figure supplement 1. Results of the mathematical model on the temporal change of individual telomere length distributions.

DOI: 10.7554/eLife.08687.004
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underlying Poisson process. The expected shape of this observed distribution is depicted in

Figure 1g. It becomes a traveling wave that starts narrowly distributed around an initial telomere

length and shifts towards shorter average telomere length with time. We have measured this distri-

bution, which arises from our theoretical model, experimentally in many samples of granulocytes,

lymphocytes and bone marrow sections of healthy adult humans, which we discuss in detail below.

In addition to asymmetric divisions, stem cells can undergo symmetric self-renewal, which is a pre-

requisite for development, as it allows for a growing stem cell population. In our model, stem cells

divide symmetrically with probability p and asymmetrically with probability 1� p respectively. In this

situation, the number of stem cells is not constant, but increases with each symmetric stem cell self-

renewal. As a consequence, the expected distribution also changes and is now described by a gen-

eralised Poisson distribution (see Equation S14 in Materials and methods) given by

N ið Þ
p tð Þ ¼N0

i!

1þ p

p

� �i lni rp
N0
tþ 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp
N0
tþ 1p

q : (2)

This distribution also leads to a traveling wave, but the maximum of the distribution decreases

considerably slower compared to the case of purely asymmetric stem cell divisions. In the following,

we refer to the model that is restricted to only asymmetric stem cell divisions as model 1 and denote

the more general case of symmetric and asymmetric cell divisions as model 2.

Ideally, we would like to follow these traveling waves in individual healthy humans over time and

compare this sequential data to the dynamics from our model predictions. Unfortunately, the time

required to confirm our model across all ages would exceed the life expectancy of the authors. We

therefore explored those properties of our analytical model that are directly testable in population

wide data of telomere length. One such property is the change of the average telomere length with

age, which we measure in a group of 356 healthy individuals.

The average telomere length decreases nonlinearly in the presence of
symmetric stem cell self-renewal
The average telomere length decreases in most human tissues with age (Harley et al., 1990). This is

well known and has been confirmed numerous times. Surprisingly, less is known about the detailed

dynamics of this decrease. We can derive the dynamics of the average telomere length from the

telomere length distributions directly. The average telomere length corresponds to the expected

value of the telomere length distribution (in the following denoted by E½cðtÞ�), see Equation S5 in

Materials and methods for details. As the telomere length distribution changes with time, the aver-

age telomere length becomes time dependent naturally. In the absence of symmetric stem cell self-

renewal (model 1) the average telomere length E c tð Þ½ � is expected to decrease linearly

E c tð Þ½ �»c�Dc
rt

N0

; (3)

with age (denoted by t in the equation above). More specifically, the average telomere length of

cells of a particular type, e.g. the population of granulocytes or lymphocytes, shorten by a constant

fraction each year. The dynamics changes once a significant fraction of cells enter cell cycle arrest,

see Equation S9. The average telomere length transitions from a linear into a power law decline

(when the average telomere length becomes very short) and the stem cell pool reaches the state of

complete cell cycle exhaustion asymptotically. This transition would enable the identification of an

age where a considerable fraction of stem cells enter cell cycle arrest, potentially a mechanism

important in aging, carcinogenesis or bone marrow failure syndromes.

Furthermore, we calculated the variance of the underlying stochastic process. This gives us a mea-

sure for the expected fluctuation of the average telomere length in a population of healthy humans.

We expect the variance to increase linearly in time in the absence of symmetric stem cell self-

renewal. Consequently, the standard deviation is proportional to the square root of age. Yet again,

similar to the average telomere length, the dynamics of the variance changes once a significant frac-

tion of cells enters cell cycle arrest. The variance starts to decrease and would reach zero, if all cells

stopped proliferation.
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The distribution of telomere length changes under the presence of symmetric stem cell self-

renewal (model 2). Accordingly, we expect a different decrease of the average telomere length. We

find that the telomere length follows a logarithmic decay with age (see also Equation S19), given by

Ep c tð Þ½ �» c�Dc
1þ p

p
ln

rp

N0

tþ 1

� �

(4)

The average telomere length of a cell population shortens less with increasing age under the

presence of symmetric self-renewal, although the decrease of telomeric repeats per cell division

(denoted by Dc in Equation 4) is constant. This effect emerges naturally in our model due to the

increasing number of stem cells with age. In a population with only few cells, each cell proliferation

has a considerable impact on the average telomere length, while this impact diminishes in larger

populations. If the stem cell population increases progressively, telomere shortening reduces on the

tissue level with age.

In vivo measurements of telomere length suggest an increasing number
of hematopietic stem cells during human adolescence
In order to test the predictions of our model experimentally, we have measured telomere length in

lymphocytes and granulocytes in a cohort of 356 healthy humans with ages between 0 and 85 years.

Our data includes 47 cord blood samples of healthy children and bone marrow biopsies of 28

patients with diagnosed Hodgkin lymphoma without bone marrow involvement. We assessed the

average telomere length in all 356 samples with established Flow-FISH protocols (Aubert et al.,

2012; Baerlocher et al., 2006; Weidner et al., 2014; Beier et al., 2012). This reveals the population

wide dynamics of telomere length and contains a significant number of cord blood samples that

allow us to investigate differences in cell proliferation during adolescence and homeostasis in

adulthood.

In addition, we have analyzed 28 blood samples of lymphocytes, 10 blood samples of granulo-

cytes and 28 bone marrow biopsies with quantitative-fluorescence in situ hybridisation (Q-FISH)

(Beier et al., 2015; Varela et al., 2011; Zijlmans et al., 1997) (see Figure 2 and experimental meth-

ods for details). The averages of these samples correspond to the open symbols in Figure 3. From

the full distribution, we obtain the telomere length distributions of single individuals and estimate

personalised cell proliferation properties, e.g. the ratio of symmetric to asymmetric cell divisions as

well as the rate of telomere shortening for each sample separately. We compare these personalised

estimates to population wide telomere length to test the consistency of our results on two indepen-

dent data sets.

In order to compare our model with the experimental data, we implemented standard maximum

likelihood estimates for a regression analysis. Our experimental finding in adults (we only consider

persons of 20 years or older) show that telomere length in granulocytes and lymphocytes decreases

approximately linearly with age on the population level. In both cell populations the telomere length

of adults decreases with 50� 5 bp=year (we state the maximum likelihood estimate and the 95%

confidence interval). If for example a cell looses on average 50 bp telomeric repeats per cell division

(Rufer et al., 1999), this implies approximately 1 replication per year for the hematopoietic stem

cells. This agrees with the observation of rare stem cell turnover under homeostasis (Busch et al.,

2015; Sun et al., 2014; Dingli et al., 2006).

However, the assumption of strictly asymmetric cell divisions (model 1) fails to explain the pro-

nounced loss of telomere repeats in infants (prediction of model 1 for the initial telomere length in

lymphocytes: 9:8� 0:15 kbp, measured average initial telomere length: 10:67� 0:4 kbp, similar

results for granulocytes, see also Figure 4 for a comparison of model 1 and model 2). This discrep-

ancy can be resolved by introducing an interplay of symmetric and asymmetric stem cell divisions

(model 2) that allows for an increasing number of stem cells. In this situation, the proliferation rate of

stem cells becomes age dependent and our model predicts that at the youngest ages, when the

number of stem cells is lowest, telomere loss is most pronounced. Maximum likelihood estimates of

our general mathematical solution (Equation 4) to the telomere length data on the population level

(see Figure 3) reveals for the parameter controlling average loss of telomere length in lymphocytes

a value of 75� 7 bp=year, an initial telomere length of 10:4� 0:2 kbp and a probability for symmet-

ric stem cell self-renewal of 0:35� 0:07. In granulocytes we find a value of telomere loss of

68� 5 bp=year, an initial telomere length of 10:2� 0:3 kbp and a probability for symmetric stem

Werner et al. eLife 2015;4:e08687. DOI: 10.7554/eLife.08687 6 of 23

Research article Computational and systems biology Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.08687


cell self-renewal of 0:44� 0:2. This probability accounts for the increased loss of telomere repeats in

infants and substantially improves the prediction of the initial average telomere length. In addition

to our group of 356 healthy humans, we have tested our hypothesis in an independent data set of

835 healthy humans, previously published by an unrelated group in (Aubert et al., 2012), see Fig-

ure 3—figure supplement 1. This set confirms our parameter estimations, in particular the acceler-

ated decrease of average telomere length during adolescence is also observed.

Our model suggests that the increased loss of telomere repeats in the first years of human life is

a consequence of an expanding stem cell population. This expansion is combined with a reduction

in proliferation rates of single stem cells. The loss of telomere repeats during cell replication has a

more pronounced impact on the average telomere length within a small cell population and dimin-

ishes in large stem cell populations. This explains the increased loss of telomeric repeats during ado-

lescence (see Figure 4) naturally as a consequence of growth by an expanding stem cell population.

Similarly, a sudden accelerated loss of telomeric repeats in aged individuals could point towards an

insufficient stem cell self-renewal. This might provide a promising direction for further investigations

with an extended data set of sufficiently high resolution in aged individuals.

Proliferation properties of stem cells differ during adolescence and
adulthood
Our analytical model is consistent with population wide telomere length data. It shows that symmet-

ric stem cell self-renewals are more frequent in adolescence and their effect on the dynamics of aver-

age telomere length reduces with age. However, how robust are our conclusions under variation of

model parameters or a change of cell proliferation properties with age? One possibility to address

these problems is the implementation of Bayesian inference methods (Dempster, 1968). In a nut-

shell, such methods draw a random set of model parameters either from an uninformed (objective)

Figure 2. Representative image of the Q-FISH analysis of a bone marrow section. (a) Maximum projection image

of a paraffin-embedded bone marrow section of confocal Q-FISH with DAPI and Cy3. (b, c) Single DAPI and Cy3

staining respectively. (d) Overlay of image analysis of nucleus and telomere detection. (e) Image analysis of the

DAPI staining is shown. Detected nuclei are shown in red. (f) Image analysis of the Cy3 staining. Detected

telomeres marked in red. For details on the Q-FISH analysis please see Materials and methods.

DOI: 10.7554/eLife.08687.005

The following figure supplements are available for figure 2:

Figure supplement 1. Representative image of the Q-FISH analysis of a peripheral blood cytospin.

DOI: 10.7554/eLife.08687.006

Figure supplement 2. Representative FACS blot of a flow-FISH analysis.

DOI: 10.7554/eLife.08687.007
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or informed (subjective) prior distribution and produce independent realizations of the model. These

realizations are compared to some (appropriate) data of interest and fits with a predefined statistic

significance are retained while unsatisfactory realizations are rejected. Originally developed for phy-

logenetic tree reconstruction, such methods are increasingly used in other applications

(Marjoram and Tavaré, 2006). Bayesian inference methods allow to quantify the uncertainty in an

analysis by providing posterior distributions of model parameters.

In the following we implement an Approximate Bayesian Computation (ABC) rejection sampling

framework (Csilléry et al., 2010) on the data presented in Figure 3. We derive posterior distribu-

tions for our three free model parameters, the initial telomere length c, the relative decrease of telo-

mere length per time Dcr=N0 and the probability of symmetric stem cell divisions p. We draw these

variables independently from uniform (uninformed) distributions and test 109 independent realiza-

tions of our mathematical model 1 and model 2. We seek parameter regimes that maximize the

coefficient of determination R2 between Equation 3 (model 1) or Equation 4 (model 2) and the

average telomere length presented in Figure 3. We discard any parameter combination below a

threshold. We perform the same analysis independently on the data set of granulocytes and

lymphocytes.

In both cases, we find localized posterior parameter distributions. For lymphocytes, parameters

peak at Dcr=N0 ¼ 0:071� 0:005 kbp=year, c ¼ 10:41� 0:3 kbp and p ¼ 0:32� 0:2, see Figure 5c–e.

Only a small parameter range explains the exact patterns of telomere shortening. We find approxi-

mately 70% of stem cell divisions are asymmetric and 30% are symmetric self-renewals. This stochas-

tic approach confirms the results of the non-linear model fits using a standard maximum likelihood

approach that were discussed in the previous section, but provides further information on the distri-

bution of our parameters.

The previous analysis assumes a fixed set of parameters for the dynamics of telomere shortening

for all ages. In principle, these parameters could also change with age. To see if we can identify ages

with different stem cell proliferation parameters, we investigated a third model that allows for suc-

cessive phases of stem cell dynamics with independent parameter sets for each phase. We consider

an additional parameter tT , which corresponds to a transition time. We perform the above Bayesian

Figure 3. The population wide average telomere length of (a) lymphocytes and (b) granulocytes. The data from a

cohort of 356 individuals (symbols) is captured by a logarithmic decrease of the average telomere length (solid

line), which is predicted by our model 2 that allows for symmetric stem cell divisions and thus leads to a slowly

increasing stem cell pool. Based on the fit of the average, the mathematical model predicts a standard deviation

that increases with the square root of the age (dashed lines). This approach does not take the genetic variability of

telomere length in newborns into account. The decrease of the average telomere length slows down in children

and becomes almost linear in adults, see also Figure 4. For individuals represented by filled symbols, only

information on the average telomere length is available. For individuals represented by open symbols, we

additionally analysed the distribution of individually detected telomeres, see Figure 6. An additional parameter

estimation on an independent data set is shown in Figure 3—figure supplement 1.

DOI: 10.7554/eLife.08687.008

The following figure supplement is available for figure 3:

Figure supplement 1. Decrease of the average telomere length of (a) lymphocytes and (b) granulocytes in a

population of 835 healthy humans.

DOI: 10.7554/eLife.08687.009
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approach independently for each random partition of the data set. This approach suggests at most

two separate phases, with a transition between the 6th and 7th year of life for lymphocytes, see

Figure 5f–i, and a transition between the 10th and 15th years of life for granulocytes, see Figure 5j–

m. In infants and the first years of life, the probability of stem cell self-renewal shows a significant

variance (Figure 5). However, the data resolution is insufficient for this short time window to provide

reliable parameter estimates. The probability of symmetric stem cell self-renewal in adults however

is in the the range of p 2 ð0; 0:2Þ. This is lower as was predicted by the regression analysis across all

ages. This suggests a reduction in the self-renewal probability of stem cells after adolescence and

points towards an either slower growing or constant stem cell population in adults. This may reflect

selection for an optimal stem cell population size to minimize the risk of cancer initiation as sug-

gested in theoretical studies before (Michor et al., 2003).

Next, we aimed to test which of the three models explains the data best, considering the com-

plexity of the models. We therefore utilise the likelihood estimates of the former subsection and per-

form a model selection based on the Akaike information criterion (AIC) (Burnham, 2004). Model 1

scores with an AIC of 2550, model 2 has an AIC of 2328 and a multiphase model with a minimum of

7 parameters yields an AIC of 2361. The AIC is minimized by model 2. Based on this approach,

model 1 as well as a multiphase model can be rejected as more likely explanations for the telomere

length shortening presented in Figure 3 (given the above numbers and according to standard pro-

cedures, the relative likelihood of model 1 to better explain the data compared to model 2 is

assumed to be p»10�48, the relative likelihood of the multi-phase model to better explain the data

compared to model 2 is assumed to be p»10�8). This selection is robust under the choice of different

statistical methods. For example, a BIC approach selects the models in the same order.

A single sample of the telomere length distribution can inform about
stem cell dynamics
The actual stem cell population sizes and their dynamics do not only vary with age, but also between

individuals. This has immediate consequences on the susceptibility of individuals towards certain dis-

eases (Calado and Young, 2009; Brümmendorf and Balabanov, 2006) and could potentially be

used in individualised treatment strategies. Our model describes the telomere length distributions in

Figure 4. Comparison of the average telomere length decrease of lymphocytes predicted by Model 1 and Model

2. Model 1 (red dashed line, best fit to the data) predicts a linear decrease of the average telomere length with

age. The linear decrease underestimates the initial accelerated telomere loss during adolescence (the average

initial telomere length in newborns is shown by the dark grey rectangle). In contrast, model 2 (black line) predicts a

logarithmic decay of the average telomere length with age and is able to capture the increased loss of telomere

length during adolescence, as well as the approximately linear decrease in adults.

DOI: 10.7554/eLife.08687.010
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individuals and quantifies three parameters, i.e. initial telomere length, increase of stem cell pool

size and stem cell replication rates of an individual from a single tissue sample. We therefore

extended our experimental protocols to further test our theoretical results. First, we measured single

telomere signals of peripheral blood sorted for lymphocytes in 28 individuals and sorted for granulo-

cytes in 10 individuals by quantitative confocal FISH in addition to the average telomere length that

is provided by flow FISH. Second, we investigated the telomere length distribution in paraffin-

embedded bone marrow sections of an additional cohort of 28 healthy individuals using quantitative

confocal FISH (Beier, 2005), see Figure 2. We compare our general telomere length distribution

that allows for any ratio of symmetric and asymmetric stem cell divisions (model 2) to the data set of

all 66 individuals. Cases of four representative individuals are shown in Figure 6. All cases can be

found in Figure 6—figure supplements 1–3 and all individual cell proliferation properties as well as

quality of fits are summarised in Supplementary file 1. The average telomere length of these 66 dis-

tributions are shown as open symbols in Figure 3.

Figure 5. Posterior distributions of model parameters from Approximate Bayesian Computation (ABC). (a, b) Model fit for only asymmetric stem cell

divisions (model 1) to the data of average telomere length on the population level. The expected telomere length decreases linearly and two free

model parameters, i.e. initial telomere length and stem cell turn over rate are estimated. (c–e) ABC with symmetric and asymmetric stem cell divisions

(model 2). In this case one additional free parameter (probability of symmetric stem cell divisions) can be estimated. (f–i) ABC for a two phase extension

of the model inferred from population wide data of lymphocytes, panels (j–m) show the same analysis for granulocytes. A likelihood based model

selection favours model 2 and rejects model 1 as well as the multiphase model as more likely explanations for the observed data.

DOI: 10.7554/eLife.08687.011
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The fits of our calculated distribution (see Equation S15 for the distribution and Equation S29

for details on the fitting procedure) reveal substantial differences in initial telomere length, increase

of stem cell pool size and stem cell replication rates between the 66 individuals, but also between

granulocytes, lymphocytes and bone marrow samples. We find a low probability of symmetric self-

renewal (p between 0.005 to 0.03 per cell division) in all individual samples. This agrees with our

results on the average telomere length shortening in adults at the population level and supports our

observation of an approximately maintained active stem cell number in individuals after adolescence.

Also the average telomere loss per year varies between individuals and ranges from 18 bp/year to

110 bp/year. However, the averages of all individual parameter sets agree with the estimated prolif-

eration properties inferred from the population wide data of telomere length. We find differences

between individual samples of lymphocytes and granulocytes. While the loss of telomeric repeats

slows down with age in granulocytes, it slightly accelerates in lymphocytes, see Figure 7. These cells

represent the myeloid and lymphoid lineage respectively. In our model, such a reduced rate of telo-

mere loss can be explained with an increased reservoir of myeloid specific stem and progenitor cells

and is in agreement with a skewed differentiation potential towards the myeloid lineage of aged

hematopoietic stem cells (Geiger et al., 2013).

Figure 6. Telomere length distributions of granulocytes for four representative individuals. Telomere length

distributions within the nucleus of individual cells are measured once in single individuals (symbols). This data is

fitted with our model 2 (black line, see Equation S29 for details), leading to estimates for the parameters of the

theoretical distribution. These parameters can be used to extrapolate the distribution to any other age (gray lines).

The dashed line shows the prediction for the maximum of the distribution (Equation S18). Telomere length

distributions differ between individuals and change in different patterns, depending on the exact proliferation

parameters in individuals. Additional cases are shown the Figure 6—figure supplements 1–3. A summary of all

fitting parameters can be found in Supplementary file 1.

DOI: 10.7554/eLife.08687.012

The following figure supplements are available for figure 6:

Figure supplement 1. Nonlinear fits of the expected telomere length distribution to telomere length distributions

of granulocytes in peripheral blood of 10 healthy donors.

DOI: 10.7554/eLife.08687.013

Figure supplement 2. Nonlinear fits of the expected telomere length distribution to telomere length distributions

of lymphocytes in peripheral blood of 28 healthy donors.

DOI: 10.7554/eLife.08687.014

Figure supplement 3. Nonlinear fits of the expected telomere length distribution to telomere length distributions

in bone marrow biopsies of 28 patients with diagnosed M. Hodgkin without bone marrow affection.

DOI: 10.7554/eLife.08687.015
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Discussion
Our knowledge about the dynamics of tissue specific stem cells comes mostly from lineage tracing

experiments in transgenic mouse models. They provided insights into many aspects of tissue forma-

tion and maintenance, e.g. the intestinal crypt, but also the hematopoietic system (Busch et al.,

2015; Sun et al., 2014; Itzkovitz et al., 2012). However, there is variation between different trans-

genic mouse models and their significance for human stem cell properties remains a challenging

question. In some cases, clonal lineages can be traced by naturally occurring somatic mutations, e.g.

particular mtDNA mutations in human intestinal crypts (Baker et al., 2014). However, the in vivo

dynamic properties of human hematopoietic stem cells remain poorly characterized.

Here, we have utilized telomere length distributions of hematopoietic cells as a biomarker that

contains information about the proliferation history of cells. We developed a mathematical model

that allows us to infer dynamic properties of stem cell populations from data of telomere length dis-

tributions. These properties were analyzed in different cell types, e.g. lymphocytes, granulocytes

and bone marrow sections of individuals of different ages. These calculated distributions describe

the change of telomere length within the human population. The expected changes with age were

confirmed in a representative group of 356 healthy individuals and the conclusions are consistent

with our individualized parameter estimations.

The population wide data of average telomere length reveals different stem cell properties in

adolescence and adulthood. Telomere length decrease is logarithmic and occurs at a faster rate dur-

ing adolescence, suggesting a stem cell pool expansion in the first years of human life compatible

with growth. This decrease becomes almost linear in adults and is in line with an approximately con-

stant stem cell population. It is an interesting question why the number of stem cells would reach a

certain targeted size. This could be simply because of spatial constrains in the bone marrow. Yet,

from an evolutionary perspective, intermediate stem cell pool sizes were suggested to minimize the

Figure 7. Rate of telomere loss in 66 individuals. Shown is the rate of telomeric shortening (bp/year) of

granulocytes (circles), lymphocytes (triangle) and bone marrow sections (rectangle), inferred from telomere length

distributions of 66 different individuals (see Figure 5 and supplemental figures and Supplementary file 1 for a

summary of all parameters). Differences between individuals are large, but the average telomere shortening rate

conforms to parameter estimates of population wide data of telomere length, see for example Figure 5. Cells in

the bone marrow show a lower proliferation rate and consequently the rate of telomere loss is reduced (gray

dotted line). The rate of telomere loss decreases with age in granulocytes (�0.78 bp/year, dark red line) and in

bone marrow sections (�0.36 bp/year, grey dotted line), but increases in lymphocytes (+0.27 bp/year, dark green

dashed line). This observation agrees with a skewed differentiation potential towards the myeloid lineage of aged

hematopoietic stem cells (Geiger et al., 2013). The lines are only meant to represent a trend of increase or

decrease with age. The change with age is most probably not linear.

DOI: 10.7554/eLife.08687.016
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risk of cancer initiation (Rodriguez-Brenes et al., 2013; Michor et al., 2003). Such an optimization

requires feedback signals that ensures the maintenance of an intermediate sized stem cell popula-

tion, feedback signals that might be prone to (epi)genetic change and potentially are involved in

cancer and ageing.

It is still a debated question if stem cells in mammals are maintained by predominantly asymmet-

ric divisions, or alternatively by a population strategy of balanced symmetric self-renewal and sym-

metric differentiation. While the former strategy can be implemented on the single cell level, the

latter strategy would require further feedback signals. From a modelling perspective, a population

strategy of symmetric self-renewal and symmetric differentiation was suggested to minimize the

clonal load within a stem cell population (Shahriyari et al., 2013). On the other hand, experimental

findings seem to point towards predominantly asymmetric divisions, but this might also differ across

tissues (Morrison and Kimble, 2006). In our model, the stem cell pool is maintained by asymmetric

cell divisions. A balance of symmetric and asymmetric cell divisions would on average result in the

same telomere length dynamics and thus would be indistinguishable from asymmetric divisions on

the population level, only the interpretation of p, the probability of symmetric self-renewal would

change in this case. Yet, the variance of the distribution would be expected to increase under the

presence of symmetric differentiation and symmetric self-renewal. However, likely this effect is weak

compared to the measurement related noise of telomere length.

Our method quantifies the parameters of telomere dynamics from a single blood sample or paraf-

fin-embedded tissue samples of an individual. It is independent of any particular tissue organization

and thus can be applied, in principle, to any tissue. This general method will be of particular interest

to distinguish stem cell dynamics in healthy and sick individuals. We expect characteristic changes in

telomere length distributions in certain (hematopoietic) stem cell disorders such as chronic leukemias

(Braig et al., 2014) and bone marrow failure syndromes (Calado and Young, 2009; Beier, 2005).

Therefore, our model can serve as a tool to infer stem cell dynamics in vivo retrospectively and pro-

spectively from a single tissue sample. Such an approach can not only increase our understanding of

disease dynamics but may also contribute to personalized disease diagnosis and prognosis in the

future.

Materials and methods

Patients
Peripheral blood of 309 healthy blood donors was obtained from the blood donor bank in Aachen.

Q-FISH of peripheral blood cytospins was performed on 28 healthy blood samples. 47 cord blood

and blood samples from healthy children and adolescents were obtained from the Department of

Pediatrics and Neonatology of the University Hospital of Aachen. Bone marrow biopsies of 28

patients with diagnosed Hodgkin lymphoma without bone marrow involvement were used for bone

marrow analysis. All samples were taken with informed consent and according to the guidelines of

the ethics committees at University Hospital Aachen.

Flow-FISH
The Flow-FISH technique provides the mean telomere length per nucleus. Flow-FISH was carried out

according to previously published protocols (Aubert et al., 2012; Baerlocher et al., 2006;

Weidner et al., 2014; Beier et al., 2012). Briefly, after osmotic lysis of erythrocytes with ammonium

chloride, white blood cells were mixed with cow thymocytes. Cells were hybridized with FITC

labeled, telomere specific (CCCTAA)3- peptide nucleic acid (PNA) probe (Panagene) and DNA was

counterstained with LDS 751 (Sigma). FACS analysis was carried out on Navios or FC-500 (both

Beckman Coulter). Thymocytes, lymphocytes and granulocytes subsets were identified based on

LDS571 staining and forward scatter. Mean telomere length was calculated by subtracting the

unstained autofluorescence value of the respective lymphocyte, granulocyte or thymocyte subpopu-

lation. Cow thymocytes with a determined telomere length were used as an internal control to con-

vert telomere length in kilobase (kb). All measurements were carried out in triplicate.
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Quantitative-Fluorescence in situ hybdridsation (Q-FISH)
Q-FISH offers the possibility to analyze the distribution pattern of individual telomeres. For cytospins

of peripheral blood cells, erythrocytes were lysed using ammonium chloride (Stem cell

Technologies, Vancouver, British Columbia, Canada) and 50,000 cells were centrifuged for cytospin.

Cells were fixed with 70% ethanol solution for 30 seconds and air dried for 15 min. Bone marrow

sections were deparaffinized with xylol and rehydrated with ethanol following standard protocols.

Deparaffinized bone marrow tissue sections, metaphases and peripheral blood cells were processed

following previously published protocols (Beier et al., 2015; Varela et al., 2011; Zijlmans et al.,

1997). After initial washing with PBS, slides were fixed in formaldehyde (Sigma) (4%) in PBS for 2

min. Slides were further washed (three times for 5 min) with PBS followed by dehydration with etha-

nol and air drying for 30 min. Hybridization mixture containing 70% formamide (Sigma), 0.5% Mag-

nesium chloride (Sigma), 0.25% (wt/vol) blocking reagent (Boeringer) 0.3 mg/ml Cy-3-conjugated

(C3TA2)3 peptide nucleic acid probe (Pnagene), in 10 mM Tris (pH 7.2, Sigma) was added to the

slide. After adding a coverslip; DNA was denatured for 3 min at 85˚C. Hybridization was carried out

for 2 h at room temperature. After washing the slides twice with 70% formamide/10 mM Tris (pH

7.2)/0.1% bovine serum albumin (BSA), slides were washed again (three times for 5 min) with 0.05 M

Tris/0.15 M NaCl (pH 7.5) containing 0.05% Tween-20. After dehydration with ethanol slides were air

dried and stained with PBS containing 0.1 ng/ml of 4’-6-diamidino-2-phenylindole (DAPI) for 5 min.

After mounting the cells (Vectashield, Vectorlabs), a coverslip was added.

Image analysis
Confocal microscopy analysis was carried out at a Leica TCS-sp5 confocal microscope (Leica). Images

were acquired at 63x magnification and 1.5-2.0 digital zoom. Multi-tracking mode was used to

acquire images. Stacks of DAPI and Cy3 staining were taken with a step size of 1 mm. Peripheral

blood cells and bone marrows were captured including five steps (z-range 4 mm). Maximum projec-

tion of the images was carried out and Definiens XD 1.5 image analysis software (Definiens GmbH)

was used for quantitative image analysis. Nucleus and telomere detection was carried out based on

DAPI and Cy3 intensity patterns. A valid image analysis was assumed in case of a correct detection

of 90% of all visible telomeres. All image analysis was carried out single-blinded. Individual telomere

signals were calculated after subtraction of the mean background value per detected nucleus. For

bone marrow section and peripheral blood cells, values of all detected telomeres were used for anal-

ysis. Paraffin embedded lymphocytes of three healthy donors and granulocytes of a patient with

chronic myeloid leukemia with a determined telomere length were used as controls for bone marrow

biopsies. Linear regression of the control cells was carried out to convert telomere length from arbi-

trary units to kb. Telomere length in kb of the Q-FISH analysis of peripheral blood cells was calcu-

lated based on the linear regression of the corresponding Flow-FISH values.

Mathematical model of telomere length dynamics
We assume a finite number of 1þ c accessible telomere states of stem cells, where each state i con-

tains cells of equal average telomere length. Initially, N0 cells are in state 0 and cells will progres-

sively enter downstream states after cell divisions. An asymmetric division of a cell in state i leads to

one more differentiated cell (more committed within a hierarchically tissue organization) and one

stem cell. The committed (progenitor) cell leaves the pool of stem cells and does not further contrib-

ute to dynamics in the stem cell population. The second cell keeps the stem cell properties and

enters state iþ 1, reflecting the shortening of its telomeres by a length of Dc. Similarly, a symmetric

cell division results in two stem cells, both entering the next subsequent state. In our model, stem

cells divide symmetrically with probability p and asymmetrically with probability 1� p, respectively. A

cell in state c enters cell cycle arrest and cannot reach subsequent states - the next proliferating cell

is randomly chosen amongst all cells not yet in state c.

Stochastic simulations
We implement individual based stochastic simulations of our telomere model. We initialize our pro-

gram with N0 cells in state 0. The next cell to proliferate is chosen randomly amongst all cells not yet

in state c. If a cell is chosen, we draw a random number � 2 0; 1½ �. If � > p, one cell enters the next

subsequent compartment (corresponding to an asymmetric cell division). If � � p, two cells enter the
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next subsequent compartment (corresponding to a symmetric stem cell division). In both cases, the

mother cell is removed. Iterating over many cell divisions leads to a distribution of cells amongst the

accessible 1þ c cell cycle states. Recording the temporal change of the distribution allows us to infer

further properties of interest such as the time dependence of the average and the variance of the

distribution. All simulations are implemented in C++, and are analyzed and visualized in Mathema-

tica 10.0 and R 3.2.1.

Asymmetric cell divisions
We first discuss the telomere length dynamics under asymmetric cell divisions (corresponding to p ¼
0 and called model 1 in our further notation). We call N ið Þ tð Þ the number of cells in state i at time t.

We further choose the initial condition N 0ð Þ 0ð Þ ¼ N0. Asymmetric cell divisions strictly conserve the

size of the cell pool
Pc

i¼0 N
ið Þ tð Þ ¼ N0. We apply a deterministic, time continuous approximation of

the underlying stochastic process and capture the average dynamics of telomere shortening by a

system of coupled differential equations,
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Here, r represents the proliferation rate of a cell. Cells move towards higher states progressively

and accumulate in state c, where they enter cell cycle arrest.

The general solution of (Equation S1) can be derived recursively and is given by
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The number of cells in states i < c resembles a truncated Poisson distribution with rate parameter
r
N0

and shape parameter i. Figure 1g shows a comparison of solution (Equation S2) to exact individ-

ual based stochastic computer simulations. The number of cells in state 0 decreases exponentially.

Cells in states i ¼ 1; . . . ; c� 1 are initially absent, undergo a maximum and vanish in the long run

again. Only cells in state c accumulate over time.

Inferring distribution (Equation S2) from in vivo data requires several blood samples at sequential

time intervals. A single measurement of the telomere length distribution at time t
¢

corresponds to

the interception points of a vertical line, drawn at time t
¢

, and the number of cells in every state in

the model given by Equation S2. Thus, the observed distribution at time t
¢

in Figure 1g is given by

f
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cð Þ ¼ fN 0ð Þ t
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� �

; . . . ;N cð Þ t
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g: (S3)

This distribution becomes a traveling wave that shifts towards shorter average telomere length in

time, see Figure 1—figure supplement 1. The maximum of this wave reaches state i after time

t
ið Þ
max ¼ iN0

r . Plugging this into Equation S2, we find for the maximum of this traveling wave
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where we applied Stirling’s formula. The most abundant telomere length declines proportional to
1
ffiffiffiffiffiffi

tmax

p in time if cells undergo asymmetric cell divisions only.

Next we calculate the time dependence of the average telomere length E c tð Þ½ �. This corresponds
to the first moment of the distribution (Equation S2), given by
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where cells in state c do not contribute. To calculate this sum we first note that the upper incom-

plete gamma function is defined as G 1þ c; rtN
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the second term is
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and thus we have
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In the last step we used the property of the upper incomplete gamma function
q

qxG nþ 1; x½ � ¼ �xne�x. Collecting all terms in Equation S5 again gives
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The expression for the average telomere length (Equation S9) simplifies significantly for certain

parameter regimes. For example for the hematopoietic system in humans we expect N0 at least to

be in the order of a few hundred of cells and c is strictly larger than zero. Thus the first term in

Equation S9 is very small and negligible. The second term is dominated by the linearly decaying

term, as the incomplete gamma function is G 1þ c; rt
N0

h i

»c! for t � r=N0, i.e. sufficiently small t. Thus

in this situation expression (S9) is well approximated by

E c tð Þ½ �»cN0�Dcrt

N0

(S10)

until only few cells have reached state c. The linear approximation Equation S10 is excellent, until

most cells reach states of very short telomeres. In the situation of critically short telomeres, the full

solution (Equation S9) has to be used and the average telomere length reaches zero asymptotically.

Our approach allows us to calculate additional properties of the system. The knowledge of the

exact distribution enables us to derive all moments of the distribution. For example, we can derive

analytical expressions for the time dependence of the variance s
2 tð Þ. First note, that the moment

generating function for the distribution (Equation S2), Mc zð Þ ¼ E ecz½ � tð Þ, is
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We recover the average (Equation S9) of the telomere length distribution via E c tð Þ½ � ¼ q

qx Mc 0ð Þð Þ.
The variance can be calculated via
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�E2 c tð Þ½ �:

(S12)

Again, the first term of Equation S12 is negligible for a biological meaningful parameter range.

The quadratic term c� rt=N0ð Þ2 is compensated by an identical term in E2 c tð Þ½ � (see Equation S9).

Again, the gamma function is approximately equal to c! for sufficiently small times. Thus, expression

(Equation S12) is initially dominated by the linear term and consequently, the variance grows linear

as s2 ¼ rt
N0
. The standard deviation increases in time as

s¼
ffiffiffiffiffiffi

rt

N0

r

: (S13)

The linear approximation of the variance is excellent. Only if cells start to accumulate in state c

(cell cycle arrest) the variance decreases.

Symmetric cell divisions
In the following, we modify the system of differential Equation S1 (model 1) to incorporate symmet-

ric stem cell divisions (model 2). We assume a cell division to be symmetric with probability p and

asymmetric with probability 1� p respectively. Note that the number of stem cells is not constant

but increases due to symmetric cell divisions. Initially there are N0 cells with telomeres of length c.

We assume a number of stem cell divisions that is constant within a fixed time interval, reflecting the

necessity to produce a fixed number of differentiated cells during a unit of time. However, time

intervals between stem cell divisions remain stochastic in the individual based model. As a conse-

quence, the stem cell pool increases linearly in time, Np tð Þ ¼ N0 þ rpt. Thus, the system of differen-

tial equations changes to

_N ið Þ
p tð Þ ¼

�
rN ið Þ
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�
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(S14)

The solution to this system of differential equations is

N ið Þ
p tð Þ ¼

N0
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1þ p
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i

ffiffiffiffi

t��p
p

lni t�ð Þ 0� i < c
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:

(S15)

where we used t� ¼ rp
N0

tþ 1 as an abbreviation. Using l’Hopital and ex ¼ limn!¥ 1þ x
n Þ

n�

we recover

the Equation S2 for p ! 0 and the solution turns into a Poisson distribution again,
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lim
p!0

N ið Þ
p tð Þ ¼N0

i!

rt

N0

� �i

e
� rt

N0 ¼N ið Þ tð Þ: (S16)

Note that we assumed a constant number of cell divisions within a fixed time interval. Due to the

increasing stem cell pool size, this effectively causes a reduction in the proliferation rate of individual

stem cells with age.

Similar to the former subsection, the time dependence of the maximum of the distribution can be

calculated for i ¼ 1; . . . ; c� 1. The time until the maximum of the telomere length distribution

reaches length i becomes

t ið Þ
max;p ¼N0

eip � 1

rp
: (S17)

The time to reach the maximum increases exponentially in i for symmetric cell divisions, in con-

trast to the linear increase for only asymmetric cell divisions. However, Equation S17 reduces to the

result we obtained in the former subsection in the limit p ! 0. The cell count at the maximum

becomes

N ið Þ t ið Þ
max;p

� �

»
N0 1þ pð Þi

ffiffiffiffiffiffiffi

2pi
p : (S18)

The maximum decreases considerably slower with i (given the same initial size of the stem cell

pool) compared to the case of only asymmetric cell divisions Equation S4, where we have used Stir-

ling’s formula for the approximation. Similar to the former subsection we can calculate the average

of the telomere length distribution. This time the average becomes

Ep c tð Þ½ � ¼ 1

Np tð Þ
X

c

i¼0

c� iDcð ÞN ið Þ
p tð Þ

¼ Dc�1þc

c!

ln1þc t�ð Þ
t�ð Þ� þG 1þ c;� ln t�ð Þ½ �

c!
c�Dc� ln t�ð Þð Þ

(S19)

with t� ¼ rp
N0

tþ 1 and � ¼ 1þp
p . Similar to Equation S9, this expression is dominated by the second

term of the equation. The average decreases approximately logarithmically for sufficiently small t,

Ep c tð Þ½ �»c�Dc
1þ p

p
ln

rp

N0

tþ 1

� �

: (S20)

The temporal decrease of the average telomere length speeds up with decreasing p. In the limit

p ! 0, we recover the result (Equation S10) of a linear decreasing average. Similar to the former

section we can derive the variance of the distribution, using the moment generating function

Mp xð Þ ¼ Ep e
cx½ � tð Þ, via

s
2
p tð Þ ¼ q

2

qx2
Mp 0ð Þ� q

qx
Mp 0ð Þ

� �2

: (S21)

However, the result becomes less accessible and informative. Thus we restrict ourselves to a

numerical solution of Equation S21. The logarithmic decay of the average telomere length has con-

sequences on the interpretation of experimental results of telomere length distributions. In infants

an accelerated decrease of telomere length can be observed. This can be explained immediately by

an expanding stem cell pool. The stem cell pool contains only a few N0 stem cells initially (new-

borns). These stem cells divide symmetrically with probability p and asymmetrically with probability

1� p respectively. The symmetric cell divisions cause an increase of the stem cell pool size and an

indirect decrease in cell proliferation rates. The logarithmic decay is pronounced initially, but flattens

after some time (as the number of stem cells increases). Thus, in adults the logarithmic decay is diffi-

cult to distinguish from a linear decay, see for example Figure 4 in the main text.

Connections to the Normal and Log-Normal distribution
The number of cells in each state i follows a Poisson distribution
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N ðiÞðtÞ ¼N0

i!

rt

N0

� �i

e
� rt

N0 (S22)

in the case of only asymmetric stem cell divisions, see Equation S2 for details. We introduce x ¼ rt
N0
,

and upon normalisation (S22) becomes

N ðiÞðxÞ / xi

i!
e�x; (S23)

where x is a Poisson distributed variable. For x sufficiently large, this random variable is well

described by a normal distribution and we have x / Normal distribution.

If we allow for symmetric cell divisions, cells in state i followed a generalised Poisson distribution

N ðiÞ
p ðtÞ ¼N0

i!

1þ p

p

� �i

lni
rpt

N0

þ 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rpt

N0

þ 1
�p

r

; (S24)

see Equation S15 for details. Choosing y ¼ rpt
N0

þ 1 and neglecting normalisation factors we can write

N ðiÞ
p ðyÞ / 1

i!
lni yð Þ ffiffiffi

y�p
p

(S25)

If we change variables again and choose y ¼ ex, Equation S25 becomes

N ðiÞ
p ðy¼ exÞ / 1

i!
lni exð Þ

ffiffiffiffiffi

ex�p
p

¼ xi

i!
e�

x
p /NðiÞðxÞ: (S26)

As x ¼ rt
N0

is approximately normally distributed, and y ¼ ex, y ¼ rpt
N0

þ 1 follows a Log-normal

distribution.

Parameter evaluation for the average telomere length on population
level by Bayesian inference method
We implement Approximate Bayesian Computation (ABC) rejection samplings to derive posterior

parameter distributions for the predicted average telomere length under asymmetric (model 1,

Equation S10) and combined symmetric and asymmetric (model 2, Equation S20) cell proliferations

respectively. Utilizing Equation S10, we have to infer two parameters: (i) the average decrease of

telomere length per time r=N0 and (ii) the initial telomere length c. In the case of Equation S20 a

third variable has to be determined: (iii) the probability of symmetric cell divisions p. We draw these

variables independently from uniform distributions (prior) with ranges r=No 2 ½0; 0:2� kbp
year

, c 2
7; 15½ � kbp and p 2 0; 1½ � and produce 5� 108 independent realizations of Equation S10,S20. We cal-

culate the coefficient of determination R2 between each of these realizations and the average telo-

mere length from a data set of 356 healthy individuals (see for example Figure 1 in the main text)

via

R2 ¼ 1�
P

i E c½ � tið Þ� y tið Þð Þ
P

i y� y tið Þð Þ : (S27)

Here, y tið Þ denotes, the measured telomere length of an individual with age ti; y is the average

measured telomere length of the population and E c½ � tið Þ the value of a single realization of

Equation S10 or Equation S20 at time ti given the random set of parameter values. We seek param-

eter regimes that maximize R2 and discard any parameter combination below a certain threshold.

Bayesian parameter evaluation for asymmetric cell divisions
For a linear fit according to Equation S10 with 2 parameters we find R2

max ¼ 0:5314 as the maximum

value for the coefficient of determination. To determine the possible rate of parameters we discard

any parameter combination with R2 < 0:53. This gives sharp posterior distributions for both parame-

ter values that peak at Dcr=N0 ¼ 0:056 kbp
year

and c ¼ 10:15 kbp, see Figure 5a,b. This concurs with

best parameter estimations from linear fitting cf ¼ 9:85� 0:2 kbp and Dcrf=Nf ¼ 0:05� 0:005 kbp
year

.
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This scenario underestimates the initial telomere length (c ¼ 10:15, whereas the average initial telo-

mere length in the data is c ¼ 10:67 kbp).

Bayesian parameter evaluation for an interplay of symmetric and asymmetric
cell divisions
For a logarithmic fit according to Equation S20 with three parameters we get an improved coeffi-

cient of determination R2
max ¼ 0:541. We discard any parameter combination that results in

R2 < 0:54. Again we find localized posterior parameter distributions that peak at

Dcr=n0 ¼ 0:071 kbp
year

, c ¼ 10:41 kbp and p ¼ 0:32, see Figure 5c–e. This approach improves the pre-

diction of the initial telomere length. The average loss of telomere length per year is higher com-

pared to only asymmetric proliferation and the probability of symmetric cell divisions peaks in a

range of p 2 0:25; 0:4½ �. This concurs with a nonlinear fit, where we find pf ¼ 0:37� 0:2, cf ¼
10:4� 0:3 kbp and Dcrf=Nf ¼ 0:071� 0:005 kbp

year
. However, we note this is an average over all indi-

viduals with an age distribution from 0 to 85.

Bayesian parameter evaluation for a phase transition extension of the model
In the following we partition the data into two subsets and analyze an extension of the model. We

introduce an additional parameter tT that resembles a transition time. This transition time is drawn

from a uniform distribution with tT 2 0; 80½ �. We perform above Bayesian approach according to

Equation S20 independently for each random partition of the data set. This gives in total seven pos-

terior distributions. This approach gives R2
max ¼ 0:573 as the maximum value for the coefficient of

determination and we discard any parameter combination with R2 < 0:57. The transition occurs in

children at the age of 6 to 7, see Figure 5f–i, and a clear distinction of the posterior parameter dis-

tributions between phase 1 and phase 2 can be observed. The parameter estimations confirm with

the interpretation of a growing stem cell pool. We find an increased rate of telomere shortening,

compared to phase 2 as well as an increased probability of symmetric cell divisions.

Non linear fitting of calculated telomere length distributions to measured
distributions in single individuals
In the previous subsection, the average telomere shortening at the population level was investi-

gated. We found indications for an increasing stem cell pool with age in particular in children due to

infrequent symmetric stem cell divisions. In the following, we shift from the population level towards

the telomere length distribution in healthy individuals. Equation S15 allows us to compare theoreti-

cal predictions to measured telomere length distributions and to infer individual proliferation param-

eters of stem cell populations in vivo from a single blood sample under an interplay of symmetric

cell divisions (with probability p) and asymmetric cell divisions (with probability 1� p). However,

Equation S2 is contained as the special case (p ¼ 0), according to Equation S15. The expected num-

ber of cells that have not entered cell cycle arrest is given by

N ið Þ
p tð Þ ¼N0

i!

1þ p

p

� �i lni rp
N0
tþ 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp
N0
tþ 1p

q : (S28)

We set t� ¼ rp
N0

tþ 1, normalize (S28) and obtain for the expected telomere length distribution

�p x; tð Þ ¼ 1

ðc�xÞ! t�ð Þ
1þ p

p

� �c�x
ffiffiffiffi

t��p
p

lnc�xðt�Þ : (S29)

We perform non-linear fits of Equation S29 to measured telomere distributions in healthy individ-

uals, leaving three free parameters t�, p and c to be determined. Results of the nonlinear fits can be

seen in Figure 6—figure supplements 1–3. The corresponding fitting parameters are denoted in

Supplementary file 1.
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Brümmendorf T, Wagner W. 2014. Aging of blood can be tracked by DNA methylation changes at just three
CpG sites. Genome Biology 15:R24. doi: 10.1186/gb-2014-15-2-r24

Werner B, Dingli D, Lenaerts T, Pacheco JM, Traulsen A. 2011. Dynamics of mutant cells in hierarchical organized
tissues. PLoS Computational Biology 7:e1002290. doi: 10.1371/journal.pcbi.1002290

Zijlmans J, Martens UM, Poon SSS, Raap AK, Tanke HJ, Ward RK, Lansdorp PM. 1997. Telomeres in the mouse
have large inter-chromosomal variations in the number of T2AG3 repeats. Proceedings of the National
Academy of Sciences of the United States of America 94:7423–7428. doi: 10.1073/pnas.94.14.7423

Werner et al. eLife 2015;4:e08687. DOI: 10.7554/eLife.08687 23 of 23

Research article Computational and systems biology Developmental biology and stem cells

http://dx.doi.org/10.1126/science.7605428
http://dx.doi.org/10.1126/science.7605428
http://dx.doi.org/10.1038/386761a0
http://dx.doi.org/10.1016/j.stem.2013.08.001
http://dx.doi.org/10.1126/science.1180794
http://dx.doi.org/10.1038/nrg1961
http://dx.doi.org/10.1098/rspb.2003.2483
http://dx.doi.org/10.1038/nature04956
http://dx.doi.org/10.1016/j.cell.2008.01.038
http://dx.doi.org/10.1016/S0025-5564(98)10092-5
http://dx.doi.org/10.1016/0022-5193(73)90198-7
http://dx.doi.org/10.1016/0022-5193(73)90198-7
http://dx.doi.org/10.1038/nrg2269
http://dx.doi.org/10.1038/35102167
http://dx.doi.org/10.1038/35102167
http://dx.doi.org/10.1098/rsif.2013.0410
http://dx.doi.org/10.1016/j.cell.2008.01.036
http://dx.doi.org/10.1073/pnas.1501713112
http://dx.doi.org/10.1084/jem.190.2.157
http://dx.doi.org/10.1371/journal.pone.0076195
http://dx.doi.org/10.1007/s10955-008-9504-4
http://dx.doi.org/10.1038/nature13824
http://dx.doi.org/10.1084/jem.20030929
http://dx.doi.org/10.1073/pnas.1105414108
http://dx.doi.org/10.1126/science.1243148
http://dx.doi.org/10.1126/science.1243148
http://dx.doi.org/10.1016/S0968-0004(02)02110-2
http://dx.doi.org/10.1016/S0968-0004(02)02110-2
http://dx.doi.org/10.1186/gb-2014-15-2-r24
http://dx.doi.org/10.1371/journal.pcbi.1002290
http://dx.doi.org/10.1073/pnas.94.14.7423
http://dx.doi.org/10.7554/eLife.08687

